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NIL volentibus arduum: voor zij die willen is niets lastig. Mijn middel-
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auteur er in oorsprong verantwoordelijk is voor deze gevleugelde woorden,
maar het is wel duidelijk dat de brave man in kwestie absoluut geen kaas
moet gegeten hebben van doctoreren. Immers zelfs voor een doctoraatsstu-
dent met ijzeren wil ligt de weg naar de opperste fotonicaroem bezaaid
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toraat van in het prille begin ingevuld door Prof. Dries Van Thourhout.
Uiteraard wil ik ook mijn dank betuigen aan co-promotor Prof. Bjorn Maes
voor zijn belangrijke inbreng in de laatste jaren van het doctoraat.

Echter de meest ervaren fotonicagids in Gent en omstreken is natuurlijk
prof. Roel Baets, sinds jaar en dag hoofd van de onderzoeksgroep Fotonica.
Vanzelfsprekend was ook zijn invloed op cruciale punten in dit doctoraat
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in de euh...tang zat. In één adem wens ik ook de rest van de jury (met aan
het hoofd voorzitter prof. Daniël Dezutter) en in het bijzonder de resterende
leden van de leescommissie (prof. Wim Bogaerts, prof. Kristiaan Neyts,
prof. Tobias Kippenberg en dr.ir. Iwijn De Vlaminck) te bedanken voor
hun tijd, inzet en feedback. Iwijn verdient zeker een speciale vermelding
voor zijn bepalende invloed de eerste twee jaar van het doctoraat. Die peri-
ode was voldoende om een toen (we spreken van 2007) nog knettergek idee
(om optische krachtwerking aan te tonen op een chip) tot een persoonlijke
missie te maken die de rest van mijn doctoraatstijd zou gaan beheersen.

Ook de partners van het 3D-camera project (prof. Maarten Kuijk, prof.
Wilfried Philips, Ward, Daniël, Riemer en Ljubomir) verdienen een be-
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dankje. De vaardigheden en kennis die ik in dit project tijdens mijn twee
eerste doctoraatsjaren kon opbouwen zijn bij mijn later werk goed van pas
gekomen.

De experimenten die in dit doctoraat zijn gebeurd zouden volstrekt onmo-
gelijk geweest zijn zonder de noodzakelijke ondersteuning van een heleboel
mensen: Steven, Mr. Yu en Liesbet voor de processing, Hendrik en Jeroen
voor de metingen, Kristien en Manu voor de IT, de Ilses, Bert, Karien, Eddy
en Mike voor het oplossen van talrijke administratieve en andere proble-
men. Een speciale vermelding in deze categorie is er voor Luc, technieker
in hart en nieren die door zijn ervaring met vacuumtechnologie een onmis-
baar stukje van mijn doctoraatspuzzel wist te leggen.

Geen inspanning zonder ontspanning natuurlijk, dus verdienen ook de ploeg-
maats en sympathisanten van volleybalclub JTV Brigand hun plaatsje in dit
dankwoord. Volgens een ruwe schatting kom ik hier na 6 jaar toch aan een
lijstje dat ergens ver boven de 50 namen afklokt (alfabetisch van Alain to
Yves) en waarvoor ik een aparte appendix zou moeten invoeren.

Een andere belangrijke groep van mensen zou ik kort kunnen omschrijven
als ’de mannen van het colleesj van Deiremonne’ al dekt doorheen de jaren
deze vlag al lang de lading niet meer: Kris & Lien & Fé, Els & Jeroen,
Joren & Vero, Kris & Klaartje, Tom & Sarah, Lode & Marissa, Bart & Cees,
Maarten & Soetkin & Ferre,. Een quizke, een verbodenwoordenspel tijdens
een k-tocht met iets te veel j-kes (met of zonder de V), een pokeravondje,
een vrijgezellenfuif met bijhorende trouwerij, er gewoon eens tussenuit,
een houten paard dat slechts zeer occasioneel eens buitenkomt, een bbq,
een gezellige nieuwjaaravond of gewoon maar eens een pintje drinken in
den abo: het zijn allemaal dingen die wel eens goed willen helpen om met
de gedachten eens niet bij de job te zijn.

Echter het best mogelijke medicijn tegen elke vorm van doctoraatsmoeheid
is de open en amicale sfeer die steeds onder de collega’s aanwezig is ge-
weest. Ik denk dan bijvoorbeeld aan de mannen van de ’oude garde’ die de
groep reeds een aantal jaren verlaten hebben, maar in de begindagen steeds
voor de ambiance zorgden: Bert, Kris, Ronny, D’Oos, Sam, Joris VC, Gino,
Wouter VP, Peter VDS en Reinhard. De ’net iets minder oudezakken garde’
nam de fakkel meer dan waardig over: Jonathan, Joost “Allez ho, nog een-
tje”, Peter DB en natuurlijk ook Stijn, mijn voormalige thesisbegeleider die
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me in de fotonicawereld heeft binnengeloodst. Samen met enkele mensen
die intussen zowat tot het vaste fotonicameubilair zijn gaan behoren (Gun-
ther “Dr. G, touch my *******”, Wim “nog een koffieke boven om af te
ronden zeker?”, Peter B en Geert “vaste lunchgezellen in Sint-Jan en Brug
met bijhorende maag van beton” en Dirk “deskundige eerste hulp bij meet-
problemen”) zorgden ze ervoor dat Katrien “Ain’t no sunshine when she’s
gone” en ikzelf in een opperbeste groepssfeer aan ons doctoraatsavontuur
konden starten in augustus 2005.

Naast de start van een lovenswaardige traditie om op regelmatige basis
ravissante dames aan onze overwegend mannelijke groep toe te voegen
was het ook de start van de internationalisering van de groep, ingeluid door
“Shank Tank” Shankar. Zijn voorbeeld werd gevolgd door vele Indiërs en
Chinezen die stuk voor stuk allemaal kleurrijke namen hadden die ik niet
altijd even gemakkelijk uit elkaar kon houden. Eéntje van hen was moedig
genoeg om mijn werk rond MEMS diffractieroosters verder te zetten: Suku-
mar, I was happy to see that the pupil could exceed his master’s MEMS
skills by far. Voeg bij dit alles nog een vleugje Spaanse peper “Christina”,
Frans temperament “Pauline”, Vietnamese aaibaarheid “Khai-man”, oer-
Hollandse gezelligheid “Thijs”, Thaise vrolijkheid “Nannicha”, Servische
eruditie “Stevan”, Turkse branie “Gunay”, West-Vlaamsche doortastend-
heid “Danaë”, Poolse empathie “Kasia”, Iraanse charme “Shahram” en
Ethiopische rustige vastheid “Nebiyu” en je krijgt al een vaag idee van het
bonte allegaartje aan collega’s dat dagelijks het technicum onveilig maakte.

Bovenstaand recept komt pas goed tot zijn recht met wat jong geweld van
eigen bodem. Sam, Thomas, Eva, Peter DH, Martijn, Yannick en Bart. Jul-
lie zijn er nog niet zo lang geleden aan begonnen: keep up the good work
en vooral, keep on smiling als het wat minder goed gaat, dat heb ik zelf ook
altijd gedaan (ahum). Diedrik “vettig lachske”, Martin “kruip eens onder
een tafel door zonder de vloer te raken” en Karel “staalkabel is my middle
name” zijn al iets minder jong, maar des te meer geweldig natuurlijk.

Een welgemeende dankuwel ook aan mijn mede-eilandbewoners, willens
nillens altijd de dichtsbijzijnde luisterende oren in goede en kwade dagen.
Tom, Bram en Pieter, ik zal ons geleuter, gezaag en gezever heel hard mis-
sen. In de categorie “volslagen buiten categorie” tot slot horen Lieven en
Dave thuis. De gangen van den 41 werden een pak stiller en minder gezel-
lig toen jullie beslisten om andere oorden op te zoeken!
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Daarmee heb ik de meeste van de collega’s nu wel genoemd denk ik, maar
ik kan er ook hier en daar wel een paar vergeten vernoemen zijn. Zo schie-
ten me er in laatste instantie nu ook nog wel een Koen “medebestrijder
van meetkamerperikelen in the good old days”, Wout “tegengif voor mijn
cynisme, maar het pakt precies toch niet altijd even goed”, Marie “ ****
***** ** ****-*** ;-) ”, Elewout “Ik ben niet paranoı̈a”, en Kristof “blond
and boring don’t go together” te binnen. Alle gekheid op een stokje, jul-
lie zijn elk op jullie eigen manier veel meer geweest dan louter collega’s,
al slaat dit laatste misschien wel op een heel groot deel van bovenstaande
mensen. 5 en een kwart jaar photonics was immers niet zomaar een full
time job, het is ook het verhaal van nachtelijke experimenten op adrenaline,
pintjes in de Vooruit, kalmerende drukpuntmassages in Turkse en Japanse
stijl na alweer een mislukt experiment, chocolates@11, fruits@4, een licht-
jes surrealistische avond in een Antalyaanse jacuzzi, beachvolley op de
paradijselijke stranden van Mexico, Californië en Florida, een niet-voor-
publicatie kalender, een hoofdrol in een fotostrip, een mislukt debuut als
charmezanger en romanschrijver, pintjes in de Marimain, een memorabele
week op het eiland Elba, radio Fotonica, een mysterieuze geparfumeerde
brief op mijn bureau, een ongewenst nat pak in Roel’s zwembad (x2),
gewoon zomaar een feestje (x37), een ontroerend afscheidsfilmpje, who
took my circulator?, nog veel meer chocolates@11, nasi-rollen in de Brug,
een koppige kokosnoot, een terrasje aan de Gruut, who took my temper-
ature cable?, een fietstocht richting Antwerpen die niet lang genoeg kon
duren, een glaasje van plezier bij Filliers en een rits brouwerijbezoekjes,
een kerstboompje versierd met wel heel speciale balletjes en zo veel meer
herinneringen die maken dat ik mijn verblijf in Gent nooit zal vergeten.

Tot slot nog een woord van dank aan de familie: broer Jonas, zus Sophie,
schoonbroer Kevin en uiteraard bengels Lucas en Casper (die —godzij-
dank— dat hele doctoraatsgedoe maar niets vinden en liever verstoppertje
spelen) en uiteraard ook ma en pa. Dit boekje waar jullie vermoedelijk de
toeten of blazen van begrijpen was niet mogelijk geweest zonder 29 jaar
onophoudelijke steun.

Het is een behoorlijk uit de kluiten gewassen dankwoord geworden, maar
op een manier zal het toch nooit helemaal compleet zijn, denk ik. Nog eens
bedankt voor alles, het is hoog tijd nu om letterlijk en figuurlijk een nieuw
hoofdstuk te beginnen.
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Adios!

Gent, maart 2011
Joris Roels
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Nederlandse samenvatting
–Summary in Dutch–

Situering van het doctoraatsonderzoek

De tak van de wetenschap die fotonica genoemd wordt, spitst zich toe op de
generatie, transmissie, modulatie, versterking, detectie en het doorschake-
len van licht. Fotonica bestrijkt een heel breed toepassingsgebied, variërend
van de meest geavanceerde technologische applicaties tot alledaagse ge-
bruiksvoorwerpen.

Gedurende de laatste decennia is de precieze controle en manipulatie
van licht een dagelijkse uitdaging geworden voor vele wetenschappers en
ingenieurs wereldwijd. Voor al deze toepassingen is er op een of andere
manier nood aan componenten die interageren met licht en het op een
gecontroleerde manier manipuleren (lenzen, spiegels, modulatoren, etc.).
Dikwijls is er ook actieve functionaliteit vereist waarmee we bedoelen dat
de eigenschappen van de optische component op een gecontroleerde manier
kunnen gewijzigd worden in de tijd via een externe stimulus.

Componenten van sub-mm afmetingen die mechanisch aangestuurd wor-
den door een externe stimulus worden Micro-Elektro-Mechanische syste-
men (MEMS) genoemd. MEMS die ingezet worden om licht te manip-
uleren worden Micro-Opto-Elektro-Mechanische systemen (MOEMS) ge-
noemd. Een voorbeeld van zo een MOEMS wordt getoond in Fig. 1a.
Het spiegeltje kan geroteerd worden door een elektrische spanning aan te
leggen.

In parallel met de voortdurende miniaturisatie in de de elektronica (re-
sulterend in meer transistoren per chip en dus krachtigere chips), zien we
dat ook in de wereld van de MOEMS naar een nog verder doorgedreven
miniaturisatie wordt gestreefd. Men spreekt in dat verband ook van Nano-
Opto-Elektromechanische Systemen (NOEMS).

In dit werk zijn we nog een stap verder gegaan en hebben we een op-
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Figuur 1: a, 2D-matrix van verdraaibare microspiegeltjes. Eén van de
spiegeltjes bevindt zich in de ‘actieve’ geroteerde toestand. (foto van San-
dia National Laboratories), Een microdeeltje, gevangen in het centrum van
een laserspot.

portuniteit onderzocht die gecreëerd werd precies door deze miniaturisatie.
Klassieke MOEMS manipuleren enkel het licht, de beweging die benodigd
is voor actieve functionaliteit moet verricht worden door middel van een
externe (niet-optische!) kracht. Wij zijn op zoek gegaan naar componenten
waar het licht zelf voor de externe stimulus zorgt die beweging mogelijk
maakt. Dit is een extreem uitdagende opdracht want de stralingsdruk die
licht uitoefent is in principe zeer klein. Toch hebben we met ons werk kun-
nen aantonen dat onder bepaalde omstandigheden optische aandrijfkrachten
voor zeer kleine componenten op een chip geen utopie zijn. We kunnen dus
spreken over Micro-Opto-Mechanische-Systemen (MOMS) of zelfs Nano-
Opto-Mechanische systemen (NOMS).

Optische krachten worden momenteel al toegepast om microdeeltjes te
manipuleren zoals levende cellen, DNA en bacteriën. Men spreekt in dat
verband ook van een ‘optisch pincet’ (zie Fig. 1b). De krachten die in deze
experimenten optreden zijn voorbeelden van gradiëntkrachten. Het interes-
sante aan gradiëntkrachten is dat de uitgeoefende kracht niet alleen schaalt
met het optische vermogen van de laser, maar ook met de gradiënt van
het veld. Dit laat ons toe om relatief sterke krachtwerking te creëren met
beperkt optisch vermogen. Bij klassieke stralingsdruk schaalt de grootte
van de optische kracht immers met Pc (P het optisch vermogen, c de licht-
snelheid) en kunnen we dus enkel het optisch vermogen verhogen om meer
kracht op te wekken. Echter bij een optische gradiëntkracht zal de kracht-
werking bij gelijk optisch vermogen toch groter worden als de intensiteit
sterker varieert over kortere afstand.

In het bijzonder in het nabije veld van golfgeleiders die licht trans-
porteren treffen we sterke veldgradiënten aan wat ons een unieke moge-
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lijkheid biedt om af te rekenen met de relatieve zwakheid van stralingsdruk
gerelateerde krachten. Het fysisch principe dat de kracht veroorzaakt is
hierbij zeer gelijkaardig aan dat van het optisch pincet.

Aan dit nieuwe onderzoeksdomein wordt soms ook de naam ‘optome-
chanica’ toegekend. Het is in dit domein dat wij experimenteel baanbrek-
end pionierswerk hebben verricht, voortbouwend op eerdere theoretische
voorspellingen. We hebben hierbij voorgebouwd op de stevige basis in
silicium nanofotonica die reeds aanwezig was in de Onderzoeksgroep Fo-
tonica. Omdat de sterkste optische krachtwerking gevonden wordt op afs-
tanden van de nanofotonische golfgeleider die typisch kleiner zijn dan de
golflengte van het licht was bij de fabricage van NOMS nanometer precisie
nodig. In feite kunnen we dus stellen dat ons onderzoek naar NOMS een
sterk multidisciplinair karakter vertoont en dus kennis van mechanica, nan-
otechnologie en uiteraard fotonica vergt. Het multidisciplinaire karakter
van optomechanica wordt schematisch weergegeven in Fig. 2.

Toepassingen

Op fundamenteel wetenschappelijk gebied kan de optomechanica op re-
latief korte termijn interessante resultaten opleveren. Als er een sterke op-
tomechanische interactie is, kan licht mechanische energie onttrekken aan
een trillende structuur. Men spreekt in dat verband ook van ‘optisch koe-
len’. Een trillende structuur die voldoende wordt afgekoeld gaat dan quan-
tummechanisch gedrag vertonen dat normaliter alleen observeerbaar is in
zeer kleine systemen zoals atomen en molecules. De optomechanica zou
dus een aantal experimentele tests van de theorie van de quantummechan-
ica kunnen opleveren.

Vanuit ingenieursstandpunt zijn we echter veeleer geı̈nteresseerd om de
optische krachtwerking meer direct te gebruiken als alternatief aandrijfme-
chanisme voor geı̈ntegreerde MOEMS. Optomechanica zou bijvoorbeeld
een rol kunnen spelen bij de realisatie van een volledig optisch netwerk.
Met behulp van NOMS kunnen immers optische filters en switches gemaakt
worden die optisch reconfigureerbaar zijn.

Echter de meest voor de hand liggende toepassing kan waarschijnlijk
gevonden worden in de wereld van de RF-MEMS oscillatoren. Deze dienen
als klok voor een geı̈ntegreerd elektronisch circuit of elke andere appli-
catie die een onafhankelijk tijdsreferentie nodig heeft (horloges of mobiele
telefoons). Andere mogelijke toepassingen zijn smalbandige RF-filters en
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Figuur 2: Nano-Optomechanische componenten (NOMS) zijn het resultaat
van de kruisbestuiving van 3 onderzoeksdomeinen: mechanica, nanotech-
nologie en fotonica.

uiterst gevoelige kracht-, massa- of verplaatsingssensoren.

Experimentele resultaten

Om krachtwerking op een golfgeleider te kunnen waarnemen plaatsen we
een tweede ondergeëtste golfgeleider in parallel die zich in het evanescente
veld van de eerste bevindt. Hierdoor vindt er koppeling tussen beide plaats
en krijgen we in feite een directionele koppelaar. Dit fenomeen laat ons
meteen toe om trillingen van de golfgeleiders te registreren. Immers zal een
trilling de koppeling tussen beide golfgeleiders veranderen wat resulteert in
een modulatie van een doorgaand optisch probesignaal. Dit modulatiesig-
naal zal zich dan bevinden op de frequentie van de mechanische trilling.
Het kan bestudeerd worden met een oscilloscoop of elektrische spectrum
analyzer nadat het optisch signaal werd omgezet in een elektrisch signaal
met behulp van een fotodetector.

Het is op deze manier zelfs mogelijk om de browniaanse trilling van de
ondergeëtste golfgeleiders op te pikken. Deze trilling ontstaat doordat de
atomen in het materiaal onder invloed van temperatuur voortdurend trillen
en dit resulteert uiteindelijk in een chaotische trilling van de golfgeleiders.
Deze chaotische trilling kan echter wel perfect gebruikt worden om de op-
tische kracht te calibreren omdat gemakkelijk kan berekend worden hoe
groot de browniaanse trilling gemiddeld is.

Nu we trillingsdetectie en een calibratiemechanisme hebben kunnen we
de optische krachtwerking tussen de golfgeleiders bestuderen. Twee single-
mode golfgeleiders in parallel resulteren in feite in een bimodaal systeem
(waarbij we alleen modes beschouwen met hun belangrijkste elektrisch



SUMMARY IN DUTCH xxvii

veld component parallel met het substraat): we hebben een symmetrische
en een antisymmetrische mode.

De krachten die deze modes genereren op de golfgeleider kunnen op
verschillende manieren berekend worden. De kennis van de velden op een
oppervlak dat de golfgeleider volledig omsluit volstaat. Het resultaat van
zo een berekening wijst uit dat de symmetrische mode een uitsluitend at-
tractieve kracht genereert tussen twee parallelle golfgeleiders (per conven-
tie negatieve waarden voor attractieve kracht). De antisymmetrische mode
kan ook een repulsieve kracht opleveren voor voldoende grote afstanden.

Om attractieve en repulsieve kracht waar te nemen moeten we dus beide
modes gecontroleerd exciteren. Daarom hebben we in dit werk een com-
ponent ontwikkeld die afhankelijk van de golflengte de symmetrische, de
antisymmetrische mode of een superpositie van beiden genereert.

Omdat de optische krachten toch nog relatief klein zijn wordt ook nog
resonante excitatie toegepast. De ondergeëtste golfgeleiders kunnen we
eigenlijk beschouwen als balken of snaren met een welbepaalde basisres-
onantiefrequentie. We zullen met behulp van de optische krachten deze
snaren als het ware aanslaan op hun resonantiefrequentie. Het lichtsignaal
dat de kracht uitoefent (pomp laser) moet dan wel gemoduleerd worden op
de resonantiefrequentie van de snaar. Om deze reden is er ook een elektro-
optische modulator in de experimentele set-up werd opgenomen. Omdat
gasmolecules de beweging te sterk dempen wordt de component in een
vacuümklok geplaatst voor karakterisatie (zie Fig. 3a).

Uiteindelijk konden we dan de optische krachtwerking tussen de golf-
geleiders opmeten en calibreren. Het finale resultaat wordt getoond in Fig.
3b. We zien inderdaad dat de kracht met behulp van de golflengte afgesteld
kan worden van aantrekkend tot afstotend en dat tussenin modesuperposi-
ties gevonden worden die tot een nulkracht leiden. Ook de kwantitatieve
overeenkomst met de theorie is uitstekend. Dit resultaat kan beschouwd
worden als een belangrijke doorbraak en werd dan ook gepubliceerd in het
wetenschappelijke tijdschrift Nature Nanotechnology.

We hebben ook onderzocht hoe de optische kracht kan versterkt wor-
den. Een voor de hand liggende optie was het inbouwen van de ondergeëtste
golfgeleider in een optische resonator. We hebben met behulp van een race-
track resonator inderdaad kunnen vaststellen dat de optomechanische inter-
actie versterkt wordt met de finesse van de optische resonator. Een andere
interessante piste is het gebruik van sleufgolfgeleiders. Dit type golfge-
leiders vertoont een klein gleufje (=slot) waarin het licht sterk geconcen-
treerd wordt. Onze experimenten tonen aan dat de krachtwerking tot 25
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Figuur 3: Set-up en meetresultaat met attractieve en repulsieve kracht.
a, Volledige set-up. Het device-under-test (DUT) wordt in een vacuümklok
geplaatst om demping van trilling door lucht weg te nemen. Er zijn twee
tunable laser sources (TLS), één pump en één probe laser. Het pompsignaal
wordt gemoduleerd met behulp van een elektro-optische modulator (EOM)
om resonante excitatie van de golfgeleidersnaren mogelijk te maken. Het
probesignaal dat de trilling registreert, wordt na passage door een op-
tisch bandpasfilter (OBF) gedetecteerd met een optisch detector en diens
elektrisch uitgangssignaal wordt uiteindelijk met een elektrische spectrum
analyzer (ESA) geanalyseerd. b, Opgemeten kracht in functie van de
golflengte. We zien dat de kracht varieert van zuiver attractief naar zuiver
repulsief in perfecte overeenstemming met de theorie.

keer groter is vergeleken met de parallelle golfgeleiders die we gebruikt
hebben in het experiment met de aantrekkende en afstotende kracht.



English summary

Introduction

The branch of science that is called photonics is focused on the gener-
ation, transmission, modulation, amplification, detection and switching of
light. Photonics is covering a broad range of applications, varying from
extremely advanced technological applications to common tools.

During the last decades the precise control and manipulation of light
has become a daily challenge for many scientists and engineers around the
world. For all these applications components that interact with light in
a controlled way are required (for examples lenses, mirrors, modulators).
Very often also some kind of active functionality is desired, meaning that
the properties of light (intensity, phase) can be changed in time through an
external stimulus.

Components of sub-mm size that are actuated mechanically through
an external stimulus are referred to as Micro-Electro-Mechanical Systems
(MEMS) in literature. MEMS that are used to manipulate light are com-
monly called Micro-Opto-Electro-Mechanical Systems (MOEMS). In par-
allel with the miniaturization encountered in electronics (resulting in more
transistors and hence more powerful and cheaper computer chips) we also
see that in the realm of MOEMS there is a tendency to miniaturize me-
chanical components. Consequently one also finds the term Nano-Electro-
Optical-Mechanical Systems in the literature.

In this work we went one step further and we looked into an opportunity
that is created through this miniaturization. Classical MOEMS manipulate
the light, where the movement that is needed for active functionality is
provided by means of an external (not-optical) force. We have investigated
components where light itself enables the required movement. This task is
extremely challenging because radiation pressure effects in general tend to
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be extremely small. Nevertheless we have demonstrated that under certain
circumstances optical actuation forces on a chip are not a utopia.

Optical forces are already widely applied to manipulate microparticles
such as living cells, DNA and bacteria. In this context the term ‘optical
tweezer’ is frequently encountered. Interestingly gradient forces do not
only scale with optical power, but also with the gradient of the electric
field. As an important consequence it is possible to create relatively large
forces for only modest optical powers. When considering classical radia-
tion pressure effects the magnitude of the optical force simply scales with
P
c (P is the incident optical power, c is the velocity of light). In this case
we can only increase the optical power to increase the exerted force. Gra-
dient forces offer an extra degree of freedom and provide a larger force (for
equal optical power) when the intensity varies more strongly over a shorter
distance. Since in the near field of light transporting waveguides strong
field gradients are encountered we have discovered a unique opportunity to
counter the relative weakness of light forces. The physical principle that
causes the gradient forces in optical waveguides is very similar to the gra-
dient forces encountered in optical tweezers.

The research domain that investigates optical forces is often called op-
tomechanics in the literature. In this domain we have made a significant
contribution by demonstrating optical forces in a nanophotonic integrated
circuit. These nanophotonic circuits have been fabricated through a silicon-
on-insulator platform and using Deep-Ultra-Violet lithgraphy, thereby ex-
ploiting the core knowledge of the Photonics Research Group.

Because the strongest optical forces are found at a distance from the
nanophotonic waveguide that is smaller than the wavelength of light nano-
scale fabrication techniques are required. In fact optomechanics on a chip
is a multi-disciplinary field that requires profound knowledge of mechan-
ics, nanotechnology and photonics. The multi-disciplinary character of the
field is illustrated in Fig. 4.

Applications

On the short term optomechanics will yield breakthroughs at the funda-
mental scientific level. In case we have sufficiently strong optomechanical
interaction, light is able to extract energy from a vibrating structure. This
process is referred to as ‘optical cooling’. If a vibrating structure is cooled
to a sufficiently low temperature it exhibits quantummechanical behavior,
which is normally only observed in very small systems such as atoms and
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Figure 4: Venn-diagram showing schematically the three subdomains (pho-
tonics, mechanics and nanotechnology) that form the base of this mul-
tidisciplinary work. Optomechanics and Nano-opto-mechanical systems
(NOMS), the subject of this Ph.D thesis, can be found at their cross-section.

molecules. By consequence optomechanics might provide a possibility for
testing the fundamentals of quantum mechanics.

From engineering point of view we are rather interested to apply the op-
tical force as an alternative actuation force for classical integrated MOEMS.
Optomechanics could play a role when realizing an all-optical communica-
tion network. Optically reconfigurable filters and switches could be con-
structed with NOMS technology. Probably the most straightforward appli-
cation can be found in the realm of RF-MEMS oscillators. These oscillators
serve as reference clocks in integrated electronic circuits or any other ap-
plication that requires an independent time keeping system. Other possible
applications are extremely narrow band RF-filters and ultra sensitive force,
mass or displacement sensors.

Experimental results

In order to detect optical forces exerted on a waveguide we place a second
waveguide in parallel in the evanescent field of the first one. Consequently
light couples back-and-forth between both waveguides and in fact we have
created a directional coupler that enables detection of in-plane waveguide
vibrations. Since a vibration changes the coupling between the waveguides
a probe optical signal that is propagating through the vibrating waveguide
is (power) modulated at the mechanical resonance frequency. After detec-
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tion with a photodetector the probe signal can be analyzed in the electrical
domain using an electrical spectrum analyzer or an oscilloscope.

With this method it is even possible to register the brownian vibration
of the freestanding waveguides. The brownian force originates from the
random, temperature induced vibrations of the atoms inside their lattice.
The overall result of these vibrations at the atomic level is a chaotic vibra-
tion of the freestanding waveguides. However in spite of its chaotic nature
the brownian vibration can be used to calibrate any other force exerted onto
the waveguide because it is easy to calculate the magnitude of the brownian
force analytically.

Having implemented a detection and calibration scheme we are ready
to analyze the optical forces. A system with two parallel single-mode wave-
guides exhibits two guided modes (when only considering modes with the
dominant electric field component parallel to the substrate): a symmet-
ric (first order mode) and an anti-symmetric mode (second order mode).
The forces that are generated by these modes can be calculated in differ-
ent ways. In fact if we know the fields on a closed surface surrounding an
object we can calculate the force exerted on the object. The calculations
for the waveguide modes show that an attractive force is generated for the
symmetric mode while typically a repulsive force can be associated with
the anti-symmetric mode (for gaps that are sufficiently large).

In order to observe attractive and repulsive force we have to control the
excitation of both modes. In this work we have designed a component that
is able to excite the symmetric mode, anti-symmetric mode or a superposi-
tion of both modes, dependent on the wavelength used.

Since optical forces are relatively weak we also apply resonant excita-
tion. The freestanding waveguides can be considered as beams or strings
with a distinct resonance frequency. Using optical forces we excite these
strings at their resonance frequency, so the pump laser needs to be modu-
lated at the resonance frequency of the string. For this purpose an electro-
optic modulator is inserted in the set-up. Since gas molecules tend to
dampen the motion of the waveguide, we place the component in a vac-
uum chamber during measurement (see Fig. 5a).

Finally we were able to measure and calibrate optical forces between
the waveguides. The final result is shown in Fig. 5b. We see that the
force can be tuned from attractive to repulsive when sweeping the pump
wavelength. We also note mode superpositions that generate a zero force in
good agreement with the theory. This result was published in the scientific
journal Nature Nanotechnology.
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Figure 5: Set-up and experimental result attractive vs. repulsive force.
a, Full set-up. The device-under-test (DUT) is placed in vacuum to re-
move air damping. Two tunable laser sources (TLS), one pump and one
probe laser. The pump signal is modulated using an electro-optic modula-
tor (EOM) to enable resonant excitation. The probe signal that registers the
vibration is detected with a photodetector. Afterwards the electrical signal
is analyzed using an electrical spectrum analyzer (ESA). b, Measured force
when sweeping the pump wavelength. We notice that we obtain attractive
and repulsive forces.

We have also investigated how the magnitude of the optical force can
be increased. We have for example implemented an underetched wave-
guide in an optical resonator. Using a racetrack resonator we were able to
verify that the optomechanical interaction is increased with the finesse of
the resonator. Another interesting option we have explored are slot wave-
guides. This type of waveguides has a small slit (or slot) in its center in
which light is concentrated intensively. Our experiments revealed a force
in a slotted waveguide that was 25 times larger than the force experienced
in the attractive-repulsive force experiment.
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Introduction

We choose to go to the moon...we choose to go to the moon in this decade
and do the other things, not because they are easy, but because they are
hard, because that goal will serve to organize and measure the best of our
energies and skills, because that challenge is one that we are willing to
accept, one we are unwilling to postpone, and one which we intend to win,
and the others too.
John F. Kennedy

1.1 Active and passive photonics

THE science of photonics includes the generation, emission, transmis-
sion, modulation, switching, amplification, detection and sensing of

light. The portion of the electromagnetic radiation spectrum usually con-
sidered as light typically ranges from ultraviolet to infrared wavelengths
(100 nm-3µm). The invention of the laser in 1960 marks the early birth
of this new field with lots of emerging applications of light, beyond simple
lighting. Around 1980 the invention of glass fiber, a low-loss, relatively
cheap transmission medium, has further instigated the widespread use of
light as carrier of information, enabling large bandwidth telecommunica-
tions networks and the world wide web in particular.

Applications of photonics are however not limited to telecom. Included
are all areas from everyday life to the most advanced science, e.g. displays,
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Figure 1.1: Examples of Micro-opto-electro mechanical systems. a, 2D-
array of tiltable micromirrors with one mirror actuated, the picture is made
available by Sandia National Laboratories [1]. b, Grating light valve (GLV)
in unactuated state, light is specularly reflected in this state. c, When an
actuation voltage is applied to the GLV a diffractive grating is created and
light is diffracted into different diffraction orders.

information processing, medicine (surgery, vision correction, endoscopy,
health monitoring), laser ablation (steel plate cutting), spectroscopy and
a wide set of sensing applications (gas, biomolecules, distance, velocity).
During the last decades the precise control and manipulation of light has
turned into an everyday challenge to many scientists and photonics engi-
neers around the globe.

Essentially light can be manipulated because of its interaction with mat-
ter and the fact that light interacts differently with materials that have differ-
ent optical properties (such as refractive index and absorption coefficient).
One famous example is the glass fiber we have already introduced. While
in vacuum a beam of light tends to spread out and propagate in a straight
line, the difference in refractive index between the core and the cladding
material of the fiber causes the light to be ‘guided’ inside the fiber due to
total internal reflection (TIR). If the bends in the fiber are not too sharp,
the light will follow the bends and stay guided in the fiber core. Thanks to
the fiber, light can be transported over many kilometers without spreading,
attenuating or degrading too much, hence forming the backbone of telecom
networks.

Such a fiber is an example of a passive structure. However for many
applications photonic engineers are looking into devices with active func-
tionality, which basically means that the passive functionality of the device
can be altered in time in a controlled way. A clear example of active func-
tionality can be found in display applications where active elements allow
moving images.

Implementation of active functionality requires some external stimulus
that changes the optical properties of the system. This external stimulus
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can be among others an applied voltage that changes the refractive index of
the material (electro-optic effect, liquid crystals) or a temperature change
(thermo-optic effect). In addition when material is displaced the optical
properties of the system might change drastically. Probably the most fa-
mous example is that of a moving mirror: when it is tilted an incident
light beam will be deflected in a different direction. When such mirrors
are scaled down to sub-mm size and put on a chip in an addressable ma-
trix a very powerful concept arises: the Digital Micromirror Device (DMD)
from Texas Instruments [2] indeed created a small revolution in the world
of displays. Fig. 1.1a shows a picture of an actuated micromirror in a
2D-array. The DMD can also be used to route optical signals in a telecom
network [3]. Another example of a light switching device based on moving
parts is the grating light valve (GLV) [4]. The GLV basically consists of
number of suspended parallel ribbons as shown in Fig. 1.1b. Incident light
will mainly be specularly reflected. However when an actuation voltage is
applied between a ribbon and the substrate the ribbon is pulled closer to the
substrate. Leaving ribbons in turn unactuated and actuated creates an effec-
tive diffractive grating (Fig. 1.1c). In this state incident light is diffracted
in different diffraction orders and hence an optical switch is created.

The commercial and scientific success of both the DMD [5] and the
GLV [6, 7] illustrate the potential benefits that arise from combining pho-
tonics with mechanics. Devices of sub mm size that are mechanically ac-
tuated through an external stimulus are often referred to as Micro- Electro-
Mechanical Systems (MEMS). MEMS that are used for manipulating light
(such as the DMD and GLV) are commonly called Micro-Opto-Electro-
Mechanical Systems (MOEMS) in the literature. In this work we go one
step further and explore the cross-fertilization of photonics and mechanics
with a third exciting research field that has emerged in the past decades:
nanotechnology.

1.2 Photonics and mechanics at the nanoscale

1.2.1 Micro-electronics

In December 1959 physics nobel prize winner Richard Feynman gave a vi-
sionary talk at Caltech in which he stated that ”There is plenty of room at
the bottom”, referring to the possibility of scaling devices to smaller sizes
to increase functional density [8]. The clearest and probably most famous
manifestation of this continuous shrinking process is known as Moore’s
law [9], which states that the number of transistors that can be placed in-
expensively on an integrated circuit doubles approximately every eighteen
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months. For half a century now Moore’s law has shown to be valid and cur-
rently billions of transistors can be placed on a single chip. In parallel the
computing performance per unit cost has doubled every eighteen months,
making relatively cheap and powerful processors financially accessible to
millions of people. Moore’s law has turned out to be rather an economic
than a technological law and has influenced society dramatically.

1.2.2 Nanophotonics

Also in integrated photonics we observe a continuous tendency towards
miniaturization, analogous to the remarkable evolution encountered in elec-
tronics. Again shrinking down the size holds the promise for increased
and cheaper functionality on a single chip. In the context of fiber wave-
guides we have already explained that the core of a waveguide needs to
have a higher refractive index than the cladding in order to achieve a guided
light wave through TIR. For photonic structures miniaturization requires a
higher refractive index contrast between the guiding waveguide core and
its cladding. Luckily silicon —the favored semiconductor of the electron-
ics industry— has a high refractive index in the near-infrared and visible
range (nSi ≈ 3.4 − 3.6) and moreover in the telecom wavelength range
(λ = 1300 − 1620nm) it has a very small absorption. In a silicon-on-
insulator wafer (SOI) the top silicon layer is resting on a thin layer of silica
(buried oxide layer BOx) with much lower refractive index (nSiO2 ≈ 1.44).
Because of this high refractive index contrast (∆n ≈ 40%) a so-called
‘photonic wire’ defined in the top layer confines light strongly both in the
vertical and horizontal direction. The BOx needs to be sufficiently thick in
order to avoid leakage of light to the silicon substrate. A layer thickness
of 2µm provides sufficient isolation. Typically a single mode waveguide
has cross-section dimensions of only a few hundreds of nm and is able to
take sharp bends with a bend radius of a few micrometers without excessive
light loss [10]. Therefore very compact circuits are possible.
At the boundaries of the waveguide an exponentially decaying evanescent

electric field can be found. In a high index contrast waveguide this evanes-
cent field is decaying quickly with distance (to the core material) and the
electric field is close to zero at distances of a few 100 nm. For this reason
very strong field gradients can be found in the close neighborhood of high
index contrast circuits. In chapter 4 en 5 we will see that this feature is
most interesting in view of displacement sensing and generation of optical
forces.
For a good control over their properties photonic wires need to be fabri-
cated with a resolution of a few nm. For example the sidewalls need to be
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Figure 1.2: Typical photonic wire. a, Cross-section. b Top view with
dimensions indicated. Roughness can be observed at the sidewalls. (picture
courtesy: Shankar Kumar Selvaraja).

as smooth as possible in order to reduce scattering losses. Therefore, this
field is often called nanophotonics. For silicon nanophotonics in particu-
lar, the know-how and expensive equipment of the CMOS-industries can
be reused, hence in principle allowing cheap wafer scale mass fabrication
of nanophotonic circuits, eventually integrated together with electronics on
the same chip. In section 3.2 we will further elaborate on the process that is
required for fabrication of nanoscale accuracy passive nanophotonic ciruits
in SOI.

1.2.3 Nanomechanics

Finally also in the world of MEMS a continuous downscaling of devices has
been established the last decades. Often MEMS are said to be evolving to-
wards Nano-Electro-Mechanical Systems (NEMS) [11]. Besides increased
functional density other reasons can be identified for downscaling NEMS.
If we define a uniform scaling factor lsc that all dimensions (width, height,
length) are proportional to, one can prove that for a mechanical sensor the
minimum detectable change in effective mass ∂M would scale proportional
to l2sc [12]. An intense reduction of the size would for example allow detec-
tion of single molecules attached to the mechanical sensor. Mass sensing
resolutions down to the zeptogram (10−21 g) scale have been demonstrated
with high-frequency low mass NEMS oscillators [13]. On the other hand
the resonance frequency fres of mechanical oscillators scales as l−1

sc so in
general smaller oscillators could be used for applications in the —for wire-
less communications interesting— GHz range. Such applications would
include reference oscillators and RF-bandwidth filters. Coupled and syn-
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Figure 1.3: Venn-diagram showing schematically the three subdomains
(photonics, mechanics and nanotechnology) that form the base of this mul-
tidisciplinary work. Optomechanics and Nano-opto-mechanical systems
(NOMS), the subject of this Ph.D thesis, can be found at their cross-section

chronized mechanical oscillators have also been proposed as possible can-
didates to build circuits that mimic neural networks [14, 15]. These artifi-
cial neural networks could for example be used for pattern recognition, an
extremely difficult task for classical computers. Again an intensive integra-
tion and miniaturization are key requirements to manage the large amount
of interacting oscillators that would be needed for these circuits.

1.3 Objectives and applications

1.3.1 Device actuation through the optical gradient force

A simple downscaling of the concepts and devices encountered in MOEMS
would lead us to Nano-Opto-Electro-Mechanical Systems (NOEMS). How-
ever in this work we go further and initiate a novel class of components. We
want the external stimulus that actuates the mechanical structure to be light.
This is an extremely challenging task since radiation pressure effects are in
principle very small. Intuitively we think of light as imponderable and the
momentum that is transferred to an object when a photon bumps into it
seems negligible. Nevertheless we will see that at the nanoscale optical
driving forces are not a utopia.

Light-matter interaction experiments have always been of extreme im-
portance for the progress of fundamental physics. However when such ex-
periments succeed in bridging the gap towards practical applications the
impact is often tremendous. Optical forces for example are widely used to
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manipulate microparticles such as living cells, DNA and bacteria in optical
trapping and optical tweezer experiments [16]. The forces used in these
experiments are gradient forces. One can prove that a polarizable parti-
cle will be accelerated towards higher fields regions when it experiences
a field gradient, hence a force is exerted on the particle. We will discuss
the optical gradient force in further detail in chapter 5. Only recently it
was realized that the strong field gradient in the near field of guided wave
structures could also be exploited for actuating optomechanical devices on
a chip [17]. This way a novel class of components (which operate all-
optical) was initiated. We will name these nanoscale light-manipulating
mechanical structures that are actuated through optical forces Nano-Opto-
Mechanical Systems (NOMS). In figure 1.3 we have shown schematically
the multidisciplinary nature of NOMS.

1.3.2 NOMS applications

On the application side the first idea that pops up for all-optical components
might be the exploitation as a building block in all-optical switch matrices
or optically reconfigurable networks, although in that case unavoidably the
question rises which switching speeds can be achieved using mechanical
structures. It is indeed unsure to which extent optomechanical systems will
be able to equal the speed of alternative systems based on other physical
effects such as carrier injection [18] or depletion [19]. Nevertheless some
salient advantages such as the potentially large tuning range and the fact
that an optomechanical tuning process is purely dispersive and therefore
potentially induces no optical losses are in favor of optomechanics. One can
of course argue that the switching speed of mechanical devices is currently
limited by efficient motion transduction. Faster switching speed comes at
the cost of higher stiffness and stiffer devices show less displacement for
a given force. So far motion transduction is limited by technology limita-
tions rather than fundamental limits [12], so it is expected that advances in
technology will also increase the operational speed of mechanical devices.
Besides switching also wavelength conversion is another important func-
tion in all-optical networks which has been theoretically proposed using
optomechanics [20], however still awaiting experimental verification.

MEMS oscillators also act as integrated high frequency reference os-
cillators, clocks or narrow RF-bandpass filters for wireless communication
systems such as GSM [21–23]. Over the last years bulky off-chip refer-
ence quartz oscillators are indeed gradually replaced by integrated MEMS.
Building electronics bandpass-filters with similar high-frequency high qual-
ity factor characteristics as achieved with MEMS is simply not possible.
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Companies like Discera [24], SiTime [25] and SiLabs [26] have already
brought this type of MEMS components to a commercial level and offer
devices with typical operating frequencies up to a few hundreds of MHz.

For this type of products NOMS might provide the key for moving into
the GHz region. NOMS could be used to create a reference signal or RF-
filter directly in the optical domain because for very high frequency appli-
cations NEMS might still suffer from typical problems encountered with
high frequency electronics: parasitic capacitances, unwanted transmission
line effects, electromagnetic interference and radiation hardness (in par-
ticular for space applications). Better optical motion transduction and the
possibility to use optical backaction effects (see further) to tune the band-
pass filter width (to potentially very narrow line width) might be additional
drivers here. The limited operational bandwidth for electrically actuated
devices is also limiting the application of NEMS as sensing devices. Mass
spectroscopy, charge sensing and weak force detection are strong candi-
dates for potential sensing applications. Again access to smaller mass os-
cillators and hence higher resonator frequencies (f0 ∼ l−1

sc ) together with
potentially better optical motion transduction would allow further improve-
ments (∂M ∼ l2sc).

In the previous paragraph we have briefly introduced the attempts to use
MEMS for the implementation of artificial neural networks. Remarkably
very recently it has been proposed to use photonic circuits (‘reservoirs’)
to achieve more or less the same goal [27]. Logically the question comes
up whether we could benefit from the strong interplay between optics and
mechanics encountered in optomechanical structures and merge the two
approaches. Important advances will first have to be made in the fields
of neural MEMS, photonic reservoirs and optomechanics to formulate an
answer to this highly speculative question in the next years.

However the largest impact of optomechanics on the short and middle
long term might be found at the more fundamental level. When a mechan-
ical oscillator is part of an optical cavity such that the mechanical oscilla-
tion is influencing the cavity field and vice versa, dynamical back-action
takes place [28]. In particular in the regime where the cavity life time ap-
proaches the mechanical oscillation period, interesting effects come into
play. By tuning the pump wavelength to the blue side of the cavity ampli-
fication of the mechanical oscillations is possible through phonon-photon
coupling [29, 30]. In fact the damping of the mechanical oscillation is re-
duced and the oscillation becomes more coherent, resulting in a smaller
linewidth, hence an RF-filter with tunable bandwidth is created. A red de-
tuned cavity shows the opposite behavior. The photons will now absorb
phonons and thermal energy is removed from the oscillator. This process
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is often referred to as optical cooling and shows great similarity with the
optical cooling of atoms [31].

When sufficient thermal energy is removed from the oscillator it will fall
back to its ground state and quantum mechanical behavior is observed [32].
Indeed recently a mechanical mode of a cantilever was cooled cryogeni-
cally to its quantum ground state such that its spatial position was a super-
position of two different positions, so can one think of this cantilever as
being at two positions at the same time [33]. This is a remarkable achieve-
ment because this cantilever is in fact a macroscopic object showing quan-
tum mechanical behavior. We should however mention that some contro-
versy exists on how to interprete the experiment exactly [34]. An in-depth
analysis of the experiment is far beyond the scope of this thesis. Never-
theless the application of quantum mechanics to macroscopic objects will
certainly lead to some thorough tests of quantum mechanics theory and
undoubtedly to better insights. On the very long term the implementation
of qubits on a chip (consisting of micromechanical oscillators) might no
longer be a utopia and ultimately lead to powerful quantum computing or
quantum cryptography schemes [35]. Also worth mentioning is the recent
demonstration of optomechanically-induced transparency, the optomechan-
ical equivalent of electromagnetically induced transparency [36].

1.3.3 Objectives of this work

In spite of the fascinating physics related to optical cooling we will mainly
focus in this thesis on the gradient force as a novel actuation method for
nanomechanical systems. However before delivering possible applications,
we first need to learn how to walk before we can run. In other words we
need to control and understand the very basic properties of optical gradi-
ent forces on a chip. So the main objective of this pioneering work is the
demonstration and elementary characterization of optical gradient forces
exerted on a nanophotonic structure by a guided light wave. We start our
analysis with simple waveguides and look further into structures that poten-
tially enhance the optical force (e.g. slotted waveguides, ring resonators)
or structures that allow tuning of the force from attractive to repulsive. Ele-
mentary characterization also includes calibration (experimentally estimat-
ing the magnitude of the force) and comparison of the experimentally ob-
tained values to numerical values obtained through theoretical models.
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1.4 Thesis outline

In order to achieve our goal a number of subtasks need to be fulfilled which
are reflected in the content of the different chapters. We choose to start
with a thorough review of continuum mechanics in chapter 2. The reader
with a rather limited background in mechanics is given the opportunity to
catch up with the mechanical concepts needed to understand the follow-
ing chapters. Chapter 3 is dedicated to the fabrication issues encountered
with the fabrication of freestanding structures on the nanoscale. In chap-
ter 4 we discuss motion transduction and introduce the brownian motion of
mechanical structures. Both concepts are important in view of the above
mentioned calibration of the optical gradient force. As we discussed earlier
motion transduction might be a key element to practical high-frequency ap-
plications so we look at the integrated motion transduction techniques used
and developed in this work in great detail. In chapter 5 we first discuss the
theoretical aspects of optical gradient forces on a silicon-on-insulator chip
and subsequently we show experimental results. These experiments can be
considered to be the major achievements of this work. Finally in chapter 6
we implemented a system with optomechanical feedback to create strongly
amplified regenerative oscillations.

1.5 Publications
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national and international conferences and published in various peer re-
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2
Continuum Mechanics

Two roads diverged in a wood, and I -
I took the one less traveled by,
And that has made all the difference.
Robert Frost

2.1 Introduction to the chapter

FROM the introductory chapter it is clear that we can benefit from com-
bining photonics and mechanics. In this chapter we focus on mechan-

ics and introduce the basics of beam theory. In fact most of the content
of this chapter can be found in the literature, however we included it in
this thesis because these essential concepts are necessary for the reader to
understand the following chapters. We first derive the Euler beam equa-
tion and discuss static solutions and the influence of residual stresses in
the beam. We also look into the beam’s dynamic behavior and introduce
a lumped parameter model which facilitates the mathematical analysis. Fi-
nally we give an overview of the several damping mechanisms in mechani-
cal resonators and finish the chapter with a short explanation on non-linear
mechanics.
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Figure 2.1: A simple beam with length L, width w, thickness t and an ex-
ternal load distribution p(x)
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Figure 2.2: Scheme for the derivation of the beam equation

2.2 Static beam equation

We will consider the beam depicted in Fig. 2.1 with a rectangular cross-
section (thickness t, width w) that is invariant in the x-direction (length L)
and consisting of only one uniform material, assumptions that are highly
relevant for the waveguide structures we will discuss in our work. When
subjected to an external force internal forces will be generated inside the
beam which counteract the external force so the beam responds with a cer-
tain internal ‘stiffness’. Essentially we want to connect a force distribution
p(x) with a (vertical) displacement a(x). For achieving this goal we will
use four distinct subsets of beam theory [1]: equilibrium equations, resul-
tants, constitutive laws and kinematics. In Fig. 2.2 it is shown schemati-
cally how p(x) and a(x) are connected through these four distinct subsets
of beam theory.
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Figure 2.3: Shear forces and bending moments acting on a differential
beam element. a, Shear force V. b, Bending moment M. c, Fully loaded
differential element with length dx.

2.2.1 Equilibrium equations

The equilibrium equations describe how the beam connects an external load
with internal shear forces and bending moments. As shown in Fig. 2.3a
and b a shear force pair (unit N, symbol V) tends to rotate the beam ele-
ment while bending moments (unit Nm, symbol M) try to bend it. Shear
forces are forces which act along the face of a surface. Direct forces act
perpendicular to a surface. A fully loaded differential element with length
dx is shown in Fig. 2.3c. To obtain force equilibrium the forces acting on
the element must cancel out each other so p dx + (V + dV ) = V leading
to:

− p =
dV
dx

(2.1)

We also require moment equilibrium (for example on the left side of the
beam element) so M = M + dM − (V + dV )dx − pdx2

2 . Ignoring the
terms with a product of two differentials we obtain:

V =
dM
dx

(2.2)

2.2.2 Resultants

Stress is defined microscopically as the force per unit area acting on the
surface of a differential volume element as shown in Fig. 2.4a. At this
microscopic level we assume that the stress acts uniformly across the en-
tire surface of the element. We denote normal and shear stresses. Normal
stresses act perpendicular to the surfaces of the volume element. They are
(symbol σ, the subscript identifies the axis along which the stress acts) and
shear stresses (acting along the surfaces, symbol τ with the first subscript
identifying the face and the second one identifying the direction). Consider
the cross-section of a beam at a certain point x where we find a distribution
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Figure 2.4: Definition of stress and stress distribution. a, Differential
volume element with definition of normal and shear stresses. b, Stress dis-
tribution σ(x, y) over the beam cross-section.

of normal stresses σ(x, y) (Fig. 2.4b). An asymmetric distribution (with re-
spect to the x-axis) of normal stresses might create a net non-zero moment
resultant M(x) about the y = 0 plane:

M(x) =
∫∫

y σx(x, y) dy dz (2.3)

The shear resultant V (x) is defined as:

V (x) =
∫∫

τxy(x, y) dy dz (2.4)

The convenience of the resultants lies in them being dependent only of x
instead of both x and y. In addition formula 2.2 provides us with a relation
between the two resultantsM(x) and V (x) so within the assumptions made
to derive the equilibrium equations we will only need one of the resultants.

2.2.3 Constitutive material laws

A material under stress can deform and the unitless relative deformation is
called strain [2]. Typically an element with length L undergoes a deforma-
tion ∆L and the (uniaxial) strain reads as: ε = ∆L

L . Analogous to stresses
both normal and shear strains can be defined. For the construction of our
beam model we will assume a Hooke law like equation with E Young’s
modulus (GPa):

σ(x, y) = E ε(x, y) (2.5)

For an anisotropic crystal however the stress-strain relation is in general
much more complicated and should be described by a 6 by 6 tensor. This is
the case for monocrystalline silicon, the relevant material for our work. We
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Figure 2.5: Straight and bent beam. The beam displacement a(x) can finally
be tied to the longitudinal strain ε(x, y) = −du

dx

will address this issue at the appropriate moment and deal with equation
2.5 for now.

2.2.4 Kinematics

Consider the beam in Fig. 2.5, which is bent according to a profile a(x).
The dash-dotted line denotes the neutral axis. Along this axis there are no
longitudinal (x-direction) stresses even if the beam is bent. Due to the bend-
ing a point in the beam cross-section that was originally at the coordinates
(x,y) is translated. In the limit of small bending we can safely ignore the
strain in the y-direction and beam’s stiffness is governed by strain in the
x-direction. Indeed the point which was originally at coordinates (x,y) is
translated in the x-direction over a distance u(x, y) resulting in a longitudi-
nal strain ε(x, y) = −du

dx . Using simple geometric laws we find the bending
induced displacement in the x-direction to be u(x, y) = y χ(x) Finally not-
ing that χ ≈ θ (see Fig. 2.5 for the definition of the angles χ and θ) and
θ = da

dx we can tie the beam displacement a(x) to the strain ε(x, y):

ε(x, y) = −d2a

dx2
y (2.6)
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2.2.5 The Euler beam equation

Starting from equation 2.6 we eliminate strain in favor of stress using for-
mula 2.5. Multiplying both sides of the equation with y and integrating over
the beam cross-section yields:

∫∫
y σ(x, y) dy dz = −E

∫∫
y2 d2a

dx2 dy dz.
The left hand side of this equation equals equation 2.3, i.e. the resultant
M(x). In the right part we recognize the definition of the beam’s area mo-
ment of inertia, defined as

I =
∫∫

y2 dy dz =
∫ w

2

−w
2

∫ t
2

−t
2

y2 dy dz =
wt3

12
(2.7)

so we obtain:

M = −E I d2a

dx2
(2.8)

Taking the second derivative for x at both sides and eliminating M in favor
of p using the equilibrium equations 2.2 and 2.1 we finally find:

p(x) =
d(I E d2a

dx2 )
dx2

= E I
d4a

dx4
(2.9)

The last term in this equation is a valid simplification if bothE and I are in-
variant along x, which is a feasible assumption for the structures discussed
in this work.

2.2.6 Solving the static Euler beam equation

Looking at equation 2.9 and assuming a uniform load distribution p inde-
pendent of x we can see that a(x) must be given by a fourth-order polyno-
mial:

a(x) =
px4

24EI
+ C1 x

3 + C2 x
2 + C3 x+ C4 (2.10)

The constants C1,C2,C3 and C4 are determined by considering the bound-
ary conditions of the problem. Typically two conditions are applied at each
of the two ends of the beam (at x=0 and x=L) so we can solve for these
four constants. Three types of end conditions have a practical significant
physical meaning: fixed, hinged and free ends, enabling six possible beam
types [3]. Beams with one free end are commonly called cantilevers. Fixed
boundary conditions allow no displacement or rotation:

a = 0;
da
dx

= 0 (2.11)
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Hinged boundary conditions allow rotation but no displacement and also
the bending moment and by consequence d2a

dx2 (see equation 2.8) must be
zero:

a = 0;
d2a

dx2
= 0 (2.12)

At a free end of the beam no bending moment or shear force is present so
(see again equation 2.8 and 2.2):

d3a

dx3
= 0;

d2a

dx2
= 0 (2.13)

In the context of this work we are mainly interested in two particular cases:
fixed ends at both sides of the beam (fixed-fixed) and hinged ends at both
ends (hinged-hinged). Solving for the unknown constants in formula 2.10
for a fixed-fixed beam we find:

aff (x) =
x2p(L− x)2

24EI
(2.14)

For a hinged-hinged beam:

ahh(x) =
px(−x+ L)(−x2 + Lx+ L2)

24EI
(2.15)

Noting that pL is the total force F on the beam and considering the (maxi-
mum) deflection in the middle of the beam (x = L

2 ) both equations 2.14 and
2.15 can be interpreted as a Hooke-like law a(L2 ) = F

k with the following
spring constants:

kff (x) =
384EI
L3

(2.16)

khh(x) =
384EI

5L3
(2.17)

The spring constant is 5 times lower for hinged ends compared to fixed ends
because rotation is permitted at the clamping points in the former case. This
is also illustrated in Fig. 2.6 where the normalized (such that the maximum
deflection is 1) bending profile for a fixed-fixed beam with unit length is
shown. The profile for a hinged-hinged beam with the same parameters is
also shown. If we replace the distributed force by a point load F in the
middle of the beam the spring constant reduces with a factor of 2 for the
fixed-fixed beam and a factor 1.6 for the hinged-hinged beam, indicating
that the beam is more susceptible to forces applied in its center. Given the
cubic dependence on L in the denominator of equations 2.16 and 2.17 and
the sharp contrast between the curves in Fig. 2.6 it is already clear that
the mechanical properties of the beams might depend strongly on subtle
differences in the fabrication process.
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Figure 2.6: Static bending profiles for beams with unit length. a, Fixed-
fixed (red curve). b, Hinged-hinged (blue curve).

2.3 Influence of residual axial stress

2.3.1 Euler beam equation with stress

Residual stress might be introduced in a freestanding structure during the
fabrication process. Alternatively a stress free fixed-fixed beam will en-
counter compressive (tensile) stress when the temperature is increased (de-
creased) and differential thermal material expansion takes place. The in-
duced stress can be written as σ = −α∆T E with α (K−1) the mate-
rial’s thermal expansion coefficient and ∆T a temperature shift. When no
force is exerted on the (flat) beam the stress is of no influence at all, how-
ever when the beams bends an additional load is created proportional to
the local curvature [2]. This can be understood by noting that for small
bending the axial force σ S = N (S the beam cross-section and N is
called tension) creates a vertical force component on an elementary piece
of beam dx equal to σS da

dx = pstressdx (Fig. 2.7). Hence an effective load
pstress = σ S d2a

dx2 = N d2a
dx2 is obtained which simply adds to the load p in

equation 2.9.

p+ σ S
d2a

dx2
= E I

d4a

dx4
(2.18)
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dx

da

N
da
dxN

Figure 2.7: Stress on an elementary piece of beam, creating a vertical
load.

We can solve for a(x) using the laplace transform technique and applying
fixed boundary conditions in ±L

2 :

a(x) =
p

8N
(

2α
√
EIN −NLβ

)
α

(6
√
EINL2β2 − 2

√
EINL2

− αNL3β − 8LαβEI − 8x2
√
EINβ2 + 8x2

√
EIN + 4x2αNLβ

+ 8LIE cosh

(
x

√
N

EI

)
α− 4L2 cosh

(
x

√
N

EI

)
√
EINβ)

(2.19)

In this formula we have introduced the constants α = sinh(L2

√
N
EI ) and

β = cosh(L2

√
N
EI ). In spite of the roots

√
EIN the formula yields real

values for both positive (tensile stress) and negativeN (compressive stress)
because the imaginary values of the roots

√
EIN for negative N are can-

celed out by the imaginary values for sinh(L2

√
N
EI ). Similar to the analysis

in the previous section we can obtain an effective spring constant by con-
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sidering the point of maximum deflection aMAX = a(x = 0) yielding:

ktot,stress =
8N(−2α

√
EIN +NLβ)α

√
EIN(−6Lβ2 + 2L+ αNL2β√

EIN
+ αβEI√

EIN
− 8EIα√

EIN
+ 4Lβ)

(2.20)

The validity of these formulas can be checked by taking the limits
limN→0 ktot,stress and limN→0 a(x) which indeed yield equivalent expres-
sions to 2.16 and 2.14. A cumbersome formula like 2.20 does not pro-
vide us with much physical insight though. In the following subsection we
will illustrate that much more transparent approximate expressions can be
obtained through the principle of virtual work and a variational approach
using trial functions [4].

2.3.2 Variational method

Assume we have a trial function â(x, c1, c2...cn) = describing the beam
displacement where c1 to cn are a set of n parameters that appear in the
trial function. We also introduce U denoting the potential energy of the
system:

U = stored energy − work done (2.21)

The principle of virtual work states that U must be stationary with respect
to any virtual displacement so ∂U

∂cj
= 0, j = 1..n leading to n equations.

Solving these n equations yields the n values cj that minimize the potential
energy U . Hence they represent the best approximation â(x, c1, c2...cn)
to the equilibrium displacement a(x) we can make within the set of trial
functions we started with.

We propose a cosine shape as a trial function: c
2 [1 + cos(2πx

L )]. This
shape is symmetric around x=0 and fixed boundary conditions are fulfilled
in both x = ±L

2 . The maximum deflection c is the only available parameter
for our variational problem. With this trial function the work done simply
reads as (for a uniform load p):

work done = pL

∫ L
2

−L
2

c

2
[1 + cos(

2πx
L

)]d
x

L
=
pLc

2
(2.22)

Determining the stored elastic energy in the beam is a slightly more com-
plicated problem. First we note that the stress-strain product (dimension
Nm−2 = Jm−3) can be interpreted as an energy density function:

W(x, y, z) =
∫ ε(x,y,z)

0
(σ(ε) + σ0)dε =

Eε2

2
+ σ0ε (2.23)
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In this equation σ0 denotes a residual axial stress.
In subsection 2.2.4 we have already found the axial strain due to beam

bending:

εbend = −d2â

dx2
y (2.24)

However when the displacement is sufficiently large the beam lengthens
which induces extra strain. From elementary function theory we know
that the curve length s of a function â(x) over an interval [−L

2 ,
L
2 ] can

be calculated through s =
∫ L

2

−L
2

√
1 + (dâ

dx)2dx ≈
∫ L

2

−L
2

1 + 1
2(dâ

dx)2dx =

L+ 1
2

∫ L
2

−L
2

(dâ
dx)2dx The approximation being valid for 1� (dâ

dx)2 we sub-

stitute our trial function and using the definition of strain ( s−LL ) we obtain:

εstretch = (
πc

2L
)2 (2.25)

Taking the volume integral ofW(x, y, z) over the beam dimensions returns
the total stored elastic energy in the beam. Using equation 2.23 for the
energy density and taking ε = εbend + εstretch we find:

stored energy =
∫ w

2

−w
2

∫ t
2

−t
2

∫ L
2

−L
2

W(x, y, z) dxdydz

∫ w
2

−w
2

∫ t
2

−t
2

∫ L
2

−L
2

E(εbend + εstretch)2

2
+ σ0(εbend + εstretch)dxdydz

=
∫ w

2

−w
2

∫ t
2

−t
2

∫ L
2

−L
2

Eε2bend
2

+ σ0εstretch +
Eε2stretch

2
dxdydz

=
π4EI

L3
c2 +

π2σ0wtc
2

4L
+
π4Ewtc4

32L3

(2.26)

As can be seen only three contributions in this integral are non-zero. We
can easily construct the potential energy now using equations 2.21, 2.22 and
2.26:

U(c) =
π4EI

L3
c2 +

π2σ0wtc
2

4L
+
π4Ewtc4

32L3
− pLc

2
(2.27)

Solving ∂U
∂c = 0 for pLc = F

c returns an effective spring constant:

keff = kgeom +kstress+knlc
2 =

4π4EI

L3
+
π2σ0wt

L
+
π4twE

4L3
c2 (2.28)
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Figure 2.8: Influence of residual axial stress. a, The total spring constant
(kgeom + kstress) vs. stress (σ) is plotted for a fixed-fixed beam, normal-
ized to kgeom. At the critical stress the stiffness becomes zero (buckling
point). The red curve is the exact solution (equation 2.20) , the blue curve is
the approximative solution of equation 2.28 showing almost perfect match
(parameters: beam length L = 12µm, Young’s modulus E = 169GPa,
thickness t = 220nm w = 440nm). b, Plot of the relative shift of the
spring constant for 1K temperature shift in function of the slenderness ra-
tio s = L

t , showing a non-negligible shift.

This effective spring constant falls apart in three parts. The first contribu-
tion can be interpreted as the geometrical stiffness kgeom originating from
the bending strain that is induced in the beam when it is deflected. The
numerical prefactor 4π4 ≈ 389.6 deviates approximately 1.5% to the pref-
actor 384 we found for the effective spring constant in equation 2.16, sug-
gesting that our trial solution â(x) represents a good approximation to the
solution a(x) (equation 2.14). The second contribution represents an addi-
tional stiffness kstress due to residual stress in the beam. The magnitude of
kstress equals the geometric stiffness for a critical stress value given by:

|σcrit| =
π2

3
(
t

L
)2E (2.29)

In case of compressive stress the geometrical stiffness is canceled out for
this critical stress value and buckling occurs. In Fig. 2.8a the total nor-
malized linear stiffness (kgeom + kstress, normalized to kgeom) is shown
as function of stress. The red curve is derived from the exact solution to
the Euler beam differential equation with stress (equation 2.18). The blue
curve is the approximative solution obtained through the variational method
(2.28). The excellent match again shows the power of this method.
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From equation 2.29 we also conclude that the critical stress scales in-
verse quadratically with (Lt ) = s thus slender beams are more sensitive to
stress induced stiffness. s is called the slenderness ratio. To illustrate the in-
fluence of temperature variations on slender beams we have also plotted the
relative shift of the stiffness vs. the slenderness ratio s (Fig. 2.8b). In this
plot we have set the stress parameter to the compressive stress that arises in
a fixed-fixed silicon beam when the temperature is raised over 1K, assum-
ing a linear thermal expansion coefficient of 2.59 10−6K−1 at 25◦C [5].
We conclude that in sufficiently slender beams temperature variations as
small as 1K are able to decrease the stiffness with a fraction of a percent.

Finally we also mention that the stretching induced strain also induces
a non-linear stiffness that scales with c2 (see the last term in equation 2.28).
We will discuss this non-linearity in further detail in section 2.7.

2.4 Dynamic beam equation

The equation 2.9 can be used directly to obtain the dynamic equation for
free (unloaded) vibration of the beam. In accordance with the principle of
D’Alembert we just need to imagine the vibrating bar to be loaded by an
inertia force p = −ρS d2a

dt2
rather than an external load [3]. With ρ the mass

density, S the cross-section of the beam and t the time coordinate we obtain
the dynamic beam equation for a(x, t):

E I
∂4a

∂x4
+ ρS

∂2a

∂t2
= 0 (2.30)

Using the technique of separation of variables we assume a(x, t) can be
expressed as X(x)f(t) with X(x) being independent of t and f(t) being
independent of x. Then equation 2.30 can be rearranged:

E I

ρAX(x)
d4X(x)

dx4
= − 1

f(t)
d2f(t)

dt2
= ω2

n (2.31)

We see that the left side of the equation is function of x only while the
right side is dependent of t only. Hence both sides must equal a con-
stant which we will call ω2

n and which leads us to the solution for f(t) =
An sin(ωnt) + Bn cos(ωnt). The amplitude of vibration in a point x will
vary harmonically in time (An and Bn are two constants determined by the
initial conditions). The general solution for X(x) is given by:

X(x) =C1 [cos(knx) + cosh(knx)] + C2 [cos(knx)− cosh(knx)] +

C3 [sin(knx) + sinh(knx)] + C4 [sin(knx)− sinh(knx)]
(2.32)
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In this equation we have introduced the constant kn:

k4
n =

ω2
nρS

EI
(2.33)

Applying fixed clamping conditions in x = 0 leads to C1 = C3 = 0. Fixed
clamping conditions in x = L lead to a set of two equations:

0 = C2 [cos(knL)− cosh(knL)] + C4 [sin(knL)− sinh(knL)] (2.34)

0 = C2 kn [− sin(knL)− sinh(knL)] + C4 kn [cos(knL)− cosh(knL)]
(2.35)

Arguing that this system of equations has non-zero solutions only if its
determinant is zero we find the so called frequency equation:

cos(knL) cosh(knL) = 1 (2.36)

This equation needs to be solved numerically, the first three roots are shown
in table 2.1. Consequently we can also determine the ratio C2

C4
for each

solution. The calculated ratios can be found in table 2.2. Although they are
close to -1 and converge quickly to this value for higher order modes, the
values in the table must be taken when calculating the mode shapes for the
final result is very sensitive to small variations in C2

C4
. A similar analysis for

hinged-hinged beams leads to C1 = C2 = 0 and a much simpler frequency
equation (the solutions are the multiples of π and C3

C4
= 1):

sin(knL) sinh(knL) = 0 (2.37)

Perhaps somewhat surprisingly it is also possible to calculate the mode
shapes of a free-free beam, a beam that is clamped nowhere. It turns out that
the free-free beam is having a frequency equation equal to the fixed-fixed
case (2.36), but C2 = C4 = 0 now. We will continue our discussion of
free-free beams when analyzing clamping losses in mechanical resonators
(see subsection 2.6.2).

Using the definition of kn (2.33) we find the mechanical resonance fre-
quencies of the beam (pi = kiL is a constant from table 2.1).:

ωi =
p2
i

L2

√
EI

ρS
(2.38)

By consequence fixed-fixed beams result in higher resonance frequencies
compared to hinged-hinged ones. We can rewrite the general formula (equa-
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frequency equation k1L k2L k3L
fixed/fixed cosh(x) cos(x) = 1 4.730 7.853 10.996

hinged/hinged sinh(x) sin(x) = 0 π 2π 3π
free/free cosh(x) cos(x) = 1 4.730 7.853 10.996
free/fixed cosh(x) cos(x) = −1 1.875 4.694 7.855

free/hinged tanh(x) = tan(x) 3.927 7.069 10.210
fixed/hinged tanh(x) = tan(x) 3.927 7.069 10.210

Table 2.1: Consecutive solutions of the frequency equation for fixed,hinged
and free boundary conditions

mode 1 mode 2 mode 3
fixed/fixed (C2

C4
) -1.01781 -0.99922 -1.00003

hinged/hinged (C3
C4

) 1 1 1
free/free (C1

C3
) -1.01781 -0.99922 -1.00003

Table 2.2: Ratio C2
C4

, C1
C2

and C1
C3

for the fixed-fixed, hinged-hinged and free-
free vibration modes of table 2.1.

tion 2.32) for the dynamic mode profile X(x):

X(x) =C1[cos(pi
x

L
) + cosh(pi

x

L
)] + C2[cos(pi

x

L
)− cosh(pi

x

L
)]+

(2.39)

C3[sin(pi
x

L
) + sinh(pi

x

L
)] + C4[sin(pi

x

L
)− sinh(pi

x

L
)] (2.40)

We see that the mode shape is only dependent on the pi parameter (which
is only determined by the type of boundary conditions) and a generalized
position coordinate x

L = x′ . With the constants in tables 2.1 and 2.2 we
can finally construct the different vibrational mode shapes. Since we could
only determine the ratio of the two remaining constants we have no ampli-
tude and we only know the mode shapes up to a proportionality constant.
This is not surprising since in equation 2.30 no real load is present and we
only considered unforced vibration. We choose the proportionality con-
stant in such a way that the maximum value of X(x) = 1. With this choice
the beam vibration a(x, t) can in fact be expressed as XmaxX(x)f(t) with
Xmax the amplitude of vibration. The ground vibrational mode is shown



2-16 CHAPTER 2

0.6

x

0.2 1
0

0.8

0.5

0.4

-0.5

1

X(x)

b
-1

0.2

0.2

0.4 0.8

0.4

0.6 10

0.6

0.8

1

0

a x

X(x)

Figure 2.9: Static and dynamic mode profiles for a beam with unit
length. a, Dynamic ground mode (red curve) vs. static deflection profile
(blue curve). A great similarity between both curves is observed. b, First
(red curve), second (blue curve) and third order (green curve) normalized
dynamic mode shapes.

together with the static deflection profile in Fig. 2.9a. The first three nor-
malized fixed-fixed mode shapes X(x) are shown in Fig. 2.9b.

It is striking that the dynamic behavior of a spatially distributed beam
is controlled by a set of scalar values ωn. We already know from subsec-
tion 2.2.6 that also the beam stiffness can be described by a scalar value k
(equations 2.16 and 2.17), suggesting the possibility of a lumped parameter
model for the mechanical beam properties.

2.5 Lumped parameter model

2.5.1 Harmonic oscillator

A lumped parameter model is in fact a simplified mathematical description
of a physical system. Spatially distributed variables of the system are rep-
resented as single scalars instead, hence reducing drastically the complex-
ity of the system analysis. A famous example can be found in electronics
where lumped elements (resistors, capacitors, inductances, etc.) are widely
used to facilitate the analysis of electrical circuits. In this section we review
a lumped parameter model that describes beam vibrations.

We will start our analysis by looking at a point-mass m on a perfect
spring with spring constant k and a position coordinate A(t) (Fig. 2.10a).
The equation of motion is in this case kA + mÄ = 0. We employ the
classical point notation that denotes a derivative for time. The point mass
in this case exhibits a harmonic oscillation A(t) = A0 sin(ωt + φ) with
A0 and φ constants to be determined by the initial conditions (position and
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Figure 2.10: Mass on a spring. a, Without damping. b, With a damper and
a harmonic excitation force F(t).

velocity of the point mass). The natural frequency of the oscillations is
given by:

ω =

√
k

m
(2.41)

Both the beam’s effective spring constant and the resonance frequencies of
the vibrational modes of the beam have already been introduced. In order
to map the Euler beam equation to the simple harmonic oscillator model we
only need to introduce an effective mass meff consistent with the chosen
definition of keff in the previous subsection.

2.5.2 Effective modal mass

When we defined the effective spring constant for the static deflection (sub-
section 2.2.6) we chose to take the position coordinate exactly in the middle
of the beam profile at the point of maximum deflection and accepted the be-
havior of the beam in this point (x = L

2 ) as a sufficient description for the
behavior of the total beam. Also for the dynamic beam profiles XmaxX(x)
(equation 2.32) it makes sense to take the point of maximum deflection
(exactly in the middle for the uneven modes of double fixed and hinged
beams) to describe the behavior of the total beam. Also the beam’s mass is
not confined to this point but distributed over the length of the beam. By
consequence the total mass will not be displaced over a distance Xmax, but
on average the mass will displace less than Xmax. Similar to the definition
of the effective spring constant it is useful to define an effective point mass
representing the distributed beam mass [6]. For a mass-on-a-spring system
conservation of energy requires the maximum potential energy to be equal
to the maximum kinetic energy:

kA2
0

2
=
m(dA(t)

dt |max)2

2
=
mA2

0ω
2

2
(2.42)

Arguing that conservation of energy should also hold in the distributed sys-
tem we can write down the same balance for a beam with profile a(x, t) =
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f(t)XmaxX(x):

kX2
max

2
=
ρS
∫ L

0 ȧ(x/L)2|maxdx
2

=
ρSLX2

maxω
2
n

∫ 1
0 X(x′)2dx′

2

=
meffX

2
maxω

2

2
(2.43)

Noting that ρSL = m is the total mass of the beam we see a great similarity
between equations 2.42 and 2.43. The beam massm however is scaled with
a factor, so we can define the effective (modal) mass:

meff = m

∫ 1

0
X(x′)2dx′ (2.44)

This scaling factor is in principle only determined by the boundary condi-
tions and can be found in table 2.3 for the double fixed and double hinged
case:

meff,1

m
meff,2

m
meff,3

m
fixed/fixed 0.397 0.439 0.506

hinged/hinged 0.5 0.5 0.5

Table 2.3: Scaling factors for the effective modal masses of the first three
modes (double fixed and double hinged beams)

2.5.3 Damped harmonic oscillator

In practice the pure harmonic oscillator model is not a realistic mathemati-
cal model for beam oscillations because several loss factors will damp the
motion. In the context of this work we are mainly interested in lossy me-
chanical oscillators driven by a harmonically varying force so we add a
damping term ΓȦ(t) (the frictional damping term with damping factor Γ is
proportional to the velocity) and a force term F sin(ωt) to the harmonic os-
cillator equation: kA(t) + ΓȦ(t) +mÄ(t) = F sin(ωt) (Fig. 2.10b). The
solution of this differential equation will result in the sum of an exponen-
tially decaying (with time) transient solution and a harmonically varying
steady-state solution. Since we are only interested in the harmonic steady-
state solution (our experimental work in chapter 5 employs harmonic force
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Figure 2.11: Complex response around ω0 of a damped harmonic oscil-
lator with F

k = 1 and ζ = 0.2 so Qmech = 2.5. a, Amplitude response
diagram |A|. b, Phase response diagram ∠A

excitation) we can rewrite the differential equation with F and A being
complex quantities (phasor notation for sine waves).

kA+ ΓjωA+m(jω)2A = F (2.45)

Substituting the natural frequency ω0 =
√

k
m and introducing the damping

constant ζ = Γ
2mω0

we can easily solve for A [7]:

A =
F

m[(ω2
0 − ω2) + 2ζjωω0]

(2.46)

The absolute value of this amplitude can also be written as:

|A| = F

k

√√√√ 1
(1− ω2

ω2
0
)2 + ω2

ω2
0Q

2

=
F

k
χMECH(ω) (2.47)

χMECH(ω) is the frequency dependent mechanical susceptibility with
χMECH(ω0)=Q, χMECH(0)=1 and χMECH(∞)=0

Since the vibrational response A is a complex quantity we can plot
its phase and amplitude in Fig. 2.11. We note that in the low frequency
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limit the amplitude converges to a constant value: ( F
mω2

0
= F

k ) i.e. the static
response predicted by Hooke’s law. In this low frequency limit the vibration
is also in phase with its driving force. Around the natural frequency ω0 the
amplitude shows a lorentzian peak and lags behind over π

2 compared to
the driving force. The maximum amplitude however is found at a slightly
lower driving frequency ωres = ω0

√
1− 2ζ2. In Fig. 2.11 we have chosen

ζ = 0.2 to have a clear distinction between ωres and ω0. However most
of the structures discussed in this work are strongly underdamped (ζ � 1)
and ωres ≈ ω0. In the high frequency limit the amplitude decays quickly
and the beam moves in counter phase with its driving force. The quality
factor of a resonator is an important parameter to assess (optical, electrical,
mechanical) oscillators. It is defined as:

Q = 2π
energy stored

energy dissipated per cycle
(2.48)

The energy stored in the mass-spring-damper system equals kA2
max
2 while

the energy dissipated through the drag force Fdrag = ΓȦ(t) in a period
T equals

∫ T
0 Fdrag(t)Ȧ(t)dt = ΠA2

maxω0Γ. Substitution in equation 2.48
yields a simple expression for Qmech:

Qmech =
1
2ζ

(2.49)

Again for small ζ we can see with equation 2.47 that Qmech is approxi-
mately equal to ωres

∆ω1.5dB
. We define ∆ω1.5dB = ω1.5dB,high − ω1.5dB,low

where ω1.5dB,low and ω1.5dB,high are the frequencies where the amplitude
has dropped over 1.5 dB compared to the maximum peak amplitude. Also
following relation holds: ω1.5dB,low < ωres < ω1.5dB,high. Unless explic-
itly mentioned otherwise we use optical dB (xdB = 10 ×10 log(x)) in this
work so |A(ω1.5dB,high)| = |A(ω1.5dB,low)| = |A(ωres)|√

2
. Qmech can thus

be quickly estimated from a frequency response measurement.

2.6 Damping mechanisms

In order to complete our lumped parameter model in the previous sec-
tion we have introduced a damping factor Γ without specifying the phys-
ical mechanisms that induce losses. In mechanical resonators several en-
ergy dissipation mechanisms can be discerned, among which gas damping,
clamping losses and intrinsic losses are the most important ones [8]. To
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each of this mechanisms a separate damping constant ζ (and hence a sepa-
rate Q-factor) can be attributed. The overallQmech is a result of the addition
of several loss mechanisms:

Q−1
mech = Q−1

gas +Q−1
clamp +Q−1

int + ... (2.50)

The largest damping factor (smallest Q) will dominate the overallQmech. In
general it is increasingly difficult to achieve high Q’s for higher mechanical
resonance frequencies.

2.6.1 Gas damping

At low pressures the resonator dissipates energy through collisions with
individual gas molecules [9]. A quality factor due to gas dissipation can

be determined as [10] Qgas ≈
meffω0

√
kB T/m

pS (m the individual molecule
mass, T temperature and kB = 1.38×10−23JK−1 the Boltzmann constant,
S the surface area of the resonator) so the damping scales linearly with the
pressure p. At higher pressures a viscous dissipation regime is encountered
and Qgas ∼ p

−1
2 .

The gas damping mechanism can in principle be canceled easily by
placing the mechanical resonator in a vacuum environment. On the draw-
back side certain applications like gas- and biosensors typically require con-
tact of the resonator with a gas or fluid. High frequency oscillators however
are in general less sensitive to gas damping and maintain a considerable
Qmech even at ambient conditions [11, 13]. The reduced sensitivity of high
frequency oscillators to gas damping can be explained with high frequency
nanofluidics theory [12]. In fact gas damping shows cut off behavior when
the mechanical oscillation frequency exceeds a certain cut off frequency:

ωmech > 1/τrelax (2.51)

τrelax is the fluid relaxation time. Within the context of this model reduc-
ing the pressure can in fact be understood as increasing the relaxation time
of the fluid. Perfect vacuum conditions correspond to an infinite fluid re-
laxation time and under these circumstances any resonator frequency will
satisfy equation 2.51. Also in the limit of an infinite oscillator frequency no
gas damping is present. For air at atmospheric pressure and doubly fixed
nanomechanical resonators τrelax ≈ 2.3ns was found experimentally [12],
so indeed in the GHz region one can expect reduced air damping.

However for mechanical oscillators operating in the MHz region a very
significant air damping is expected. In Fig. 2.12 the response of a free-
standing fixed-fixed beam is shown for three different air pressures. As
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Figure 2.12: Mechanical quality factor measurement for different am-
bient pressures The Lorentzian-like response of a freestanding beam is
shown for three different gas pressures. The black solid lines are fits to
equation 2.47. This freestanding beam acts as a damped harmonic oscilla-
tor with fres ≈ 2.79MHz At 10−4mBar we find Q ≈ 6000, at 70mBar
Q ≈ 230 and at atmospheric pressure (≈ 1013mBar) we obtain Q ≈ 15.
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expected for a damped harmonic oscillator we find Lorentzian-like peaks
with fres ≈ 2.79MHz. The black solid lines are fits to equation 2.47
and allow to extract the mechanical Q of the resonator: at 10−4mBar we
find Q ≈ 6000. Air damping is completely negligible at this low pres-
sure and the mechanical Q is entirely determined by clamping losses (see
next subsection). In fact for pressures lower than ±1mBar the mechani-
cal Q does not increase much anymore when further reducing pressure. At
70mBar the overall damping is already mainly determined by gas damp-
ing (Q ≈ 230). At atmospheric pressure (≈ 1013mBar) the damping
is very large and we obtain Q ≈ 15. Also the shifting of the frequency
yielding the largest amplitude (ωres = ω0

√
1− 1

2Q2 , see also subsection
2.5.3) to lower frequencies with lower Q can be observed. In chapter 4
section we will discuss in great detail how we have measured the curves in
Fig.2.12 and explain why the displacement is expressed in units of dBm.
We will also elaborate on the ‘brownian’ force (in section 4.2) which drives
the damped harmonic oscillator in this experiment.

2.6.2 Clamping losses

Another important mechanism is found in clamping losses or acoustic an-
chor losses [14]. Every resonator needs to be attached to the environment
(substrate) at some point and in reality these anchors are never perfectly
rigid. Hence a path is created for acoustic energy to radiate away from the
resonator at these clamping points into the substrate. This type of losses
is difficult to avoid in ordinary doubly fixed/hinged beams. Hence this
type of losses will limit our experimental attainable Q’s. However clamp-
ing losses can be reduced considerably by switching to cleverly designed
geometries. Although some analytical models are available [15], in gen-
eral numerical simulations and experiments [16] are needed to estimate
clamping losses adequately. Design of a structure with considerably re-
duced clamping losses was not possible within the the time frame of this
Ph.D thesis. Nevertheless we will briefly explain a possible mechanism for
clamping loss reduction in order to give the reader a better understanding
for clamping losses and also set the trail for future designs and experiments.

If a beam would have no clamping points it would not be able to leak
energy to its environment. At this point we pick up the analysis of the free-
free beam in section 2.4 again. Solving the dynamic Euler beam equation
with both ends free yields a vibrational ground mode with two nodes where
the displacement is zero. The mode profile is drawn in Fig. 2.13a. The zero
displacement at these nodes is not enforced by some (imperfect) clamp-
ing mechanism but it is rather a natural consequence of the (perfectly) free
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rotational (translational) dissipation caused by the bending moment M(t),
the dissipative character of the anchor is modeled through the resistances
Ra,rotate and Ra,displace.
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boundary conditions, so it seems straightforward to use these nodes to at-
tach the beam to the substrate. The decoupling can be further improved
by choosing appropriate dimensions for the support beams. The support
structure can be designed such that the resonance frequency of the free-free
beam matches a resonance frequency of the supported structure. For exam-
ple the support beams can be designed such that the nodes of the free-free
beam correspond to a node of the second order mode of a fixed-fixed beam
(see Fig. 2.13b), hence reducing the coupling to the anchors [17, 18].

It is not so straightforward to understand why matching the to be de-
coupled frequency to a vibrational mode of the supporting structure is ben-
eficial. To explain this let us think of a mechanical oscillator exhibiting
a mechanical mode with a zero displacement node, so mechanical energy
can only leak away through rotation if we attach the support beam at the
node. However the support beam (or anchor beam) of length L needs to be
connected to the substrate at some point (=the non-perfect anchor). This
situation is schematically drawn in Fig. 2.13c. In this figure we have
made abstraction of the to be decoupled oscillator, it is only represented
by a bending moment M(t) exerted at the tip of the anchor beam. The
bending moment will result in dissipation through rotation or displacement
of the anchor. The anchor beam and its not perfect anchor can be mod-
eled through the impedance networks [19] shown in Fig. 2.13d. We have
drawn two circuits: the upper (lower) circuit modeling dissipation through
rotation (displacement) at the anchor. Compared to the classical electri-
cal circuitry modeling ‘bending moment’ M(t) plays the role of ‘voltage’
while ‘angular rotation speed’ θ̇(t) or velocity ȧ(t) equals ‘current’ and
the products M(t)θ̇(t) and M(t)

L ȧ(t) have the dimension of power (Watt).
The dissipative character of the imperfect anchor is modeled through the
resistive impedances Ra,rotate and Ra,displace. They define ohmic relations
between the bending moment (or force) applied at the anchor and the rota-
tion (or displacement) of the anchor (Manchor(t) = Ra,rotateθ̇anchor(t) and
Fanchor(t) = Ra,displaceȧanchor(t) respectively).

The elements Za, Zb, zc, zd and ze are assumed to have a perfectly
imaginary impedance thus energy can only be stored but not dissipated in
these elements. They can be expressed as a function of a parameter αwhich
is defined as:

α4 =
ρAω2

0L
4

EI
(2.52)

The exact formulas for Za(α), Zb(α), zc(α), zd(α) and ze(α) can be found
in reference [19]. The imaginary impedances will depend on ω0, the fre-
quency of the AC bending moment that is applied to the tip of the anchor
beam. In fact proper design allows the impedance Za + Zb to be zero for a
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Figure 2.14: Ring shaped mechanical oscillators. a, Ring resonator de-
coupled from the center pillar using spokes. b, Fourth-order extensional
wine-glass mode [13] in a ring topology. The quarter wavelength beams
are attached to quasi-nodal displacement points and decouple rotation. The
mechanical mode expands and contracts around the nodal circle.

certain vibration frequency ω0. For this particular frequency the dissipative
resistor is short-circuited and decoupled from the rest of the circuit. No
current flows through the resistor and hence no power is dissipated through
rotation of the anchor.

If we require Za + Zb to be zero, we find that α should satisfy:

tanh(α) = tan(α) (2.53)

Requiring zc + ze = 0 (no dissipation through displacement), we find
exactly the same equation for α. Equation 2.52 allows us to design the
anchor beam. If we insert for α a value that satisfies tanh(α) = tan(α)
, we just need to substitute the (to be decoupled) oscillator frequency in
2.52. Then the desired geometrical beam propertiesL,I (moment of inertia)
and S (beam cross-section) can easily be determined for given material
parameters (E, ρ).

In fact equation 2.53 corresponds to the frequency equation of a hinged-
fixed beam (see table 2.1). In other words the frequency of the to be de-
coupled mechanical oscillator matches exactly the frequency for which the
anchor beam would be in resonance if it were a hinged-fixed beam. Indeed
a hinged-fixed beam allows rotation at one end and shows no displacement
or rotation at its other end so we can understand intuitively that the rotation
of the external oscillator exerted on the ‘hinged’ end of the anchor beam is
of no influence at all any more. In other words a beam with one hinged end
shows ‘intrinsic’ displacement/rotation nodes at a given frequency after a
certain distance L.

The above described technique is commonly referred to as the ‘quar-
ter wavelength’ technique. The name is referring to the quarter wave-
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length impedance transformation also found in classical transmission line
theory. One can also think of the decoupling anchor beam as a transmis-
sion line with zero input impedance, hence all power is reflected back into
the resonator. Summarized the quarter wavelength technique can be ex-
ploited to achieve mechanical oscillators with high Q in free-free beams
[20], but in fact its application potential is much wider. A variant of the
technique has recently been applied successfully in ring shaped mechanical
resonators where spokes have been applied to decouple a mechanical mode
from the support, resulting in a Q of 50000 for a resonance frequency of
24.386MHz [16].

The mechanical modes we have discussed so far are bending modes or
flexural modes. The beam’s local center of mass is displaced when mov-
ing. It was found that so called bulk acoustic modes that do not change their
local center of mass seem to be less sensitive to clamping losses. Promis-
ing topologies to achieve high Q high frequency oscillators are the hollow
disk resonator [21] and extensional wine-glass mode ring resonator [13].
For these mechanical modes the center of mass does not change during vi-
bration but remains in a nodal circle and the material rather contracts and
expands around this nodal circle. Such a mode is shown schematically in
Fig. 2.14. Decoupling this mode from its anchor using quarter wavelength
beams allowed a Q of 2800 for a resonance frequency as high as 1.52GHz
and Q = 4650 for 651MHz [13]. The latter Q was showing only a small
reduction when measured in air (Q = 4550), indicating that the contri-
bution of gas damping to the global Q is indeed diminishing for higher
frequency oscillators.

2.6.3 Intrinsic losses

When looking at intrinsic losses we should discriminate between losses
in a perfect crystal lattice or losses in a real lattice with bulk and surface
defects. The losses in a perfect crystal are fundamental and limit the ul-
timately achievable quality factors. Some known fundamental loss mech-
anisms include thermo-elastic damping and losses due to phonon-electron
and phonon-phonon interactions [22]. The dissipation due to crystal im-
perfections are not fundamental and might be further reduced by proper
engineering. When looking into the relative influence of bulk and surface
defects unavoidably the size of the mechanical structures comes into play.
In literature evidence can be found that surface defects contribute more
dominantly to losses in mechanical resonators with shrinking size [23, 24].
In fact even a rough empirical linear decrease in maximum achievable Q
with volume-to-surface ratio is found [25]. Surface treatment and passi-
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vation experiments are paving the way to the highest possible quality fac-
tors [26–28].

Considering the influence of scaling on the damping we can also ask
ourselves the question to which extent continuum mechanics theory can be
pushed into the (sub)nanoscale region. Simulations and experiments show
that the continuum theory (sections 2.4 and 2.2) should hold for structures
down to at least a few tens of lattice constants in cross-section [25, 29].

2.7 Non-linear mechanics

2.7.1 Mathematical description

When a beam is undergoing large amplitude vibrations the beam might
respond in a non-linear way. We will briefly discuss non-linear oscillators
governed by equations having the form:

mÄ+ ΓȦ+ k0(1 + k1A+ k2A
2)A = F cos(ωt) (2.54)

In this equation the spring constant k is replaced by a polynomial term
k0 (1 + k1A + k2A

2) hence introducing a quadratic and cubic term in the
equation of motion. If we set k1 = 0 only the cubic non-linearity remains
and we obtain the classical Duffing oscillator equation. It can be shown that
in such case the steady-state vibration amplitude around primary resonance
can be found by solving the following equation [30]:

9
16

(
k2

k0
)2A6 − 3

2
σ
k2

k0
QA4 + (σ2 + 1)A2 − F 2Q2

k2
0

(2.55)

Instead of using the excitation frequency ω we have introduced the detuning
parameter σ which quantitatively describes the nearness of ω to ω0 such
that ω = ω0(1 + σ 1

2Q). Equation 2.55 is cubic in A2 and thus its three
roots can be calculated analytically. Depending on the numeric values of
the parameters however either one root is real (with the two others complex
conjugate valued) or all three roots are real.

In Fig. 2.15 a the solution is shown for FQk0 = 1,k0 = 0.001Nm−1,Q =
1000 and k2 = −10−18m−2. We find a curve very similar to Fig. 2.11a for
the ordinary damped harmonic oscillator indicating that the effect of k2 is
negligible for this small value. The different colors indicate that the solu-
tions originate mathematically from different roots. Also the phase relation
in Fig. 2.16a is identical to Fig. 2.11b. It can be found by solving the



CONTINUUM MECHANICS 2-29

1

0.6

6
(Hz)

0.2

4
σ

2-6 -4 0-2

1

0.6

6
(Hz)

0.2

4
σ

2-6 -4 0-2

1

0.6

6
(Hz)

0.2

4
σ

2-6 -4 0-2
b ca

A(a.u.)A A(a.u.) A(a.u.)
c

Ab

Figure 2.15: Non-linear amplitude response. Different colored curves
origin from mathematically different roots. a, Quasi-linear amplitude
response for k2 = −10−18m−2. b, Amplitude response for k2 = −2.07×
10−15m−2 with onset of bifurcation. Ab is the bifurcation amplitude and
Ac the critical amplitude. c, Bistable amplitude response for k2 = −7.0×
10−15m−2. The arrows mark the jump points.
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Figure 2.16: Non-linear phase response. Different colored curves origin
from mathematically different roots. a, Quasi-linear phase response for
k2 = −10−18m−2. b, Phase response for k2 = −2.07 × 10−15m−2 with
onset of bifurcation. c, Bistable phase response for k2 = −7.0×10−15m−2.
The arrows mark the edges of the bistability region.
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following set of equations for φ [30]:

A =
FQ

k0
sin(φ) (2.56)

Aσ − 3k2Q

4k0
= −FQ

k0
cos(φ) (2.57)

The picture changes drastically for k2 = −2.07 × 10−15m−2. Due to this
negative value the resonance peak is shifting to lower frequencies (spring
softening) and the lower frequency edge steepens marking the onset of bi-
furcation when the critical amplitude Ac = 2√

3Q 3
8
k2
√

3
is reached (Fig.

2.15b). A similar pattern can be seen in the phase relation (Fig. 2.16b).
The amplitude at the point of bifurcation is slightly lower Ab = Ac

√
3

2 . A
positive third order non-linearity would result in curves that bends towards
higher frequencies (curves shown in Fig. 2.15b and 2.16b mirrored around
the σ = 0 axis). For k2 = −7.0× 10−15m−2 a region is found where three
possible amplitudes correspond with one driving frequency. However the
solution plotted in green is not stable and a bistable region is created (Fig.
2.15c and 2.16c). Which of the two possible amplitudes is obtained when
performing a frequency sweep depends on whether we approach the bista-
bility region from the high or low frequency side. When entering again an
area with only one solution the vibration amplitude will undergo a sudden
stepwise change (see arrows in Fig. 2.15c and 2.16c). In the bistability
region the actual vibration amplitude is dependent on the past hence the
system possesses a memory function and is said to show hysteresis.

It can be shown that for driving frequencies around ω0 the above analy-
sis for cubic non-linearities can be easily extended towards quadratic non-
linearities [30]. The effect of the quadratic non-linearity can be modeled
as a cubic non-linearity with effective k2 = −10

9 k
2
1 . Hence the quadratic

non-linearity always has a spring softening influence irrespective of its sign.

2.7.2 Physical causes of non-linearity

When the beam is undergoing large vibrations the material will be stretched
resulting in strain and an accompanying stress, which increases the stiff-
ness of the beam. Using the variational model we developed in subsection
2.3.2 we can establish a simple model for mechanical spring hardening in
a fixed-fixed beam. Following equation 2.28 we find a cubic non-linearity
with kstress

kgeom
= k2 = 3

4 t
−2 where t is thickness of the beam. We see that

this type of non-linearity becomes important when the vibration amplitude
reaches values, which are significant compared to the thickness of the beam.
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Other non-linear mechanisms, which are related to the beam mechanics in-
clude material non-linearities [31]. However non-linearity is also encoun-
tered when the exerted force is dependent on the position coordinate of the
beam: F (A) = F (0) + dF

dA |A=0A + d2F
dF 2 |A=0

A2

2 + d3F
dA3 |A=0

A3

6 Substitut-
ing this expression in 2.54 we can see that the first, second and third order
derivatives actually correspond to an effective spring constant, quadratic
and cubic non-linearity respectively. In the case of a parallel plate capac-
itor for example in accordance with Coulomb’s law the exerted actuation
force on the plates typically varies with the inverse square of the distance
between the plates ( ∼ 1

(g−A)2
≈ 1

g2
(1 + 2Ag + 3Ag

2 + 4Ag
3)) resulting in

multiple higher order non-linearities (electrical spring softening). We will
later see (see chapter 5) that the gradient optical force varies typically ex-
ponentially with the distance between two objects, thus also resulting in
non-linear behavior. Finally non-linearity can also be generated in the mo-
tion transduction [32], which will be further discussed in chapter 4.

For a lot of applications non-linearities are undesired and the practi-
cal maximum operation amplitude is therefore limited and should be suffi-
ciently smaller than Ab, limiting the maximum stored energy in the device
to (Emax <

kA2
b

2 ) [33]. The power handling capacity however is an im-
portant spec for reference oscillators in wireless applications. In sensors
non-linearities might limit the dynamic range of the sensor [34]. Therefore
cancelation schemes were investigated with non-linearities of the soften-
ing and hardening type annihilating each other [35]. It was also found that
the power handling capacity of the longitudinal (bulk acoustic) vibrational
modes of a beam is orders of magnitudes superior to its flexural modes [33].
However non-linearity might also be usefully applied for the construction
of chaotic nanomechanical systems [36].

2.7.3 Summary

Summarizing this chapter we have learnt —starting from the static and
dynamic Euler beam equation— that the nanomechanical oscillators we
will fabricate and characterize in this work can be described by a powerful
lumped parameter model: the damped harmonic oscillator. In addition we
have identified the main mechanisms (air damping, clamping losses) that
will control the damping of our structures. Finally non-linearity has been
added to the lumped parameter model which will allow us to fully describe,
analyze and understand the mechanical behavior of our optomechanical de-
vices.
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3
Fabrication of nanomechanical devices

What I cannot create, I do not understand.
Richard P. Feynman

3.1 Silicon for mechanics

AS we have already mentioned in the first chapter, silicon is the favored
semiconductor of CMOS semiconductor industries. Because of its

high refractive index it can also be used to create very compact nanopho-
tonic circuits. In addition it shows almost negligible absorption around tele-
com wavelengths (λ = 1300 − 1620nm) making it an excellent material
for nanophotonics. In the first chapter we already discussed our intention to
merge nanophotonics with mechanics to create Nano-OptoMechanical Sys-
tems (NOMS), so we need to assess the suitability of silicon for mechanical
purposes. We will limit our assessment to single-crystal (=monocrystalline)
silicon (c-Si) which is from mechanical point of view superior to polycrys-
talline and amorphous silicon variants and also the material we will use in
reality for our fabrication. When discussing silicon in the coming para-
graphs and chapters c-Si is meant unless mentioned explicitly otherwise.
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3.1.1 Anisotropy of the silicon crystal

When designing mechanical structures in silicon an important aspect we
have to deal with is the anisotropy of the crystal. Silicon has a diamond cu-
bic crystal structure [1], other group IV elements including germanium, tin
and of course diamond also adopt this structure. In Fig. 3.1a the unit cell
of the crystal structure is shown. Copying the unit cell in three dimensions
allows reconstruction of the full crystal. We see that eight atoms are placed
at the corners and six at the faces of the cubic unit cell (such a structure
is called ‘face centered cubic’ in crystallography). In addition four tetra-
hedrally bound atoms are located in the bulk of the unit cell so in total we
have eight atoms per unit cell (81

8 + 61
2 + 4 = 8).

We also defined crystal directions relative to the unit cell and used
the conventional square bracket notation for crystal directions (Miller in-
dices [2]). Planes orthogonal to a crystal direction [i, j, k] are referred to as
(i, j, k). For example in Fig. 3.1a the (0, 0, 1) plane is marked. Due to crys-
tal symmetry planes with a different index might behave identical. The set
of planes that is equivalent to plane (i, j, k) is denoted as {i, j, k}. In a sim-
ilar way the set of crystal directions that is equivalent to direction [i, j, k]
is denoted as < i, j, k >. For example both crystal directions [1, 1, 0] and
[1, 1̄, 0] (by convention negative indices are written with a bar so 1̄ instead
of −1) are part of the < 1, 1, 0 > class. In fact due to the symmetry the
mechanical behavior of silicon can be fully described in three dimensions
by a six by six tensor with only three independent non-zero constants. The
compliance matrix connects the normal and shear stresses with the strains.
Oriented to the {1, 0, 0} crystal axes (for a compact notation labeled as x,y
and z, see Fig.3.1a) the relationship between stresses and strains reads as:



εxx
εyy
εzz
εyz
εzx
εxy

 =



S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44





σxx
σyy
σzz
τyz
τzx
τxy

 (3.1)

The compliance elements take the following values for silicon: S11 =
7.68 10−12 Pa−1, S12 = −2.14 10−12 Pa−1 and S44 = 12.6 10−12 Pa−1.
Any direction in the crystal can be identified by its ‘direction cosines’. Let
l,m,n be the cosines of the angles that a particular direction makes with the
[1, 0, 0], [0, 1, 0], [0, 0, 1], crystal axes respectively. Young’s modulus Elmn
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Figure 3.1: The anisotropic mechanical properties of single-crystal sil-
icon. a, Unit cell of monocrystalline silicon (diamond cubic crystal) with
crystal directions and planes indicated. The four tetrahedrally bound atoms
in the bulk of the unit cell are drawn with a thicker boundary. b, {1, 0, 0}
wafer with notch and crystal directions indicated. c, Young’s modulus in
the {1, 0, 0} plane. The circles indicate the extremal values of 130 GPa
(E<100>) and 169 GPa(E<110>). d, In plane and out of plane Poisson’s
ratio in the {1, 0, 0} plane.
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in a direction defined by the direction cosines l,m,n is then given by [3]:

1
Elmn

= S11(l4 +m4 +n4) + (S44 + 2S12)(l2m2 + l2n2 +m2n2) (3.2)

Along the < 1, 0, 0 > crystal axes the above formula reduces to 1
E<100>

=
S11 and we find E<100> = 130 GPa. Using formula 3.2 we calculated
Young’s modulus in the {1, 0, 0} plane. This crystal plane in particular
is important because the Si wafers we use for our fabrication are {1, 0, 0}
wafers which means that our structures will lie in the {1, 0, 0} plane. The
so called ‘notch’ defines the < 1, 1, 0 > direction in this plane (see Fig.
3.1b). In Fig. 3.1c we see that Young’s modulus varies from 169 GPa
along the < 1, 1, 0 > axes to 130 GPa along the < 1, 0, 0 > axes, a vari-
ation of approximately 23%. The anisotropy is even more distinct when
considering Poisson’s ratio (see Fig. 3.1d). Poisson’s ratio is the ratio of
the transverse strain (perpendicular to the applied axial stress) to the axial
strain (ν = − εtrans

εaxial
). In Fig. 3.1d Poisson’s ratio is plotted for in plane

and out of plane transverse strain showing large variations. Expressions for
Poisson’s ratio in terms of direction cosines can be found elsewhere [3]. It
is interesting to note that anisotropy is not present in {1, 1, 1} wafers since
every direction is a < 1, 1, 0 > direction in {1, 1, 1} crystal planes. Nev-
ertheless standard {1, 0, 0} wafers were used for this work. This is no real
issue since our mechanical structures are mainly relatively slender beams
oriented parallel or perpendicular to the notch along a < 1, 1, 0 > direc-
tion, so we can safely accept Young’s modulus to be 169 GPa in the context
of this work. However anisotropy should be taken into account when de-
signing for example mechanical resonators with ring topology in {1, 0, 0}
wafers.

3.1.2 Advantageous mechanical properties

In single crystal form, silicon is an almost perfectly elastic material [4],
meaning that when it is flexed there is virtually no plastic deformation or
hysteresis. Hence energy dissipation inside the material is very low. In sub-
section 2.6.3 we have already discussed the importance of intrinsic material
losses in the pursuit of ultrahigh Q mechanical resonators so silicon seems
one of the best possible materials for this goal. Another aspect which has
not been discussed yet is reliability. Its elasticity makes silicon very reli-
able as it suffers very little from fatigue [5, 6] and can have service life-
times in the range of billions to trillions of cycles without breaking. Since
silicon suffers little from aging also very stable oscillator frequencies can
be maintained over years (a frequency shift of ≈1 ppm per year has been
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. The elastic constants and density for the semiconductors can be found
in [8], the numerical values for the metals were taken from [9].

Material E (GPa) ρ (kgm−3)
√

E
ρ (ms−1)

Cu 128 8940 3784
InP 93 4810 4398

GaAs 122 5317 4786
Al 69 2700 5055
Ge 137 5323 5079
Si 169 2329 8518

SiC 450 3210 11861
Diamond 1165 3515 18207

Table 3.1: Young’s modulus E, density ρ and ratio
√

E
ρ of some —for

semiconductor industries common— semiconductors and metals. For the
semiconductors the modulus for the< 1, 1, 0 > crystal direction was taken.
The materials are listed according increasing

√
E
ρ

demonstrated [7] while typically maximum ≈5 ppm is allowed for timing
and clock applications). Finally a high Young’s modulus and more in par-
ticular the high

√
E
ρ = 8518ms−1 ratio include another asset. In chapter

2 we have seen that mechanical oscillator resonance frequencies scale with
this ratio. In other words compared to materials with a lower ratio, silicon
allows higher frequency components for the same geometrical dimensions
of the component, hence relaxing fabrication tolerances for commercially
interesting GHz components. Some materials that are popular in semicon-
ductor industries are shown for comparison with silicon in table 3.1 [8, 9]:

We see that silicon is only surpassed by silicon carbide (SiC) and di-
amond. The latter is indeed a superb mechanical material. First of all
diamond components can be almost twice as large for the same oscillator
frequency, relaxing fabrication tolerances for high frequency components.
Moreover although silicon components are known for their excellent long
term reliability, the wear life of diamond oscillators is estimated to be 10000
times larger than silicon components [10]. In addition trouble with surface
oxides causing surface dissipation and reducing the maximum achievable
mechanical quality factors might be avoided. However for this PhD di-
amond was not an option yet for the fabrication of simple nanophotonic
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circuits in diamond is still in its infancy [11].

3.2 Fabrication of passive structures in Silicon-on-
Insulator

3.2.1 Deep Ultraviolet Lithography

Most nanophotonic structures today are defined using e-beam lithography, a
technique which can handle the resolutions required, but lacks the possibil-
ity for large scale fabrication due to long writing times. Other techniques
used for the large-scale fabrication of current photonic integrated circuits
cannot print the fine details required for nanophotonic structures.

Deep Ultraviolet (DUV) lithography allows both large-scale fabrication
and acceptable resolution. On top of these advantages, a large experience
with DUV lithography based fabrication is already available in the Pho-
tonics Research Group Ghent, the research group which hosted this PhD.
Consequently DUV lithography is our preferred fabrication technology to
define patterns in the top layer of a silicon-on-insulator (SOI) wafer.
DUV lithography is based on excimer lasers and uses state-of-the-art CMOS-
facilities provided by imec. The fabrication of nanophotonic structures in
silicon-on-insulator wafers (SOI) using a 248 nm illumination wavelength
was first explored in the doctoral work of Wim Bogaerts [12] and Pieter Du-
mon [13]. A more advanced process using a shorter wavelength (193nm)
can resolve single line structures of 100 nm and was developed and fine-
tuned in the PhD work of Shankar Kumar Selvaraja [14]. We mainly used
this more advanced process to create patterns in a SOI wafer having a top
layer of silicon with a thickness of 220 nm and a buried oxide (BOx) layer
with a thickness of 2µm. However some of the earliest structures described
in this work were fabricated using the 248 nm wavelength in SOI wafers
with a 220 nm top layer and a BOx layer of only 1µm. An extensive discus-
sion of DUV lithography and the subsequent Reactive Ion Etching (RIE) are
beyond the scope of this thesis. More details on the 248 nm [15] en 193 nm
process [16] can be found elsewhere. From now on we make abstraction of
this process and start our process flow with a patterned SOI wafer.

3.2.2 Coupling light into the chip

Before we discuss the fabrication of freestanding structures in an SOI wafer
we will briefly discuss an important feature of our passive nanophotonic cir-
cuits. If we want to use relatively weak optical gradient forces to actuate
nanophotonic waveguides, then at least we need to couple sufficient light
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Figure 3.2: Coupling light into a nanophotonic waveguide. a, Typical
nanophotonic single-mode waveguide cross-section. For some structures
in this work a 1µm (instead of 2µm) thick buried oxide layer was used.
b, The grating coupler diffracts light into a 10µm wide waveguide which
tapers through an adiabatic taper to a nanophotonic single-mode waveguide
with a typical width of approximately 450 nm.

into the nanophotonic waveguides. Fig. 3.2a is showing a typical single-
mode nanophotonic waveguide. Its dimensions (220 nm by 450 nm) are in
sharp contrast with the fiber core diameter of a single mode fiber (circle
with diameter 9µm). To keep the losses that arise from this size mismatch
at an acceptable level the grating couplers are used [17].

In Fig. 3.2b we see that the light from a tilted fiber (typically 10◦ tilt)
is incident on a diffraction grating. Proper design of the coupler causes
the light to be diffracted into the 10µm wide waveguide with a loss that
can be as small as 5dB. An adiabatic taper reduces the width of this wave-
guide to the typical photonic wire dimensions. The grating coupler allows
nanophotonic components to be ‘fully integrated’, meaning that the access
waveguides are also integrated on the chip. In spite of its practical impor-
tance for our experiments a detailed analysis of the grating coupler is also
beyond the scope of this work. More details can be found in the PhD thesis
of Dirk Taillaert [18].

3.3 Fabrication of freestanding structures in SOI

3.3.1 Fabrication process in a nutshell

The fabrication process is shown in a nutshell in Fig. 3.3. In Fig. 3.3a
we see the ‘naked’ nanophotonic wire, which is covered with a resist mask
(Fig. 3.3b). The resist mask is then patterned using standard lithography in
order to create an underetch window (Fig. 3.3c). Afterwards wet buffered
hydrofluoric acid (BHF) is used to remove the underlying SiO2 selectively
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a b c
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Figure 3.3: Overview of the underetch process. a, Single-mode nanopho-
tonic wire. b, Spinning on the resist mask. c, Lithographically patterned
resist mask which defines the underetch window. d, Wet buffered hydroflu-
oric acid (BHF) etch removes the underlying SiO2 selectively, creating a
bridge like structure. e, Final result after resist removal and (optional) crit-
ical point drying: an underetched single-mode nanophotonic wire.

hence creating a freestanding beam in the top silicon (Fig. 3.3d). The layer
which is removed in order to create the freestanding structure is commonly
referred to as the sacrificial layer. After the resist is removed we obtain a
waveguide with a freestanding underetched part. The final result is shown
in Fig. 3.3e. Each of the steps in the process requires some specific issues
to be resolved. These will be discussed in more detail in the following
subsections.

3.3.2 Choice of the masking material and etchant

The etchant required for the underetching process needs to etch SiO2 with
great selectivity towards silicon, leaving it unharmed. To the best of our
knowledge only hydrofluoric acid (HF) satisfies this condition. First water
forms silanol groups with the SiO2 molecules, so water is needed to initiate
the reaction:

2H2O + SiO2 −→ Si(OH)4 (3.3)

These groups can subsequently be attacked by HF.

Si(OH)4 + 4HF −→ SiF4 + 4H2O (3.4)

However the HF etch rate of SiO2is high, unstable and hence it is diffi-
cult to control the process. For this reason often buffered hydrofluoric acid
(BHF) is used [19]. A common buffered oxide etch solution comprises a
6:1 volume ratio of 40% NH4F in water to 49% HF in water. The role of
NH4F in the BHF mixture is to act as buffering agent. It stabilizes the pH
of the solution and the etch rate. Around room temperature such a solu-
tion etches SiO2 at a rate of 70 to 120 nm min−1. The exact etching speed
depends among others on the oxide type, its quality and the ambient condi-
tions.
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ba

Figure 3.4: Silicon acting as underetch mask. a, Shallow etched wave-
guide terminating the freestanding part. b, Photonic crystal waveguide ter-
minating the freestanding part.

Of course also the masking material needs to be resistant to a BHF etch.
However this is not the only condition to be fulfilled. BHF also tends to at-
tack the interface between the masking material and the sample. In other
words the masking material is left relatively unharmed by HF but it tends to
peel off at the edges of the underetch window. Hence the underetched re-
gion tends to be larger than defined by the window in the masking material.
One of the masking materials which is known not to peel off from silicon
or silica when exposed to HF is high quality Low Pressure Chemical Vapor
Deposition (LPCVD) silicon nitride [20]. Unfortunately we did not have
easy access to this material. Tests with silicon nitride of the lower quality
Plasma Enhanced Chemical Vapor Deposition (PECVD) type turned out to
be unsuccessful, so finally we decided to focus on reducing the peeling off
for a standard resist mask.

One obvious possibility is to apply a spin-on adhesion promoter which
enhances the adhesion of resist to the sample, however, water molecules
attached to the SiO2 impede the adhesion of the adhesion promoter to the
silica. By consequence we had the best results when applying the adhesion
promoter Hexa-Methyl-Disilizane (HMDS) in a vacuum oven. The vacuum
and the high temperature first removes the water allowing HMDS (which
is brought in the chamber in vapor phase) to attach to the SiO2 much more
effectively. This treatment reduced the peeling off and enabled structures
with an underetched portion which exceeds the window length with only a
few µm which is perfectly acceptable for this work.

However when aiming for a more precise control of the mechanical
properties probably LPCVD nitride would be required for the mask. Alter-
natively one can think of nanophotonic devices in which the silicon itself
acts as the masking material. The part of the photonic wire which has to
be underetched can for example be terminated by a shallow etched wave-
guide (see Fig. 3.4) or a photonic crystal waveguide [21] (see Fig. 3.4). In
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Figure 3.5: Stiction. a, A liquid drop is formed between the freestand-
ing beam and the substrate. b, During the drying cycle the freestanding
beam might collapse and remain stuck to the substrate. c, SEM picture of
a stiction test. The three upper beams are sticking to the substrate, as can
be seen from the slight gray decoloring in their centers (and the added red
bars, which run in parallel with the sticking zone). The two lower (shorter)
beams are truly freestanding.

both cases one has to engineer carefully reflections and losses at the start
and end of the freestanding part since the waveguide mode profile might
change abruptly there.

3.3.3 Stiction

Stiction is a contraction (or a portmanteau) of ‘static friction’. In the context
of MEMS it usually refers to the well known phenomenon of adhesion fail-
ure. While in the macro-world the main force freestanding structures (such
as bridges) have to withstand is gravity, this picture drastically changes at
the nanoscale. At this scale gravity is negligible and capillary forces be-
come the main cause of failure. When a wet etchant is used to remove the
sacrificial layer unavoidably a drop of liquid forms between the freestand-
ing structure and the substrate (3.5a). Strong attractive capillary forces can
develop during the drying cycle causing the freestanding part to collapse
and subsequently to stick to the substrate as shown in (3.5b). In fact two
conditions need to be fulfilled to end up in the situation of (3.5b). First the
freestanding beam needs to be brought in contact with the substrate dur-
ing the drying cycle. Secondly the adhesive force needs to be sufficiently
strong to overcome the repelling spring force of the deflected beam. The
latter condition can be modeled by calculating the peel number Np of the
structure. An in depth analysis of this model is beyond the scope of this
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thesis. However the peel number can be understood intuitively as the ratio
of the increase in the system’s potential energy (spring energy keffh

2

2 ) to
the reduction of potential energy (by lowering its surface energy) when the
beam is making contact to the substrate. Since systems in general strive to
reach the state of lowest potential energy a peeling number Np < 1 means
that the beam stays in its pinned state. An approximate expression for the
peeling number reads as [22]:

Np = keff
3h2

256wLγs
(3.5)

In this equation keff is the effective spring constant of the beam, w en L
are the width and length of the beam respectively (see also 3.5a). Assuming
that these geometric properties are determined by other constraints and are
not available as free design parameters we only have the distance h to the
substrate and the surface energy γs to alter the peeling number. However
we will later see that in practice the effects we wish to observe and study in
this work require closely spaced freestanding objects (so preferably with as
small h as possible). At this point we also mark that stiction is not solely
related to the substrate but might as well occur between two in plane objects
such as two neighboring freestanding beams. In this case h would denote
the gap spacing between the two parallel beams.

Taking the above restrictions into account the only accessible parameter
left is γs, the surface energy of the material. Also here our freedom seems
limited since our preferred material (silicon) has already been determined
by various other factors (optical, mechanical and technological). The γs
for silicon in the {1, 0, 0} plane is around 1.36 Jm−2 [23]. However in the
literature methods to alter the surface chemistry of silicon by application of
anti-adhesive coatings can be found [24].
In this work we followed another strategy and tried to avoid the beam ever
comes into contact with a neighboring surface. As we have stated previ-
ously, the beam might reach the substrate during the drying cycle of the
rinsing liquid. This effect can be modeled through the elastocapillary num-
ber [22], which reads approximately as:

Ne = keff
4h2

15wLγL cos(θc)(1 + t
w )

(1 +
108
245

h2

t2
) (3.6)

Besides the geometrical properties of the beam and the materials used now
also the properties of the rinsing liquid come into play since θc and γL are
the contact angle and the surface tension of the liquid. This provides us
with an additional degree of freedom. The elastocapillary number also ori-
gins from potential energy considerations and Ne < 1 means that the beam
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will reach the neighboring surface. Simply replacing rinsing water with
isopropanol (IPA) increases the elastocapillary number with more than a
factor of three since γL,IPA = 21.7mJm−2 and γL,water = 75.6mJm−2.
In Fig. 3.5c the result of a stiction test we have performed is shown. The
structure was dried in water after it was underetched in buffered HF and the
full sacrificial layer (1µm SiO2) was removed. The beams have a width
of 1µm and a lenght of 20,30,40,50 and 60µm respectively. Using equa-
tion 3.6 we can calculate the elastocapillary numbers for the five beams.
A formula for keff has already been derived (equation 2.17). The biggest
problem is θc, the contact angle water makes with the silicon surface. Ac-
cording to the literature [25] it can vary from 5◦ (native oxide, hydrophylic)
to 60◦ (silicon with native oxide removed, hydrophobe). If we set θc to
60◦ and calculate Ne for the five beams that are shown in the picture we
find Ne,60µm=0.27, Ne,50µm=0.56, Ne,40µm=1.37, Ne,30µm=4.32 and fi-
nally Ne,20µm= 21.9. According to this calculation also the 40µm long
beam should not stick to the substrate. As can be seen in Fig. 3.5c this is
not the case. It is clear that the elastocapillary number cannot be used as
an accurate prediction for cases where it is close to unity. As already men-
tioned we do not know the exact contact angle and also a severe undercut
can be seen in Fig. 3.5c, which might make the beam less stiff. Finally in
our experience turbulence in the rinsing water might also negatively influ-
ence the chance for the beam not to get stuck to the substrate.
In the next subsection we will discuss a strategy to bring the surface tension
to an extremely low value and by consequence to eliminate stiction.

3.3.4 Critical-point-drying

The vapor-liquid critical point of a material denotes the critical pressure pc
and temperature Tc above which distinct liquid and gas phases do not ex-
ist anymore. When both the temperature and the pressure are above their
critical values (Tc and pc respectively), then the material is said to be in a
supercritical state.
Critical-point-drying (CPD) can be understood as traveling around the crit-
ical point in the pressure-temperature phase diagram shown in Fig. 3.6.
Increasing the pressure and temperature of a material in its liquid phase
(point A) results in a supercritical solution (point B). Gradually reducing
the pressure at elevated temperature results in a gaseous phase (point C).
In fact the liquid has dried without crossing the liquid-gas boundary in the
diagram, hence avoiding the detrimental capillary effects described in the
previous subsection.

Not all substances have practically achievable critical points. Espe-
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Figure 3.6: Critical-point-drying can be understood as traveling around the
critical point (Tc, pc) in the temperature-pressure phase diagram. The rins-
ing fluid is brought from its liquid phase (point A) to its supercritical state
(point B) by increasing the pressure and temperature sufficiently. Gradually
reducing the pressure in point B bring us at point C in the gaseous phase
without having crossed the liquid-gas phase boundary.

cially reaching high pressures is not a sinecure. In table 3.2 some po-
tentially interesting substances are given with their critical temperature Tc
and pressure pc [26, 27], listed according to increasing critical pressure.
Freon-13 (CFC) at first sight seems the best choice (Tc,CFC = 28.08◦C
and pc,CFC = 38.1 atm), however, it is banned in many countries because
of its ozone depletion potential. The most popular substance to perform
CPD is CO2 because its critical pressure (pc,CO2 = 72.8 atm) and temper-
ature (Tc,CO2 = 31.04◦C) are still relatively easy to achieve. It is also less
scarce and expensive than xenon (Tc,Xe = 16.6◦C and pc,Xe = 57.6 atm).
Nitrous oxide (N2O) has similar critical point characteristics to CO2 but
is a strong oxidizer in its supercritical state. Water is clearly out of ques-
tion: it reaches its critical point at pc,H2O = 217.7 atm and (Tc,H20 =
373.946◦C). Moreover it behaves as a powerful oxidizer under these harsh
conditions.

In practice Critical-Point-Drying is performed using a specialized tool
in which a chamber filled with solvent (typically isopropanol or acetone) is
gradually refilled with liquid CO2 after which the critical point drying cy-
cle can be performed. We have used the Tousimis [28] Critical Point Dryer
which was available in imec. With this technique we were able to dry par-
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substance Tc (◦C) pc (atm)
freon-13 (CFC) 28.8 38.1

xenon 16.6 57.6
CO2 31.04 72.8
N2O 36.4 71.5
water 373.946 217.7

Table 3.2: Critical temperature Tc and pressure pc for some substances
with critical points which are practically achievable. The substances are
listed according increasing critical pressure. The values were taken from
references [26, 27]

allel freestanding beams up to 30µm with gap spacings of approximately
150 nm without stiction. Such beams would normally have an elastocapil-
lary number of approximately 0.04 and cannot survive an ordinary drying
cycle.
We also mention the possibility of using a gaseous etchant. It is indeed
possible to use HF in a vaporized state, hence removing directly all stiction
related troubles. Given the extremely toxic, corrosive and harmful nature
of HF vapors [29] we considered this option to be too risky to implement
ourselves. Besides the safety issue also some additional technological prob-
lems are encountered with this approach [30]. Critical-point-drying is also
a lot more flexible than HF-vapor for it can be used in combination with
any possible wet etchant.
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4
Small displacement sensing

The least movement is of importance to all Nature. The entire ocean is
affected by a pebble.
Blaise Pascal

4.1 Introduction to the chapter

IN chapter 1 we already discussed briefly the tendency towards integra-
tion and miniaturization of mechanical resonators to the nanoscale (from

MEMS to NEMS). In chapter 2 however, we learned that high frequency,
low mass nanomechanical resonators come at the price of high stiffness and
by consequence smaller displacements for the same applied actuation force.
Not surprisingly the need for powerful motion transduction techniques has
attracted a lot of attention in the scientific community. Also in the context
of this work the detection of small vibrations was of crucial importance. In
this chapter we give an overview of the transduction methods in the litera-
ture and subsequently we explain the approach developed for nanophotonic
structures.

Tiny thermal ‘brownian’ vibrations will be used to calibrate optically
induced forces (see Chapter 5). In the current chapter we will explain the
origin of this thermal mechanical motion that is encountered in mechani-
cal oscillators. Then we review shortly the broad spectrum of displacement
sensing techniques described in literature, their variety reflecting the diffi-
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culty and importance of this field. Following we discuss the general prin-
ciple behind small displacement detection with nanophotonic waveguides,
a novel technique developed and improved during this Ph.D. Finally we
show our experimental results concerning small displacement sensing and
explain the practical experimental limitations.

4.2 Thermal mechanical noise

4.2.1 The fluctuation-dissipation theorem

The thermal motion of electrically charged particles inside materials gives
rise to a fluctuating electromagnetic field. Because fluctuations of charge
in materials lead to dissipation via radiation, no object at finite temperature
can be in perfect thermal equilibrium in a realistic situation. However in
most cases the object can be considered to be close to equilibrium and the
non-equilibrium behavior can be described by linear response theory. This
is the essence of the fluctuation-dissipation theorem [1]: the rate of energy
dissipation in a non-equilibrium system can be related to fluctuations that
occur spontaneously in an equilibrium system. One of the earliest and best
known manifestations of the fluctuation dissipation theorem is the Einstein
relation that relates the diffusion constant D (of colloidal particles) to the
solvent viscosity η: D = kBT

6πRη (kB = 1.38 × 10−23JK−1 the Boltzmann
constant, T the absolute temperature,R the radius of the spherical particle).

When applying the fluctuation-dissipation theorem to the mechanical
spring-mass-damper system that we have introduced in chapter 2 we can
state that the damping in fact provides a two way path. On one hand it
allows energy to leave the system, on the other hand if thermal energy from
the environment increases the temperature, then the mechanical oscillator’s
motion increases intrinsically. We can think of the latter as an additional
thermal ‘brownian’ force which is acting on the oscillator.

4.2.2 Brownian force

Callen and Welton were the first to derive the fluctuation-dissipation the-
orem in its very general form [2]. Such a rigorous derivation is far be-
yond the scope of this work. We restrict ourselves to the analysis of a
mass-spring-damper system in the high temperature limit (kBT � hf ,
h = 6.626 × 10−34Js Planck’s constant and f the mechanical oscillation
frequency) for which the classical equipartition theorem is valid. Accord-
ing to the equipartition theorem the different energy storage modes of a
system in thermal equilibrium should contain an average energy of kBT

2 .



SMALL DISPLACEMENT SENSING 4-3

For the mass-spring-damper system we have two possible energy storage
modes, kinetic energy (mass m) and the potential energy (spring constant
k) [3].

1
2
kBT =

∫ ∞
0

1
2
k < |x| >2 df =

∫ ∞
0

1
2
m < |ẋ| >2 df (4.1)

The energy integral is taken over the total spectrum. In order to make the
dimensions match x(t) and ẋ(t) should be interpreted as a displacement
and velocity per square root Hertz respectively. In this work we will some-
times use rtHz units (rtHz =

√
Hz). The brackets in equation 4.1 denote

a time average.
Starting from the equation for a damped harmonic oscillator (damp-

ing factor Γ) in the frequency domain, we can tie the displacement noise
(m
√
Hz−1) to a noise force Fb (N

√
Hz−1) (see equations 2.45 and 2.47

in subsection 2.5.3).

< x >=
< Fb >

(k −mω2) + jωΓ
(4.2)

Hence we can calculate the spring potential energy:

k

2
< |x| >2=

k

2
< Fb >

2

(k −mω2)2 + ω2Γ2
(4.3)

Substituting the mechanical resonance frequency ω0 =
√

k
m and quality

factor Q = ω0m
Γ and taking the integral over the entire spectrum we can

write:

1
2
kBT =

∫ ∞
0

1
2
k < x >2 df =

< Fb >
2

4πΓ

∫ ∞
0

Q

Q2(1− f
f0

2
)2 + f

f0

2 d
f

f0

(4.4)
We have also taken < Fb >

2 out of the integral, hence assuming that the
noise force does not depend on the frequency (so called white noise). If the
quality factor is sufficiently high the displacement will indeed take place
in a narrow band around the resonance frequency where the noise can be
assumed to be white [4]. Evaluation of the integral returns π

2 , so finally
equation 4.4 reduces to:

< Fb >
2= 4ΓkBT (4.5)

At this time we wish to point out the striking similarity between equation
4.5 and the —to electrical engineers well known— Johnson-Nyquist noise
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in resistors. Indeed a resistor with resistance R at an absolute temperature
T will exhibit a noise voltage < Vb > (V

√
Hz−1) given by [5]:

< Vb >
2= 4RkBT (4.6)

We have previously pointed out the mathematical analogy between RLC
circuits in electronics and mass-spring-damper systems in mechanics. The
analogy we encounter here is stronger than a mere mathematical one since
both phenomena (voltage and force noise) origin from vibrating particles
in the material lattice. In fact the Johnson-Nyquist voltage noise can be un-
derstood as scattering from electrons due to lattice vibrations and by con-
sequence it is also intrinsically mechanical in nature [4].

4.2.3 Calibration procedure

In the context of this work the thermal mechanical noise is important for
calibration of tiny forces. First we rewrite equation 4.5 by introducing the
Q-factor again:

< Fb >=
√

4
ω0m

Q
kBT (4.7)

In a measurement band width BW this noise force Fb (unit N
√
Hz−1)

results in an effective force Feff (unit N ):

Feff =
√

4
ω0m

Q
kBT
√
BW (4.8)

Looking at this equation we note that the parameters kB and BW in this
equation are known a priori. kB is the (well known) Boltzmann constant
and the measurement bandwidth we can set ourselves during the experi-
ment. The resonance frequency ω0 and the quality factor Q of the mechan-
ical oscillator can be obtained directly through measurement. However it
is very hard to measure the oscillator mass m and the exact oscillator tem-
perature T directly in an experiment. These parameters cause the largest
uncertainties in our calibration procedure for they must be estimated. For
the temperature we assume that the optical power levels in the experiments
are not sufficient to heat up the oscillator and its direct environment to very
high temperatures and we take T ≈ 300K. The oscillator mass can be
approximated by estimating the dimensions of the oscillator through SEM
and using the well known mass density of silicon (2329 kgm−3).

However as we have already discussed in subsection 2.5.2 this mass
should be weighted with an additional factor (see table 2.3) that typically
varies between 0.397 (ground mode fixed-fixed beam) and 0.5 (ground
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mode hinged-hinged beam). Once we have estimated meff and T we can
easily calculate the effective ‘brownian’ force (using equation 4.8) and use
it for calibration. The application of mechanical brownian noise for cali-
bration purposes of mechanical oscillators has been described and assessed
earlier in literature in the context of atomic force microscopy (AFM) exper-
iments [6].

We also mention that different units can be used to display the recorded
vibration signals. The electrical spectrum analyzer (ESA) in combination
with an optical detector in fact always measures the optical power (units
dBm) in a certain bandwidth so for a brownian signal we can plot the values
in dBm (raw data) or dBm

√
Hz−1 (scaled with measurement bandwidth).

The latter is also referred to as the power spectral density (PSD).

The measured PSD is in fact a consequence of the oscillator’s displace-
ment spectral density, expressed in nm

√
Hz−1 (DSD). The oscillator’s

DSD is given by <Fb>
k χMECH(ω) (χMECH(ω) is the mechanical suscep-

tibility with parameters Q and ω0, see equation 2.47). Fitting a Lorentzian
to the PSD allows us to extract Q and ω0. Through estimation of the pa-
rameters that cannot be fitted such as temperature and effective mass we can
finally calculate < Fb >, k and χMECH(ω) and by consequence we know
all parameters needed to calibrate the experimental data. Thermal brownian
forces and displacements are inherently related to measurement bandwidth
and are expressed in units of dBm

√
Hz−1, N

√
Hz−1 and nm

√
Hz−1.

However if we use an external harmonic force excitation (for example from
a signal generator) we can think of the excitation as a Dirac function in the
frequency domain and signals are displayed using dBm, N or nm. The
calibration procedure is summarized in Fig. 4.1.

Finally in order to get a feeling for the order of magnitude of the brow-
nian force let us consider a numerical example with values that are typical
for our work. A silicon beam of 25µmwith single-mode waveguide dimen-
sions (220nm height × 440nm width) and a Q of 2000 would exhibit an
in-plane noise force of 0.87 fN

√
Hz−1 and an effective force of 2.75 fN

in a bandwidth of 10Hz at a temperature of 300 K. This results in a peak
noise displacement of 0.48 pm

√
Hz−1 (1.5 pm in a 10Hz BW). To put

these numbers in perspective it is useful to know that the lattice constant
of silicon is approximately 0.5nm. It is clear that in order to detect such
small vibrations, sensitive transducer methods are required.
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brownian
force 

(NHz-1/2)
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Figure 4.1: Calibration procedure. The (to calibrated) harmonic force is
transformed into a harmonic current. Also the (easily calculated) brown-
ian force can be linked to a current (dependent on the measurement band-
width of the electrical spectrum analyzer). Comparing the magnitude of
the generated currents hence allows comparison of the harmonic force to
the (known) brownian force.

4.3 State-of-the-art motion transducers

4.3.1 Capacitive detection

In a capacitive transduction scheme [7] (Fig. 4.2a) an electrode close to the
device under test is required. This way the mechanical oscillator acts as a
plate of a capacitor. When a DC voltage is applied an amount of charge Qc
is trapped on the plates of the capacitor (Qc = C(x)VDC). The capacitance
C strongly depends on the separation g between the external electrode and
the oscillator (in a parallel plate capacitor model C ∝ g−1). By conse-
quence Qc also depends on the position coordinate x of the oscillator, so
whenever the oscillator moves a current icap(t) must be generated to alter
Qc:

icap(t) = VDC
∂C

∂x

∂x

∂t
(4.9)

This current is intrinsically AC and can be amplified and detected. It is
worthwhile noting that capacitive transduction inherently enables capaci-
tive actuation. A voltage can be used to generate a time dependent Coulomb
force:

Fcap(t) =
1
2

(VDC + VAC cos (ωt))2 ∂C

∂x

= (
V 2
DC

2
+
V 2
AC

4
)
∂C

∂x
+VACVDC cos (ωt)

∂C

∂x
+
V 2
AC

4
cos (2ωt)

∂C

∂x
(4.10)
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The above formula shows that the combination of an AC and DC voltage
generates a force component at frequencies ω, 2ω and a DC force. Ca-
pacitive actuation has also been explored in this Ph.D. for the actuation of
grating light valves [8], [9] and parallel waveguide structures [10] but it is
not within the main focus of this work.

Capacitive detection is widely applied in the realm of MEMS, however,
it is inherently incompatible with down scaling the device size to the nano-
scale (NEMS) for the capacitance of a parallel plate capacitor scales with
l2sc. We have again introduced the uniform scale factor lsc that all dimen-
sions (width, height, length) are proportional to. As can be seen in equation
4.9 a small capacitance reduces the generated current ∂C∂x ≈

−C
g . Of course

reducing the gap size could be considered to compensate for the reduced
capacitance. However this approach might raise fabrication issues and in-
creases the (usually unwanted) non-linear sensing response (see section 2.7
on non-linear mechanics). In addition electrical pull-in might occur for
smaller gaps [7]. Pull-in also explains why simply increasing the bias volt-
age is not an option here. Moreover a high voltage over a small gap might
also cause electrical breakdown and in addition high voltages are just not
always easy to achieve on a chip. Finally we note that capacitive actua-
tion for NEMS also suffers from the typical problems that occur with high
frequency electronics (transmission line effects, reflections, RC-time con-
stants which work as low-pass filter for high frequencies). We conclude that
capacitive detection —in spite of its popularity in the MEMS community—
poses too much troubles for effective miniaturization of devices.

4.3.2 Magnetomotive detection

A possible answer to the scaling limits we run into with capacitive detection
is a magnetomotive detection scheme (Fig. 4.2b) [11–13]. In this scheme
a large magnetic field is applied perpendicular to the plane of motion. The
motion of the oscillator will generate an electromotive force (measured in
volts):

vEMF (t) = ψLB
∂x

∂t
(4.11)

ψ is a proportionality constant close to unity (depending on the mode shape)
while L is the length of the beam. Similar to the capacitive case detection
and actuation can be reversed and there is also a possibility to generate a
magnetomotive actuation force through the well known Lorentz force. A
drive current idrive(t) and a magnetic induction B will generate following
force:

FLorentz(t) = ψLBidrive(t) (4.12)
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V B

x(t)

A

VDC

C(x)

x(t)

icap(t)

a b

L

id(t)

Figure 4.2: Capacitive and magnetomotive motion transduction. a, In
a capacitive detection scheme the mechanical oscillator acts as a plate of
a capacitor. A neighboring electrode provides the second plate and a DC
voltage VDC is applied over this capacitor. The capacitance C (and hence
the charge Qc = C(x)VDC stored in the capacitor) depends on the oscil-
lator’s position coordinate x. In case the oscillator is moving (ẋ(t) 6= 0)
a current icap(t) (which can be monitored) will be generated to alter the
charge on the capacitor plates. b, In a magnetomotive detection scheme a
DC magnetic field (with magnetic induction B) is applied perpendicular to
the plane of motion. A detectable electromotive force (SI unit volt) will be
generated when the oscillator moves.



SMALL DISPLACEMENT SENSING 4-9

The biggest issue in this scheme is the requirement for a large magnetic
field (preferably on the orders of several Tesla). The technique also requires
a conducting material (on top of the oscillator or the oscillator material
itself should be conductive) which limits the applicable materials.

4.3.3 Other non-optical techniques

Piezo-electric motion transduction uses piezoelectric materials. In these
materials an electric field is generated when strained. Again the process
can be reversed and both detection and actuation can be achieved. Piezo-
electric sensing is in many ways a promising path since it solves a lot of
issues arising with magnetomotive and capacitive actuation and in addition
great sensitivity can be achieved [14–16]. For example a recently demon-
strated quantum ground state cooling experiment featured piezo-electric
displacement sensing [17]. On the drawback side not all materials show a
piezoelectric effect (silicon for example does not) such that often a stack of
different materials might be needed, hence complicating fabrication. Also
piezoelectric sensing still requires electrical paths limiting the achievable
bandwidth.

Another more exotic means of sensing is electron tunneling. Very sensi-
tive motion transduction has been reported using this effect [18, 19]. How-
ever the method is inherently very non-linear and it is difficult to achieve
high bandwidths. In the following (sub)sections we will discuss optical
transducer methods which lift the intrinsic bandwidth limitations of electri-
cal signals.

4.3.4 Free space optics

Free space optics small displacement sensing is in general performed through
some form of interferometry [20–22]. While in Michelson interferometry
the light that interacts with the device under test interferes with a reference
beam, in a Fabry-Pérot (FP) interferometer interference inside a cavity is
used. Typically one of the two mirrors of the cavity is fixed while the other
is allowed to move. Displacement of the movable mirror then changes the
cavity’s reflection (and transmission). In Fig. 4.3a a typical example is
shown: the micromirror on top of the cantilever allows to track the can-
tilever’s displacement when the mirror is placed in a cavity.

However our main focus is on integrated structures. In Fig. 4.3b a laser
beam is focused on a suspended beam. The beam itself and the underlying
substrate also form an FP-cavity. An experimental set-up to characterize
suspended structures with this FP method was built during the Ph.D. of
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Figure 4.3: Free space optics displacement sensing with FP cavities. a,
A micromirror which is placed at the top of a cantilever. Figure reproduced
with permission from ref [23]. c©2006 NPG b, Suspended beam above
a substrate forming an FP cavity for the incident light. c, Experimental
response of a suspended beam, actuated through a piezoelectric shaker [24]
and characterized through FP interferometry

Iwijn De Vlaminck [24]. Fig. 4.3c shows an experimental result that was
obtained with this set-up. In fact we see the ground mode’s resonance peak
of the shortest beam of our underetch test structures (these were discussed
in the previous chapter, see also Fig. 3.5 and subsection 3.3.3). Another in-
teresting free space optics technique (although attempts towards integration
are undertaken [25]) worth mentioning is laser doppler vibrometry [26].
The instantaneous velocity of the device under test is imprinted onto the
optical signal as a Doppler frequency shift ∆f(t) = 2

λ ẋ(t). Analysis of
the beat signal created by interference of the Doppler shifted signal with a
reference signal allows direct registration in the time domain of the beam’s
velocity.

Both methods in principle only allow out-of-plane vibrations to be de-
tected and require accurate alignment. The latter issue is increasingly im-
portant when the lateral dimension of the beam shrinks to subwavelength
size for the minimum achievable spot size is limited by diffraction (mini-
mum spot radius ∝ λ

NA with NA the numerical aperture of the focusing
lens). If the spot size exceeds the beam dimensions then light will be scat-
tered strongly and less reflected light can be collected. The important limi-
tations of the free space optics methods can be overcome by the integrated
optical motion transduction method that we will discuss in the following
sections.

We also wish to stress that the above list of techniques is by far not
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Figure 4.4: Cross-section of several waveguide types with a gap param-
eter g. a, Single-mode silicon waveguide. In this case g is the gap towards
the SiO2 substrate. b, Two parallel waveguides with spacing g in between.
c, Slotted waveguide. g is the width of the slot.

complete. It rather provides a quick overview of some different techniques,
much more information can be found in literature. For example the review
paper by Ekinci on motion transduction in NEMS is recommended [27].

4.4 Optical transduction principle

In the most general sense an optical mechanical transducer imprints the
displacement ∆g of a certain object upon an optical probe signal. In case
of an integrated nanophotonic waveguide transducer, the waveguide or a
part of the waveguide needs to move relatively to another object in order to
change the effective index neff (g) (indices) of the waveguide mode(s). In
principle neff (g) can be a complex quantity but in the context of this work
we will only consider real neff (g). We will ignore the refractive index
change that is caused by the elasto-optic effect since this effect is ignorable
for most practical situations and more in particular the experiments carried
out in this thesis.

Some configurations that were investigated in this work are shown in
Fig. 4.4. The parameter g can for example refer to the gap between the
waveguide and the substrate (Fig. 4.4a), the separation in between two
parallel waveguides (Fig. 4.4b) or the slot width of a slotted waveguide
(Fig. 4.4c).

When the effective index of a waveguide modes change over a cer-
tain length L a phase difference will be accumulated over the propagation
length, so in fact the gap change ∆g can be connected to a phase shift:

∆φ = ∆neff
2π
λ
L = ∆g

dneff
dg

2π
λ
L (4.13)
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We assumed here that neff (g+ ∆g) = neff + ∆g dneff

dg which is a accept-
able assumption for sufficiently small ∆g.

However in order to be detectable with an optical detector the dis-
placement should be imprinted onto the optical carrier as an optical power
change rather than a change in phase. An interferometer or optical res-
onator can be used for this purpose. Typically these components show a
(phase dependent) transmission (transmission defined as the optical out-
put power normalized for the optical input power Tx(φ[g]) = Pout/Pin).
Hence the derivative of the transmission for the gap g can be considered an
important figure of merit to evaluate nanophotonic transducer performance.
In the sense of the chain rule the transduction coefficient can be read as:

dTx
dg

=
dTx
dφ

dφ
dg

(4.14)

The first factor on the right hand side in equation 4.14 is influenced consid-
erably by the chosen configuration (interferometer or resonator). We will
elaborate on this parameter in section 4.5 and define dTx

dφ as the phase sen-
sitivity. The second factor is rather determined by the chosen waveguide
type (Fig. 4.4) and its exact design parameters (see section 4.6).

4.5 Phase sensitivity

In this section we discuss the phase sensitivity of a (Mach-Zehnder) in-
terferometer, an optical resonator (Fabry-Pérot type or ring resonator) and
a directional coupler. Essentially we are looking for a configuration that
exhibits an as large as possible output power shift for a small phase pertur-
bation ∆φ.

4.5.1 Mach-Zehnder interferometer

Let us consider the Mach-Zehnder interferometer (MZI) depicted in Fig.
4.5. The two Multi-Mode Interferometers (MMI) act as 3 dB coupler/com-
biner in this scheme. The upper arm of the interferometer is ∆L longer
which allows the light propagating through the upper arm to accumulate
a phase delay φ = 2πneff

λ ∆L resulting in the well-known expression for
transmission:

Tx,MZI = Tx,min + (Tx,max − Tx,min) cos
(
φ

2

)2

(4.15)
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Figure 4.5: An integrated Mach-Zehnder interferometer, the first (left)
multi-mode interferometer (MMI) acts as a 3dB power splitter to the IN-
PUT power. The light propagating in the upper (longer) arm accumulates
a phase delay φ = 2πneff

λ ∆L. Sensing of an additional phase shift ∆φ is
possible since the OUTPUT power depends on the phase shift between the
two arms when combining both arms in the second (right) MMI.

In case of a lossless system and perfect MMIs the mininum transmis-
sion Tx,min will be zero. If a small phase perturbation ∆φ occurs in one of
the arms, then the phase sensitivity of the MZI reads as:

dTx,MZI

dφ
=

(Tx,min − Tx,max)
2

sin(φ) (4.16)

The absolute value of 4.16 peaks for φ = π
2 + kπ (k an integer number)

with a maximum value of 1−Tx,min

2 . If the second MMI receives equal
optical input powers at both its inputs than the extinction will be large and
Tx,min � 1, then dTx,MZI

dφ |MAX ≈ 1
2 .

4.5.2 Directional coupler

Fig. 4.6 shows two closely spaced parallel single-mode waveguides with
S-shaped access bends. In case a light carrying single-mode waveguide is
placed sufficiently close to another single-mode waveguide, light can be
coupled from one waveguide to the other. Sufficiently close in this case
means that the waveguide modes should experience each other’s evanes-
cent field. The presence of the second waveguide can then be considered
as a perturbation of the waveguide mode in the first waveguide and the
light coupling phenomenon can be described by simple perturbation the-
ory. An in depth analysis of the perturbation theory for optical waveguide
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coupling is beyond the scope of this work, we refer the reader to [28], how-
ever we restrict ourselves to an interesting conclusion that follows from
this theory. In case all power is initially present in one waveguide, then the
other waveguide must be identical to enable full coupling of the light to the
other waveguide. So much the more the waveguides differ, the lesser is the
amount of light that is coupled back-and-forth between the waveguides.
However in this work we will consider the two parallel waveguides as be-
ing one bimodal waveguide in order describe the optical properties of the
parallel waveguides through a more elegant formalism. From this point of
view the power coupling effect between the waveguides can be understood
as the interference of the two different ‘supermodes’ that are supported by
this bimodal waveguide.
In fact in this manner we can even think of this directional coupler as an
interferometer. If the directional coupler is excited through only one of its
input ports, then the supermodes (with different effective indices n+ and
n−) are excited with equal strength. The two modes will build up a phase
shift

φ =
2π(n+ − n−)

λ
L (4.17)

while propagating to the coupling section with length L. With this def-
inition of φ the output power found in the ‘bar’ waveguide can also be
described using equation 4.15 (and 1 − Tx(φ) for the ‘cross’ waveguide).
In the ideal case of identical, single-mode and lossless waveguides Tx,min
is zero (so all power is coupled to the other waveguide):

Tx,bar =
1
2

+
cos(φ)

2
(4.18)

Since the sum of the optical power in the cross and bar waveguide must be
one we also have:

Tx,cross =
1
2
− cos(φ)

2
(4.19)

For example if the length L of the directional coupler is zero, then φ = 0.
Consequently we find Tx,bar = 1 and Tx,cross = 0, in this case no coupling
has occurred. In the special case where the coupler has length

Lcoupling =
λ

2(n+ − n−)
(4.20)

the light has fully coupled from the bar to the cross waveguide. Lcoupling is
often referred to as the coupling length of the directional coupler.
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Figure 4.6: Closely spaced parallel waveguides (=coupling section) with
S-shaped access bends. If this directional coupler is excited through only
one of its input ports (INPUT) then a symmetric supermode ψ+ and an
anti-symmetric supermode ψ− are excited in the coupling section. These
supermodes build up a phase shift φ = 2π(n+−n−)

λ L over the length of the
coupling section and the input power is divided over the BAR and CROSS
port depending on this shift. An additional phase shift ∆φ between the su-
permodes in the coupling section will result in a different power distribution
at the outputs.

Also the phase sensitivity will be similar to the interferometer case (formula
4.16):

dTx,bar
dφ

= −sin(φ)
2

(4.21)

From equations 4.18 and 4.21 we conclude that the directional coupler is
the most sensitive when it acts as a 3 dB splitter (Tx,bar = 1

2 for φ = π
2 +kπ)

and the output power is equally divided over the two output arms.

4.5.3 Ring resonators

An optical resonator uses optical feedback. A ring resonator lets a traveling
wave interfere with itself. As depicted in 4.7 coupling the ring resonator to
two waveguides (add-drop configuration) leads to a transmission spectrum
from input to the through and drop port. The former with sharp Lorentzian-
like dips, the latter with peaks. If only one access waveguide is present
we have an all-pass configuration which shows a unity transmission for a
lossless resonator. In practice the device will not be lossless and dips will
appear in the all-pass output spectrum which can be used for displacement
sensing.

Let κ be the amplitude coupling between the access waveguide and
the ring resonator with τ =

√
1− κ2 for a lossless coupler and neff =

<(neff ) + j=(neff ) the complex effective index of the traveling wave in
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Figure 4.7: Ring resonators. a, Add-drop configuration with two access
waveguides (coupling coefficients κi). b, All-pass configuration with only
one access waveguide (coupling coefficient κ).

the ring resonator. Let then A = exp(−αL) = exp(−2π
λ =(neff )L) be

the intrinsic amplitude transmission (excluding coupling losses to the ac-
cess waveguide) of half a round trip L around the ring with the amplitude
extinction coefficient α (in m−1). Let φ = 22π

λ <(neff )L be the total phase
accumulated over one ring round trip. The equations for the transmission
of an all-pass ring can be obtained in terms of only φ, A and τ [29]:

Tx,ap =
Tx,min + F sin φ

2

2

1 + F sin φ
2

2 (4.22)

Tx,min =
(τ −A2)2

(1− τA2)2
(4.23)

F =
4τA2

(1− τA2)2
(4.24)

The F parameter can be directly linked to the finesse of the ring resonator,
defined as the ratio of the free spectral range (FSR) and the full width at half
maximum (FWHM) bandwidth δλ of the peaks (an all-pass ring only has a
transmission spectrum Tx,ap with dips, so one should consider 1 − Tx,ap)
in that case):

F =
FSR

δλ
=
π

2

√
F . (4.25)

A drawing of an all-pass spectrum with the relevant parameters indicated is
shown in Fig. 4.8.

The derivative of 4.22 for φ returns the phase sensitivity:

dTx,ap
dφ

=
(Tx,min − 1) sin(φ2 ) cos(φ2 )

(1 + F sin(φ2 )2)2
(4.26)
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Figure 4.8: All-pass spectrum with some relevant parameters indicated in
the drawing.

We are interested in both minima and maxima of equation 4.26 for these
extrema both yield maximum |dTx,ap

dφ |. By taking the second derivative of
4.22 and looking for φ that make this derivative zero we find that such φ
must satisfy (2 − F ) cos(φmax,sens

2

2
) − 1 − F + 2F cos(φmax,sens

2 )4 = 0
yielding (ignoring non-physical solutions):

cos(
φmax,sens

2
)2 =

−2 + F +
√

4 + 4F + 9F 2

4F
(4.27)

We note that for higher F cos(φmax,sens

2 )2 converges to 1 and φmax,sens to
0, meaning that the optimal phase for sensing moves closer to resonance
(see Fig. 4.9).

Substituting 4.27 in 4.26 we find a rather cumbersome and inaccessible
formula for the maximum achievable phase sensitivity:

dTx,ap
dφ max,sens

= (1− Tx,min)

4
√

(3F + 2−
√

4 + 4F + 9F 2)(F − 2 +
√

4 + 4F + 9F 2)

(3F + 6−
√

4 + 4F + 9F 2)2

(4.28)

Much more physical insight can be achieved if we calculate the limit for
high F values:

dTx,ap
dφ max,sens

≈ 3
√

3
16

(1− Tx,min)
√
F =

3
√

3
8π

(1− Tx,min)F

≈ 0.207(1− Tx,min)F
(4.29)
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Figure 4.9: The phase φmax,sens yielding the highest phase sensitivity in
function of finesse F . We see that in the high finesse limit, the optimum
sensing point moves to resonance (φ = 0).

and for the phase:

sin(
φmax,sens

2
) ≈ ± 1√

3F
(4.30)

We conclude that the phase sensitivity scales linearly with finesse. It is
interesting to compare 4.29 and 4.16, we see that the feedback provided by
an optical resonator becomes valuable in comparison to an interferometer
for a resonator with F > 2.5.

However F and Tx,min are not directly controllable as design param-
eters. Looking at equations 4.23, 4.24 and 4.25 we can express 4.29 in
function of A2 and τ . The A2 parameter is determined by the losses in
the ring resonator and should be as close to one (=low losses) as possi-
ble to achieve a high finesse. Its effective value is limited by technology
(bending losses, scattering losses due to sidewall roughness, etc.). In sili-
con also non-linear loss mechanisms like two-photon-absorption (TPA) and
free-carrier absorption (FCA) come into play at higher light intensities and
result in a power dependent loss [30]. The τ parameter however is deter-
mined by the coupling between the access waveguide and the ring resonator
and can in principle be chosen freely by varying the distance between res-
onator and the waveguide. τ can also be reduced by adding a straight part
in the ring resonator (racetrack configuration) that increases the interaction
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Figure 4.10: The full (red) line indicates which coupling parameter τ yields
the best sensitivity for a given (half) round trip ring loss A2. The black line
indicates the critically coupled (A2 = τ ) rings. Above (beneath) this line
the ring resonator is undercoupled (overcoupled).

length between access waveguide and resonator and hence the coupling
between both. Given the easy access to this parameter it makes sense to
calculate which τ should be chosen for a given A2 to have an optimum per-
formance. For a lossy ring we always find the optimum performance in the
undercoupled regime (τ > A2, see Fig. 4.10). This is not very surprising
since the coupling in fact also is a loss factor for the resonator (loaded vs.
unloaded resonator). A lower coupling (higher τ ) will increase the finesse,
however, if the coupling is too small the extinction of the dip disappears
(factor 1− Tx,min in 4.29) so there must be an optimum coupling value in
the undercoupled regime. Substituting this optimum value in 4.28 allows
us to calculate the best possible phase sensitivity for a given ring round trip
loss. We can also repeat the above analysis for the add-drop configuration
with two access waveguides and calculate the maximum phase sensitivity
for the through and drop port.

The result is plotted (together with the result for the all-pass config-
uration) in 4.11. We learn that the all-pass is superior over the add-drop
configuration. We also conclude from this section that losses in the res-
onator are detrimental for good performance. By consequence high finesse
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Figure 4.11: Maximum achievable phase sensitivity for different configu-
rations: all-pass (blue), through (red), drop (green). We see that the all-pass
configuration is superior.

resonators rather than high Q resonators (that might also be achieved by
simply taking a long resonator length L, Q = 2ngL

λ F ) are preferred.
The above analysis is also applicable to Fabry-Pérot (FP) resonators

when simply interpreting the coupling parameter τ as a mirror reflectivity.
Half a ring round-trip would correspond to the FP cavity length and the
through and drop spectrum could be interpreted as the reflection and trans-
mission spectrum of the FP resonator respectively. In this case the all-pass
configuration is the analogue of the Gires-Tournois etalon with one totally
reflecting mirror.

4.6 Displacement to phase transduction

In the previous section we have investigated how a given phase shift ∆φ
can be detected with the highest sensitivity. In this section we discuss how
a given displacement ∆g can be translated into an as large as possible ∆φ.
For this purpose we investigate the substrate-waveguide, parallel waveguide
and slotted waveguide configurations.
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4.6.1 Substrate-waveguide

Probably the simplest concept to translate displacement into a phase change
is a waveguide suspended above a substrate. The effective indices neff of
the propagating waveguide modes depend on the separation between the
waveguide and the substrate so a displacement ∆g induces a phase shift
∆φ = 2πL

λ
dneff

dg (g)∆g. In fact the parameter dneff

dg can be used to com-
pare the performance of different waveguide types and different waveguide
modes with each other. We will refer to this parameter as index sensitivity.

To start our analysis we have calculated the index sensitivity dneff

dg us-
ing the FIMMWAVE [31] mode solver. This parameter is expressed in
terms of refractive index unit (RIU) per µm (waveguide displacement). In
Fig. 4.12 we have plotted dneff

dg for the guided ground mode of both quasi
TE (transverse electric) and quasi TM (transverse magnetic) polarization as
a function of the substrate-waveguide separation. By definition TE modes
have their field vector parallel to the substrate while the TM modes have
their field vector perpendicular to the substrate. In practice the guided
modes in a silicon wire are not purely TE or TM, but they rather have a
hybrid character. Nevertheless we will drop the quasi prefix when referring
to the hybrid waveguide modes.

For all the simulations in this chapter we have assumed an excitation
wavelength of 1.55µm and a silicon waveguide with a height of 220nm.
For the material properties we used the material models which are incorpo-
rated in FIMMWAVE (nSi ≈ 3.48 at λ = 1.55µm). For this particular cal-
culation the waveguide width was set to 450nm and a SiO2 (nSiO2 ≈ 1.44)
substrate was taken into account.

Of course compared to the TE mode the TM mode is much less confined
to the silicon core and therefore its evanescent field interacts much more
with the substrate. By consequence its effective index also changes a lot
more when moving the waveguide from an infinite distance into contact
with the substrate: nTM,g=0 − nTM,g=∞ ≈ 1.54 − 1.16 = 0.38RIU for
TM vs. nTE,g=0 − nTE,g=∞ ≈ 2.272 − 2.235 = 0.037RIU for TE so
one might think that the index sensitivity should be much larger for TM. In
practice we see that for gaps > 100nm the index sensitivity does not differ
dramatically for both polarizations (Fig. 4.12b).

The strong enhancement of the TM sensitivity takes place at the small-
est gaps. As we know from general electromagnetic theory the E-field per-
pendicular to a material interface tends to be discontinuous at the mate-
rial interface. For this reason very strong field gradients occur at these
interfaces which explains the strong enhancement of dneff

dg . The effect we
describe here is in fact very similar to the effects encountered in slotted
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Figure 4.12: Index sensitivity for a substrate waveguide configuration.
a, Index sensitivity dneff

dg for TE and TM polarization in function of the
distance between the single-mode waveguide (width 450 nm) and the SiO2

substrate. b, Detail of Fig. 4.12a, showing that TE and TM index sensitivity
does not differ much for gaps> 100nm.

waveguide theory [32, 33].
However for the experiments we restricted ourselves to the TE polariza-

tion because the TM polarization raises some technological issues (mainly
higher fiber to chip coupling losses). These issues are currently addressed
in the Photonics Research Group [34], however, the technology and under-
standing of TM was not mature enough yet to be implemented in optome-
chanical experiments. Anyway the use of TM polarization would only be
beneficial for gaps smaller than 100 nm.

As explained in the previous section the phase shift can be detected with
an MZI or in a ring/racetrack resonator. We only implemented the latter
for our theoretical analysis has clearly shown the advantage of a resonator
(with sufficiently high finesse) over an MZI. However both options have
also been implemented by other research groups and can be found in the
literature [35, 36].

A schematic of the device under test is shown in Fig. 4.13. The straight
part of a racetrack resonator was underetched at the side where we have
no access waveguide. We have chosen the all-pass configuration since we
know from our theoretical analysis that this is the best configuration for
phase sensing. The finesse F of this racetrack resonator is around 100 so
a clear advantage over an interferometer configuration can be expected.

The recorded trace is shown in Fig. 4.14a. It originates from the
out-of-plane brownian motion of the short straight part (beam length ≈
3.5µm) of the racetrack resonator. The power spectral density (PSD) is
expressed in dBm/rtHz = dBm

√
Hz−1. The electrical spectrum an-

alyzer measurement bandwidth was 2.15 kHz. The symbols are experi-
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Figure 4.13: Picture of a racetrack resonator with freestanding straight part.

mental data while the solid black line is a fit to equation 2.47. From this
fit we learn that the natural frequency is 65.86MHz while the Q-factor
is 5373. With these extracted parameters and assuming T ≈ 300K we
see that we only need to know the effective mass in this formula to calcu-
late the brownian force. Taking into account the known dimensions of the
beam (220nm×450nm×3.6µm) and the well documented mass density
of silicon we can calculate the mass of the beam. Assuming a hinged-
hinged beam we can take the right prefactor from table 2.1 and calculate
the effective mass meff = 415 fg. Since we also know the stiffness now
(k = meffω

2
0) we can tie the measured signal to a displacement spectral

density (DSD) DSD = <Fb>
k χMECH(ω) which is plotted in Fig. 4.14b.

Looking at the noise floor we can see that the displacement sensitivity is
0.4 fm/rtHz for this experiment.

We note that compared to the theoretical model for the all-pass ring we
have developed in subsection 4.5.3 additional effects come into play. Since
the circulating power inside the ring scales with the finesse of the resonator
(F ≈ 100) we easily can have several tens of mW circulating power even
for modest input powers. In the small cross-section (220nm × 450nm)
of the waveguide this gives rise to two-photon-absorption. The absorbed
optical power is transferred into heat which changes the temperature of the
resonator. Through the thermo-optic effect also the refractive index of the
silicon changes [30]. This thermal effect is responsible for the bistability in
the optical spectrum of the resonator that is shown in Fig. 4.15a.

When sweeping the wavelength of the tunable laser source we see that
the optical output power drops over 40µW from 145µW to 105µW , in-
dicating that increasingly more optical power is circulating in the ring. At
a wavelength of 1557.5nm the output power suddenly jumps to 150µW
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Figure 4.15: Transmission and transduction of a suspended waveguide
in a racetrack resonator. a, Bistable optical transmission spectrum and
accompanying measured signal-to-noise-ratio (SNR) of the brownian re-
sponse. b, Transmission dip at very low optical power. Due to reflections
in the ring resonator, the recorded dip is not perfectly Lorentzian, but suf-
fers from peak splitting.
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indicating that the light is abruptly out of resonance. In parallel we have
recorded the brownian response of the beam and plotted its signal-to-noise-
ratio (SNR) on the left axis of Fig. 4.15a. The SNR is defined here as the
distance between the peak of the vibration signal and the noise floor. The
trace in 4.14a for example was taken at λ = 1557.45nm and has a SNR
of 5 dB. We see that the SNR increases when more power is circulating
through the ring. When the light is out of resonance no vibration signal is
measured (λ > 1557.55nm and λ < 1557.25nm).

In fact even for very low optical powers we do not find a perfect Lo-
rentzian response as can be seen in Fig. 4.15b. Due to reflections in the ring
coupling is established between forward and backward propagating modes
which results in peak broadening or splitting [37]. The underetch region of
course enhances the unwanted reflections in the ring.

In order to instigate really strong optomechanical interactions between
a waveguide and a substrate we should in fact work with the TM polariza-
tion and separations well below 100 nm (Fig. 4.12). The latter condition
cannot be fulfilled with the current fabrication process. Since the BHF etch
is isotropic, underetching a waveguide intrinsically also corresponds to a
vertical etch depth, limiting the minimum achievable gap severely. In fact
300nm gaps were reported to be practically achievable [36]. Nevertheless
we think that the substrate-waveguide configuration might be very promis-
ing to achieve ultrastrong optomechanical interaction anyway.

The last statement is supported by the fact that it is essentially much
easier to deposit a material layer with a few nm thickness than etching a
slit of a few nm width. If the thickness of the sacrificial SiO2 layer can
be controlled and made very small, then the underlying Si might act as an
etch stop layer. Eventually also the Si stop layer can be made very thin and
followed by an additional thicker oxide layer to avoid leaking of the light
into the substrate. The total stack could be something like: 220nm top
Si, 10nm sacrificial SiO2, 10nm Si etch stop layer, 2µm SiO2, Si sub-
strate. Given the extremely small gap and the quadratic dependence of the
elastocapillary number (see equation 3.6) on the gap of course gaseous HF
or at least critical-point-drying would be required. Control over the mate-
rial layer stack is crucial. However the above proposed stack is perfectly
achievable with the amorphous silicon technology that was developed dur-
ing the Ph.D. of Shankar Kumar Selvaraja [38]. Compared to the current
experiments a 10nm gap would increase the optomechanical interaction
with roughly three orders of magnitude.
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Figure 4.16: Index sensitivity for a slotted waveguide. a, Index sensitivity
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b, Detail of Fig. 4.16a, showing that —also for relatively large gaps— the
index sensitivity is larger for TE than TM.

4.6.2 Slotted waveguide

In a slotted waveguide we have a slot (=gap) central in the waveguide cross-
section. Light will typically be concentrated in this slot resulting in a strong
field enhancement (see Fig. 4.18 for an example of a field mode profile). In
contrast with the waveguide-substrate case we expect the TE polarization
to yield the largest optomechanical effect. Knowing that the E-field perpen-
dicular to a material interface is discontinuous at this interface, it is obvious
that strong field gradients are present for TE in a narrow vertical slot. This
qualitative insight is confirmed by numerical simulations. In Fig. 4.16 the
index sensitivity dneff

dg is plotted for both the ground mode for TE and TM
in a slotted waveguide. The quantity on the horizontal axis is the slot width,
the total waveguide width is 2×225nm (Si beam) + slot width. We see that
—as expected— the index sensitivity is larger for TE and TM, especially
for very small gaps where an exponential increase can be observed.

Due to the lower index contrast, slotted waveguides exhibit higher bend
losses and consequently it is more difficult to implement them in a ring res-
onator configuration. We have chosen to implement a straight underetched
slotted waveguide in a Fabry-Pérot resonator. The reflective mirrors that
are required to construct the cavity are in fact Distributed Bragg Reflec-
tors (DBR). Our ’wing type’ DBR is implemented in a waveguide with
800 nm width. The wings are 1200 nm wide. Since waveguides of 800
and 1200 nm width have different effective indices a DBR is created in the
waveguide (Fig. 4.19b). We found (experimentally) that periods around
310 nm (with fill factor 50%) yield strong reflective behavior of the DBRs
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Figure 4.17: Sketch of the slotted waveguide optomechanical device.
The light is coupled in and out of the chip through a grating coupler. The
reflective gratings form the FP cavity. In the center of the cavity the free-
standing slotted waveguide can be found. The slot-to-wire tapers ensure the
conversion from an ordinary nanophotonic wire to a slotted waveguide and
vice versa.

around λ = 1.55µm. At both sides inside the cavity tapers are required
to taper the 800 nm waveguide first to a nanophotonic wire (450 nm width)
and subsequently to a slotted waveguide through a compact mode-converter
taper [39]. A sketch of the full device is shown in Fig. 4.17.

A transmission spectrum of an FP resonator formed by a slotted wave-
guide in between two of these wing type DBRs (with 100 periods) is shown
in Fig. 4.19a. The free spectral range (FSR) is rather small (around 1.2nm)
because of the long cavity length (around a few 100µm and FSR ≈
λ2

2neffL
). Given the low index contrast of the DBR the reflectivity wave-

length band is not too wide (around 10nm) and the power reflectivity R
of the DBRs is dependent on the wavelength. The central stopband in the
spectrum can be interpreted as a region where the reflectivity is very high
and hence the transmission is low. In fact not enough light is transmitted
to compensate for the large cavity losses. This zero transmission spectrum
is equivalent to the drop spectrum of an add-drop ring filter with very high
losses in the ring.
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Figure 4.18: Brownian displacement spectral density and slotted wave-
guide mode profile. a, The measured DSD, generated by the in-plane vi-
bration of one of the two beams of a suspended slotted waveguide (sus-
pended length ≈ 11.5µm). The electrical spectrum analyzer measurement
bandwidth was 10Hz. The solid black line is a fit to equation 2.47. We
find a resonance frequency of 13.05MHz and Q = 430. b, Mode profile
of the TE ground mode a slotted waveguide with slot width 120 nm. The
typical concentration of light in the slot is clearly visible.

However because of the wavelength dependence of the reflectivity R(λ),
for wavelengths at the edge of the stop band the reflectivity is less high and
3 to 4 FP transmission peaks can be observed at each side of the stop band.
In spite of the high losses (tapers, slotted waveguide) inside the cavity (and
a mirror reflectivity that is in fact too high for these losses) the proposed
design is sufficient to detect brownian noise of a freestanding part of the
slotted waveguide. If the probe wavelength is chosen at the edge of the
FP transmission peaks the vibration induced phase variations in the cavity
are transduced into a modulated power signal. The result of such an experi-
ment is shown in Fig. 4.18. The measured DSD is generated by the in-plane
vibration of one of the two beams of a suspended slotted waveguide (sus-
pended length ≈ 11.5µm). We find a resonance frequency of 13.05MHz
and Q = 430. In fact the overall displacement sensitivity (3 fmrtHz−1)
is rather disappointing compared to the previous case (out-of-plane vibra-
tion in ring resonator). The advantage of the increased index sensitivity is
annihilated by the strongly reduced resonator performance.

Nevertheless we think that experiments with slotted waveguides have
great potential. First of all it is very clear that the resonator performance
can be improved drastically. Again also control of the material layer stack
is desired to overcome resolution limits of lithographic processes. As a
practical example let us consider the material stack that has recently been
used to fabricate fiber a coupler with enhanced coupling efficiency [34].
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Figure 4.19: Transmission spectrum from a DBR-wing type FP-
resonator. a, Transmission spectrum of an FP-resonator formed by a slot-
ted waveguide in between two wing-type DBRs. The observed spectrum
can be explained (see plain text) through the strong wavelength dependent
reflectivity R(λ) and the losses in the cavity. The DBR reflection band and
six FP transmission peaks can be clearly observed. b, Distributed Bragg
Reflector in a 800 nm wide waveguide with 1.2µm wide wings.

In this process the 220 nm silicon top layer of a SOI wafer can be locally
thickened with an additional 160 nm amorphous (or polycrystalline) silicon
layer. In between is a thin layer (typically 5 nm) of thermal oxide (see Fig.
4.20a for the material stack). Etching a 500 nm wide waveguide in this
stack (up to the 2µm buried silica layer, Fig. 4.20b) and removing locally
the silica layers (Fig. 4.20c) would result in an index sensitivity of approx-
imately −40RIU µm−1 for TM polarization (out-of-plane vibration). If
one succeeds to plug such a waveguide into a racetrack resonator like the
one shown in Fig. 4.13 (the freestanding straight part would look like the
cross-section in Fig. 4.20c), an extremely powerful sensing device could
arise.

A parameter that is very popular in literature to assess the interac-
tion between an optical resonator and a mechanical degree of freedom
is the gOM parameter. It describes how much the optical resonance fre-
quency of an optical resonator shifts for a given displacement of the me-
chanical structure and is by consequence is typically expressed in units of
GHz nm−1. A racetrack resonator that is fabricated using the advanced
passives process and is suspended over its full length exhibits a gOM ≈
1839GHz nm−1. To calculate this number we have used ∂f0

∂g = ∂neff

∂g
c

λ0ng
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Figure 4.20: Optomechanical device based on the advanced passives
process. a, Material stack. On top of the 220 nm monocrystalline Si layer a
160 nm layer amorphous Si is deposited. In between is a layer of 5 nm ther-
mal oxide. b, A waveguide is etched in the material stack. D. c, Removing
the SiO2 results in two suspended beams with a narrow gap in between.

[29] where ng ≈ 4.21 is the group index, f0 the optical resonance fre-
quency and λ0 = 1.55µm. A fully suspended resonator is of course not
easy to fabricate. If we consider a racetrack resonator with a bend radius
of 3µm that is only suspended over its straight part (and assuming 1µm
length) then gOM drops to 88.4GHz nm−1.

However if we compare this number to values in the literature it is
still considerably high. For example one of the best structures that was
recently demonstrated is a photonic crystal cavity structure with gOM =
123GHz nm−1 [40] and another one with gOM = 66GHz nm−1 [41].
With a double ring configuration 31GHz nm−1 [42] and 1.25GHz nm−1

[33] were achieved. Experiments with high finesse silica microtoroids and
an external silicon nitride membrane acting as a mechanical oscillator achie-
ved almost 0.02GHz nm−1 [43]. Of course gOM is not the only param-
eter that is of importance. It is also challenging to maintain a high gOM
together with high mechanical Q’s, high mechanical resonance frequencies
and high finesse optical cavities. It is noteworthy that optical losses for the
TM polarization can be potentially lower because the effects of sidewall
roughness decrease and we conclude that the proposed (advance passives)
structure indeed seems of great potential. We also note that the Casimir
effect might come into play when designing optomechanical devices with
nanogaps. The Casimir effect is a quantummechanical phenomenon and
predicts that two closely spaced parallel metal plates placed in vacuum ex-
perience a force, even in the absence of an external field. Recently it has
been theoretically predicted that also for silicon structures with nanogaps,
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Figure 4.21: Underetched directional coupler. a, Schematic drawing. b,
SEM picture: the inset shows the clamping region in greater detail.

this effect might be non-negligible [35].

4.6.3 Parallel waveguides

In Fig. 4.21 a directional coupler with a freestanding part is shown. Par-
allel waveguides have the intrinsic advantage that the phase changes that
are induced through vibration are directly converted to a power modulated
signal. This is possible because the coupling effect can be seen as the result
of the interference of the two guided modes that are present in a parallel
waveguide structure.

According to section 4.4 the transduction coefficient for a directional
coupler (with a freestanding part of length L) reads as:

dTx,bar
dg

= −
sin(2π(n+−n−)

λ L)
2

d(n+ − n−)
dg

2π
λ
L (4.31)

n+ and n− are the ground mode and second guided mode of the parallel
waveguide structure respectively (also called the ‘supermodes’).

Usually λ is chosen such that 2π(n+−n−)
λ L = π

2 + kπ. The directional
coupler acts as a 3-dB splitter in that case and the transduction coefficient
reduces to:

dTx,bar
dg

|MAX =
d(n+ − n−)

dg
π

λ
L (4.32)

From this last equation we can see that in this particular case we should
not evaluate the index sensitivity of the individual modes. Instead we are
rather interested in d(n+−n−)

dg . n+ and n− are plotted for both TE and TM
in Fig. 4.22. We see that the indices of the supermodes converge to the
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Figure 4.22: Effective indices of the guided modes in a directional cou-
pler (waveguide width 450 nm). a, Effective index of the ground mode
n+
TE and second guided mode n−TE in function of the gap. In the limit of

large gaps both indices converge to the effective index of a single-mode
waveguide, indicated by the black solid line ≈ 2.235. b, Same plot for
TM polarization (single-mode index ≈ 1.155). The second mode goes in
cut-off for gaps smaller than 125 nm.

effective index of a single-mode waveguide (indicated by the black solid
lines, nTE = 2.235 and nTM = 1.155) in the large gap limit. For TE
polarization (Fig. 4.22a) the sharp increase in effective index for the ground
mode is striking. The behavior of the second mode is non-monotone, its
effective index reaches a minimum for a gap of 70 nm. For larger gaps the
effective index can be seen to increase with larger gap (dn−

dg > 0). We
will come back to this interesting behavior in chapter 5 when discussing
repulsive forces. For TM polarization (Fig. 4.22b) the second mode goes
in cut-off for gaps smaller than 125 nm. Modes close to cut-off also tend to
be lossy, so TM polarization is anyway not a good choice for experimental
implementation.

In Fig. 4.23 d(n+−n−)
dg is plotted. As expected the TE polarization

shows the largest index sensitivity. As can be seen in the previous graph
the ground mode is responsible for the sharp increase at small gaps.

Finally experiments were performed on structures similar to the one
shown in Fig. 4.21a. We have first recorded the directional coupler trans-
mission spectrum of the BAR arm (see Fig. 4.6 for definition of BAR).
The BAR spectrum is shown in Fig. 4.24a (right axis). The wavelengths
with maximum and minimum (=maximum optical power in CROSS-arm)
transmitted power have been labeled with arrows (PMAX and PMIN ). The
wavelengths where the directional coupler acts as 3dB-splitter are labeled
P3dB . In parallel with the transmission spectrum the peak of the brownian
signal was also recorded to investigate how the transduction evolves with
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Figure 4.23: Index sensitivity in a directional coupler. a, d(n+−n−)
dg in

function of the gap for both polarizations. b, detail of Fig. 4.23a.

wavelength (left axis). In agreement with the theory we can see that the
directional coupler is most sensitive when the optical power is equally di-
vided over its output arms while for maxima and minima in the transmission
spectrum the transduction is minimal. In Fig. 4.24b a recorded brownian
DSD is shown after calibration. We have two peaks with slightly different
resonance frequencies because there are also two freestanding waveguides
with slightly different geometrical properties.

The freestanding directional coupler can also be inserted as splitter/-
combiner in an unbalanced Mach-Zehnder interferometer. ‘Unbalanced’ in
this case means that one arm of the interferometer is much longer (∆L)
than the other such that the light in this arm exhibits a phase delay φdelay.
The freestanding coupler has a length L and supermode effective indices
n+ and n−. A sketch of the device is shown in Fig. 4.25a. If we assume
that the second coupler is an ordinary 3dB-splitter then the transmission
spectrum of this structure reads as [44]:

Tx,bar,MZI(λ) =
1
2

[1 + sin(φdelay) sin
(

2π (n+ − n−)L
λ

)
] (4.33)

The transduction coefficient reads as:

dTx,bar,MZI

dg
= − sin(φdelay)

d(n+ − n−)
dg

π

λ
L cos

(
2π (n+ − n−)L

λ

)
(4.34)

Assuming that also the waveguide coupler is a 3dB-splitter we find a simple
expression for the transduction coefficient:

dTx,bar,MZI

dg
|MAX = − sin(φdelay)

d(n+ − n−)
dg

π

λ
L (4.35)
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Figure 4.24: Transmitted power, transduction and brownian noise. a,
Transmitted continuous wave power Pcw spectrum (right axis) of a direc-
tional coupler (BAR arm, see Fig. 4.6 for definition). When looking at the
corresponding brownian noise power PMOD (left axis) we see that at the
maximum PMAX and minimum PMIN transmitted power the transduction
is minimal. In agreement with the theory we also see that the transduction is
maximum when the directional coupler works as a 3dB-splitter (P3dB). b,
Recorded brownian DSD. Extracted parameters are fres,1 = 6.207MHz,
fres,2 = 6.281MHz, QMECH,1 = 2669 and QMECH,2 = 2710
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Figure 4.25: Waveguide directional coupler in an unbalanced MZI. a,
Schematic drawing of the device. The freestanding waveguide coupler
(length L) acts as one of the couplers in an MZI. The other coupler is an
ordinary 3dB-splitter of the Multi-Mode interferometer type (MMI). One
arm of the MZI is ∆L longer than the other. b, Experimentally obtained
transmission and transduction coefficient of the structure. The arrows indi-
cate a point with minimum transmission and maximum transduction. The
black solid lines are fits to equations 4.33 and 4.34

When we compare this expression to equation 4.32 we see that depend-
ing on the delay φdelay = 2πneff ∆L

λ the transduction coefficient can only
be smaller or in the best case be equal to the transduction of a simple di-
rectional coupler, so for small displacement sensing the proposed structure
does not offer any advantages at first sight. However in chapter 5 we will
show how this structure enables control of the mode excitation in the free-
standing waveguide coupler. Looking at the transmission and transduction
spectrum in Fig. 4.25b we also see that —in contrast with a simple direc-
tional coupler— the wavelengths of maximum transduction correspond to
minima and maxima in the transmission spectrum. In other words we can
effectively measure the brownian vibration response using wavelengths that
intrinsically exhibit a very low continuous wave output power. In the next
section we will explain that the low output power is beneficial when used
in combination with optical amplifiers and higher displacement sensitivities
can be achieved.
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4.7 Noise limitations

Noise limits the actual minimum vibration amplitude that can be sensed
through the integrated nanophotonic waveguide transducers. First of all it
is interesting to note that in our experiments environmental vibrations were
of less importance than one might intuitively think. We work mainly in
the frequency domain and (almost) all data are taken using an electrical
spectrum analyzer. This spectrum analyzer contains an electrical band pass
filter which filters out the frequency band of interest and blocks unwanted
frequency components. In practice our frequencies of interest lie in the
MHz range and environmental vibrations are found in a much lower fre-
quency band (kHz). For example vibrations of the input and output fiber -a
typical source of noise in many integrated optics experiments- are filtered
out.

The noise factor which is —in first instance— truly the limiting factor
for our experiments is receiver noise. However we will also show in this
section that receiver noise can in fact be overcome in many practical cases
by amplifying the optical signal prior to detection. In that case amplifier
noise finally limits the transducer performance.

4.7.1 Receiver noise

Shot noise and thermal noise are two fundamental noise mechanisms re-
sponsible for current fluctuations in optical detectors even when the inci-
dent optical power is constant. The thermal noise is actually the Johnson-
Nyquist noise we have discussed previously and is dominant in most prac-
tical situations (and also for our experiments). Its effect is often quantified
through a quantity called noise-equivalent power (NEP). The NEP is de-
fined as the minimum detectable optical power per unit of square root band-
width. The receiver NEP of the Agilent 71400 Light wave signal analyzer
is approximately −73 dBm

√
Hz−1. Taking into account that the smallest

measurement bandwidth that can be set on this device is 10Hz we know
that the smallest detectable (modulated) power signal is around −68 dBm.
However when assessing and calibrating transducer systems the excitation
force of interest is of brownian origin and scales with (electrical) measure-
ment bandwidth (consequently the displacement sensitivity of a transducer
system is usually expressed in dimensions of m

√
Hz−1. We understand

now that reducing the measurement bandwidth any further (when it is al-
ready sufficiently smaller than the mechanical resonance linewidth) is of
no use: when characterizing the thermal mechanical noise response of a
mechanical oscillator the useful signal is also reduced when reducing the
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electrical measurement bandwidth. Nevertheless because receiver noise is
dominant we implemented another strategy to increase the SNR.

4.7.2 Preamplification prior to detection

Optical amplifiers are routinely used in optical telecom networks for im-
proving sensitivity of optical receivers by preamplifying the optical signal
before it falls on the photodetector. Preamplification of the optical signal
makes it strong enough such that thermal noise becomes negligible com-
pared with the noise that is added by the optical amplifier. Under this con-
dition the most important issue is the distortion of the amplified signal by
amplified spontaneous emission (ASE). Because of the incoherent nature
of spontaneous emission, the amplified signal (SNROUT ) is noisier than
the input signal (SNRIN ), degrading the SNR. The SNR degradation is
quantified through a parameter Fn = SNRIN

SNROUT
called the amplifier noise

figure. Even an ideal amplifier would have a Fn of 3 dB. Realistic am-
plifiers such as Semiconductor Optical Amplifiers (SOA) typically show a
noise figure of 5 − 7 dB. For our experiments we choose Erbium-Doped
Fiber Amplifiers (EDFA) which have a lower Fn (4− 5.5 dB).

Because the photodetector responds to the intensity, which is propor-
tional to the square of the fields, the optical noise gets converted in two
electrical beat noise components. Roughly speaking we get the terms cor-
responding to (signal + noise)2 = signal2 + noise2 + 2noise signal.
The first term is the useful signal, the second term is the spontaneous-
spontaneous beat noise and the third term is called the signal-spontaneous
beat noise. A more detailed analysis shows that the variance of current
fluctuations σ2 =< (∆I)2 > due to spontaneous-spontaneous and signal-
spontaneous beat noise can be written as [45]:

σ2 = σ2
sig−sp + σ2

sp−sp

σ2
sig−sp = 4R2Ssp∆felec GPs
σ2
sp−sp = 4R2Ssp∆felec Ssp∆νopt

(4.36)

In these formulas Ps is the (DC) optical signal power before amplifica-
tion, G is the amplifier gain and R is the responsivity of the detector so a
signal current I = RGPs is generated. The spectral density of the spon-
taneous emission induced noise Ssp can also be expressed in terms of the
amplifier noise figure, the amplifier gain and the average photon energy
hν: Ssp ≈ 1

2GhνFn. Given the linear and quadratic dependence on Fn
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Figure 4.26: Preamplification setup. After transmission through the chip
containing the device-under-test (DUT) the probe signal is amplified and
filtered prior to falling onto the photodetector.

of σ2
sig−sp and σ2

sp−sp the importance of an amplifier with low noise fig-
ure is clear. Also the electrical bandwidth ∆felec is of crucial importance,
however, as explained in the previous subsection reducing the electrical
measurement bandwidth is at some point no longer beneficial when char-
acterizing thermal mechanical noise.

Due to its dependence on the optical bandwidth ∆νopt the spontaneous-
spontaneous beat noise (see equation 4.36) can in principle easily be re-
duced by placing an optical band-pass filter after the optical amplifier. Such
a measurement setup is shown in Fig. 4.26. So finally we can conclude that
ultimately the signal-spontaneous beat noise sets the achievable displace-
ment sensitivity. In fact we noticed that in practice —even without optical
bandpass filter— the signal-spontaneous dominates the noise when the sig-
nal power Ps is on the order of a few tens of µW or higher. However in
structures where the transduction coefficient is intrinsically large for low
transmissions the (DC) optical signal power Ps can be very low, hence of-
fering a possibility to reduce the signal-spontaneous beat noise drastically.

The above noise limitation analysis is clearly illustrated through Fig.
4.27. The curves that are shown in this figure are all thermal noise re-
sponses from the same underetched waveguide (mechanical ground mode
resonance frequency around 2.79MHz, Qmech around 6000 in vacuum)
which is part of a directional coupler. The directional coupler itself acts as
a 3 dB splitter in an MZI (we actually discussed this type of device previ-
ously, see Fig. 4.21). The extinction in the interferometer due to destructive
interference can be high for certain wavelengths (extinction ratio > 30 dB
for λ = 1549.95) and hence the intrinsic transmission of the MZI is low.
For this particular device and wavelength we finally have an input power
of −37 dBm at the photodetector. Using this low (DC) optical power the
blue curve (labeled ‘no preamp’) in Fig. 4.27 was recorded. The electrical
measurement bandwidth of the electrical spectrum analyzer (ESA) was set
to 100Hz for all data series in the graph. We note that the brownian signal
exceeds the noise floor of the ESA by only 5 dB approximately. The noise
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floor in this case is clearly set by thermal receiver noise.
The picture changes drastically when the optical signal is preamplified

through an EDFA prior to detection (0 dBm at the detector). Looking at
the red data points (labeled ‘preamp, no filter’) we see that the noise floor
is raised over 11 dB, however the useful signal now peaks 16 dB above the
noise floor. Knowing that spontaneous-spontaneous beat noise is reduced
by reducing the optical bandwidth (but signal-spontaneous noise is not, see
equation 4.36) we placed an optical bandpass filter (2.4nm optical band-
width) after the EDFA and obtained the green curve (labeled ‘preamp with
filter’). We see that the use of the filter provides us with an additional 5 dB
of useful signal and finally we obtain a signal that exceeds the noise floor
by 21 dB. The fact that adding the filter improved the signal quality proves
that spontaneous-spontaneous beat noise was the limiting noise factor for
the preamplification experiment without filter (red curve). Estimating the
bandwidth of the EDFA around 40 − 50nm, adding the 2.4nm the filter
has reduced the spontaneous-spontaneous beat noise over (roughly) a factor
20. Additional experiments with smaller bandwidth optical filters (0.6nm)
did not yield any significant improvement anymore, indicating that finally
signal-spontaneous beat noise is the limiting noise factor for the green data
series.

Compared to the not preamplified trace the overall improvement of the
displacement sensitivity (16 dB) is dramatic. After calibration we find that
the displacement sensitivity has been improved from 80 to 2 fmHz−

1
2 In

fact the preamplification technique enabled experiments that require con-
siderable displacement sensitivities and that would not have been possible
otherwise. For example the brownian signal of the suspended beam in the
ring resonator was recorded using preamplification (the optical power on
the y-axis in Fig. 4.15 is in fact the power before preamplification). This
mechanical mode with resonance frequency 65.86MHz (and hence rela-
tively high stiffness k ∝ f2

res) would have stayed hidden without preampli-
fication. Moreover the improved quality of the brownian noise signal also
enabled feedback experiments. In these experiments the brownian signal is
used to create optical feedback forces (see chapter 6). Although amplifica-
tion of optical signals in order to improve their quality is not novel as such,
the application of the technique in an optomechanical sensing context is.

4.8 Chapter summary

Summarizing this chapter we have learnt that damped mechanical oscil-
lators are subject to a temperature driven noise force through the fluctu-
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Figure 4.27: The effect of optical preamplification prior to detection.
All three curves originate from the same underetched waveguide which
is part of a directional coupler that acts as splitter/combiner in an MZI.
The device has intrinsically a low transmission (MZI with extinction ratio
> 30 dB) for the wavelength (λ = 1549.95), only−37 dBm is available at
the detector. For all curves the measurement BW of the electrical spectrum
analyzer (ESA) was set to 100Hz. The lower (blue, labeled ‘no preamp’)
trace was recorded with the −37 dBm signal. We see that the signal peaks
only 5 dB above the ESA noise floor which is dominated by thermal re-
ceiver noise. For the red curve (labeled ‘preamp, no filter’) an EDFA was
used for preamplification. The noise floor (now dominated by spontaneous-
spontaneous beat noise) has risen over 11 dB. The brownian mechanical
signal however peaks 16 dB above the noise floor. The green curve (la-
beled ‘preamp with filter’) was obtained with an EDFA and an optical filter
of 2.4nm bandwidth placed in series. The noise floor is now dominated by
signal-spontaneous beat noise and we finally have 21 dB of useful signal
vs. noise floor.
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ation dissipation theorem. This noise force can be used for calibration
of other forces. However scalable powerful motion transduction schemes
are required. For applications that benefit from miniaturization the motion
transduction technique must also be scalable to submicrometer dimensions
and preferentially be fully integrated. By consequence we have introduced
novel on-chip nanophotonic motion transducers that we have extensively
studied in our research work. We have elaborated on substrate-waveguide,
slotted waveguide and parallel waveguide configurations for nanomechan-
ical motion transduction. By analysis of the limiting noise factors we have
shown that in some cases small displacement sensing can be enhanced dra-
matically through preamplification of the optical signal.

Bibliography

[1] L. Novotny and Hecht B. Principles of Nano-Optics, chapter 14.

[2] Herbert B. Callen and Theodore A. Welton. Irreversibility and gener-
alized noise. Phys. Rev., 83(1):34–40, Jul 1951.

[3] R. Kubo. Fluctuation-dissipation theorem. Reports on Progress in
Physics, 29(Part 1):255–&, 1966.

[4] T.B. Gabrielson. Mechanical-thermal noise in micromachined acous-
tic and vibration sensors. IEEE Transactions on electron devices,
40(5):903–909, 1993.

[5] H. Nyquist. Thermal agitation of electric charge in conductors. Phys.
Rev., 32(1):110–113, 1928.

[6] J.E. Sader, I. Larson, P. Mulvaney, and L.R. White. Method for the
calibration of atomic-force microscope cantilevers. Review of Scien-
tific Instruments, 66(7):3789–3798, 1995.

[7] H. Baltes, O. Brand, G.K. Fedder, C. Hierold, Korvink J.G., and
Tabata O. Enabling Technology for MEMS and Nanodevices, chap-
ter 3. Wiley, 2004.

[8] S. Rudra, J. Roels, G. Bryce, L. Haspeslagh, A. Witvrouw, and
D. Van Thourhout. SiGe based grating light valves: A leap to-
wards monolithic integration of MOEMS. Microelectronic Engineer-
ing, 87(5-9):1195–1197, 2008. The 35th International Conference on
Micro- and Nano-Engineering, MNE.



4-42 CHAPTER 4

[9] J. Roels, W. Van der Tempel, D. Van Nieuwenhove, R. Grootjans,
M. Kuijk, D. Van Thourhout, and R. Baets. Continuous Time-
of-Flight Ranging using a MEMS diffractive subwavelength period
grating (de)modulator. IEEE Photonics Technology Letters, 20(21-
24):1827–1829, 2008.

[10] I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets,
L. Lagae, and G. Borghs. Detection of nanomechanical motion by
evanescent light wave coupling. Applied Physics Letters, 90(23),
2007.

[11] A.N. Cleland and M.L. Roukes. Fabrication of high frequency
nanometer scale mechanical resonators from bulk Si crystals. Applied
Physics Letters, 69(18):2653–2655, 1996.

[12] A.N. Cleland and M.L. Roukes. External control of dissipation in a
nanometer-scale radiofrequency mechanical resonator. Sensors and
Actuators A-Physical, 72(3):256–261, 1999.

[13] S.B. Shim, M. Imboden, and P. Mohanty. Synchronized oscillation
in coupled nanomechanical oscillators. Science, 316(5821):95–99,
2007.

[14] S. Tadigadapa and K. Mateti. Piezoelectric MEMS sensors: state-of-
the-art and perspectives. Measurement Science & Technology, 20(9),
2009.

[15] I. Bargatin, E.B. Myers, J. Arlett, B. Gudlewski, and M.L. Roukes.
Sensitive detection of nanomechanical motion using piezoresistive
signal downmixing. Applied Physics Letters, 86(13), 2005.

[16] Sotiris C. Masmanidis, Rassul B. Karabalin, I. De Vlaminck,
G. Borghs, Mark R. Freeman, and Michael L. Roukes. Multifunc-
tional nanomechanical systems via tunably coupled piezoelectric ac-
tuation. Science, 317(5839):780–783, 2007.

[17] A. D. O’Connell, M. Hofheinz, M. Ansmann, Radoslaw C. Bialczak,
M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides,
J. Wenner, John M. Martinis, and A. N. Cleland. Quantum ground
state and single-phonon control of a mechanical resonator. Nature,
464(7289):697–703, 2010.

[18] G. Nunes and M.R. Freeman. Picosecond Resolution in scanning-
tunneling-microscopy. Science, 262(5136):1029–1032, 1993.



SMALL DISPLACEMENT SENSING 4-43

[19] T.W. Kenny, W.J. Kaiser, J.K. Reynolds, J.A. Podosek, H.K. Rock-
stad, E.C. Vote, and S.B. Waltman. Electron Tunnel Sensors. Journal
of Vacuum Science & Technology A-Vacuum Surfaces and Films, 10(4,
Part 2):2114–2118, 1992. 38th National Symposium of the American
Vacuum Society, Seattle, WA, Nov 11-15, 1991.

[20] T. Kouh, D. Karabacak, D.H. Kim, and K.L. Ekinci. Diffraction ef-
fects in optical interferometric displacement detection in nanoelec-
tromechanical systems. Applied Physics Letters, 86(1), 2005.

[21] D. Karabacak, T. Kouh, C.C. Huang, and K.L. Ekinci. Optical knife-
edge technique for nanomechanical displacement detection. Applied
Physics Letters, 88(19), 2006.

[22] B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, and H.G. Craig-
head. Optical excitation of nanoelectromechanical oscillators. Ap-
plied Physics Letters, 86(19), 2005.

[23] D. Kleckner and D. Bouwmeester. Sub-kelvin optical cooling of a
micromechanical resonator. Nature, 444(7115):75–78, 2006.

[24] I. De Vlaminck. Nanoscale resonators in optics and mechanics: de-
velopment of electromechanical and optoelectronic transducers. PhD
thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2008.

[25] Y. Li, S. Meersman, and R. Baets. Optical frequency shifter on SOI
using thermo-optic serrodyne modulation. pages 75–78, 2010. IEEE
Group IV Photonics, Bejing, China.

[26] J. De Coster, L. Haspeslagh, A. Witvrouw, and I. De Wolf. Long-term
reliability measurements on MEMS using a laser-Doppler vibrometer.
In Quan, C. and Asundi, A., editor, Ninth International Symposium on
laser metrology, Pts 1 and 2, volume 7155 of Proceedings of the so-
ciety of photo-optical instrumentation engineers (SPIE), page G1550,
2008. 9th International Symposium on Laser Metrology, Singapore,
JUN 30-JUL 02, 2008.

[27] K.L. Ekinci. Electromechanical transducers at the nanoscale: Ac-
tuation and sensing of motion in nanoelectromechanical systems
(NEMS). Small, 1(8-9):786–797, 2005.

[28] R. März. Integrated Optics, Design and Modeling. Artech House
Publishers, 1995.



4-44 CHAPTER 4

[29] P. Dumon. Ultracompact Integrated Optical Filters in Silicon-on-
Insulator by Means of Wafer-Scale Technology. PhD thesis, Ghent
University, Ghent, Belgium, 2004.

[30] G. Priem. Nonlinear behaviour in nanophotonic waveguides and res-
onators for Ultrafast Signal Processing. PhD thesis, Ghent University,
Ghent, Belgium, 2004.

[31] http://www.photond.com/products/fimmwave.htm.

[32] V.R. Almeida, Q.F. Xu, C.A. Barrios, and M. Lipson. Guiding and
confining light in void nanostructure. Optics Letters, 29(11):1209–
1211, 2004.

[33] G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A.
Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito. Field enhance-
ment within an optical fibre with a subwavelength air core. Nature
Photonics, 1(2):115–118, 2007.

[34] D. Vermeulen, K. Van Acoleyen, S. Gosh, De Cort W.A.D. Selvaraja,
S. K., A.D. Yebo, Hallynck E., K. De Vos, P.P.P. De Backere, P. Du-
mon, W. Bogaerts, G. Roelkens, P. Dumon, Dries Van Thourhout, and
Baets R. Efficient tapering to the fundamental Quasi-TM mode in
Asymmetrical Waveguides. pages 1000–1001, 2010. ECIO, Cam-
bridge, UK, APRIL, 2010.

[35] W. H. P. Pernice, M. Li, and H. X. Tang. Optomechanical coupling
in photonic crystal supported nanomechanical waveguides. Optics
Express, 17(15):12424–12432, 2009.

[36] M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and
H. X. Tang. Harnessing optical forces in integrated photonic circuits.
Nature, 456(7221):480–486, 2008.

[37] B.E. Little, J.-P. Laine, and S.T. Chu. Surface-roughness-induced con-
tradirectional coupling in ring and disk resonators. Optics Letters,
22(1):4–6.

[38] S.K. Selvaraja. Wafer scale fabrication technology for silicon pho-
tonic integrated circuits. PhD thesis, Ghent University, Ghent, Bel-
gium, 2010.

[39] J. Blasco and C.B. Barrios. Compact slot-waveguide/channel-
waveguide mode-converter. pages 607–607, 2005. Proc. CLEO/Eur,
2005.



SMALL DISPLACEMENT SENSING 4-45

[40] M. Eichenfield, Ryan M. Camacho, J. Chan, Kerry J. Vahala, and
O. Painter. A picogram- and nanometre-scale photonic-crystal op-
tomechanical cavity. Nature, 459(7246):550–U79, 2009.

[41] M. Eichenfield, J. Chan, Ryan M. Camacho, Kerry J. Vahala, and
O. Painter. Optomechanical crystals. Nature, 462(7269):78–82, 2009.

[42] J. Rosenberg, Q. Lin, and O. Painter. Static and dynamic wavelength
routing via the gradient optical force. Nature Photonics, 3(8):478–
483, 2009.

[43] G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere,
A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg. Near-
field cavity optomechanics with nanomechanical oscillators. Nature
Physics, 5(12):909–914, 2009.

[44] J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and
R. Baets. Tunable optical forces between nanophotonic waveguides.
Nature Nanotechnology, 4(8):510–513, 2009.
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5
Optical forces

He beheld his own image, and it was no longer the reflection of a clumsy,
dirty, gray bird, ugly and offensive. He himself was a swan!
Hans Christian Andersen

5.1 Introduction to the chapter

5.1.1 Chapter outline

IN section 4.3 of chapter 4 we discussed several state-of-the art motion
transducers (capacitive, magnetomotive, piezo-electric,...). We noted

that often these sensing schemes can be reversed, so that efficient mo-
tion transduction corresponds with actuation capability. In sections 4.4,
4.5 and 4.6 we discussed intensively some integrated optical waveguide
transducers. Unavoidably the question rises whether also in this case the
sensing scheme can be reversed and actuation through optical forces is fea-
sible. This way integrated Nano-ElectroMechanical Systems (NEMS) in
fact evolve into Nano-OptoMechanical Systems (NOMS) (see chapter 1
for a thorough discussion). In this chapter we first introduce the Maxwell
stress tensor formalism, a general formalism which allows to calculate the
force exerted on an object for a given electromagnetic field distribution.
After this general treatment we focus on forces in waveguides which can
be described in a much more elegant way when we think in terms of guided
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modes of the waveguide structure. It will turn out that knowledge of the
effective index neff of a guided mode in function of a displacement co-
ordinate g is in fact sufficient to calculate the force exerted by this mode
when carrying a certain amount of optical power. One of the main results
of this work is the experimental demonstration of optical forces in inte-
grated nanophotonic waveguides. The set-up that was used for this purpose
is also described in this chapter. Finally we will also discuss several optical
actuation experiments in various configurations.

5.1.2 A little bit of history

The idea that light can be responsible for mechanical effects is quite old.
Already at the start of the 17th century Johannes Kepler noticed the deflec-
tion of the tails of comets entering our solar system and suggested that solar
radiation might be responsible for it. In fact we know now that it is rather
the solar wind (stream of mass carrying particles such as protons and elec-
trons) that causes this deflection, rather than pure radiation pressure from
the sun light.

Almost two-and-a-half centuries later (1873) it was Maxwell who showed
with his classical electrodynamics theory [1] that radiation carries momen-
tum with it and ‘radiation pressure’ is exerted on an illuminated object. A
few years later Adolfo Bartoli also derived the concept of radiation pressure
from thermodynamical considerations [2]. The first experimental demon-
strations of radiation pressure in a lab followed around 1900 by Lebedev [3]
and Nichols [4] by measuring the rotation of an illuminated torsion balance.
Shortly thereafter Einstein introduced the concept of a photon and the idea
that energy transfer between light and matter occurs in discrete quanta [5].
Hence also the idea of photons carrying momentum was introduced. Dis-
crete momentum transfer between photons and particles (electrons) was
experimentally demonstrated by Compton [6].

Even up to day there is actually great controversy about the momentum
of a photon in a medium. According to the Minkowski interpretation the
photon momentum is multiplied (compared to the non-ambiguous photon
impulse in vacuum) with the refractive index of the medium. The Abra-
ham formulation states that the photon momentum is actually divided by
the refractive index of the medium. Experimental proof supporting both
theories exists. Recently it was proposed that probably both theories are
correct, it depends on the experiment itself which momentum is actually
measured. A detailed analysis of the Abraham-Minkowski dilemma is far
beyond the scope of this thesis. We redirect the interested reader to [7] and
the references therein.
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Figure 5.1: Application examples related to optical forces. a, Microparti-
cle trapped in a laser beam waist. b, Photograph of the IKAROS spacecraft
(with solar sail propulsion), illuminated by the Sun.

Also worth mentioning is the possibility to cool objects through inter-
action with electromagnetic fields [8]. Roughly spoken the idea is to coun-
teract the thermal motion of atoms through radiation pressure effects. The
technique has led to ultralow temperatures (order nK) and consequently
observation of Bose-Einstein condensates [9]. In fact also mechanical os-
cillator vibrational modes can be cooled through interaction with light, we
will come back to this idea in chapter 6 on feedback cooling.

It is clear from the above that light matter interactions have been (and
still are) of extreme importance for a better understanding of fundamen-
tal physics. However at the application side probably the most disruptive
achievement in the field op optical forces has been the development of ‘op-
tical tweezers’ which started in the seventies [10, 11]. Optical laser power
on the order of a few mW produces sufficiently large forces to trap a parti-
cle (including living cells, DNA, bacteria with sub-µm size to a few µm) in
the center of a laser beam waist and manipulate it. In Fig. 5.1a we show a
microparticle which is trapped in the center of a laser beam waist. We will
later on in this chapter explain why the particle actually stays trapped in the
region with largest intensity and make an important parallel with optical
forces in nanophotonic waveguides.

On the other hand radiation pressure effects can also be applied at a to-
tally different scale. The Russian space engineer Friedrich Zander already
proposed around 1924 to use solar sails for spacecraft propulsion (the actual
‘photonic’ radiation pressure is exploited here and not the much weaker so-
lar wind, although currently experiments are undertaken to exploit the solar
wind for propulsion also). However the technical hurdles to be overcome
remain challenging, even up to this day. The first successful radiation pres-
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sure driven spacecraft IKAROS [12] (Interplanetary Kite-craft Accelerated
by Radiation Of the Sun) was launched only very recently (May 2010) by
the Japanese Aerospace eXploration Agency (JAXA). Since solar radiation
pressure effects are small (around 4.57µN m−2 at Earth distance from the
Sun, this value should be doubled when the light is totally reflected instead
of absorbed) a large area (200m2), low mass sail (7.5µm thick polyimide)
is required to get significant acceleration (Fig. 5.1b). Although the space-
craft and the optical tweezers are very different applications we can de-
scribe the optical force effect for both by the same classical formalism. The
Maxwell stress tensor formalism will be introduced in the next section for
it can also be used to calculate optical forces in integrated structures.

5.2 Maxwell Stress Tensor

The goal of this section is to derive a formula for the exerted force onto an
object by a given electromagnetic field. This derivation can to a large extent
be considered as a reproduction of classical electrodynamics concepts. The
starting point for our analysis is the well known Lorentz force law:

F = q[E + v× B] (5.1)

In this equation F is a force, E is the electric field, v is the velocity (of a
single charge q) and B is the magnetic induction. F, E, v and B are printed
in bold because they denote vectorial quantities. We assume implicitly that
these quantities are function of a time coordinate t and a position vector r,
so F is in fact the force exerted by the electromagnetic fields at a time t on
an elementary charge q at a position r, moving with a velocity v.

In the end we will have to deal with macroscopic objects rather than sin-
gle charges so it is useful to rewrite the Lorentz force law equation in terms
of a charge density ρ(r, t) (Cm−3) and a current density J(r, t) (Am−2):

f = ρ[E + J× B] (5.2)

f is the force per unit volume exerted by the electromagnetic fields. Our goal
is to get rid of ρ and J in the above equation and to substitute them with
expressions that only contain the electromagnetic fields. If we manage to
achieve this, then we can in principle calculate the optically induced force
per unit volume for any electromagnetic problem with only knowledge of
the electromagnetic fields.

We can eliminate ρ and J using Maxwell’s equations:

∇× E = −∂B
∂t

(5.3)
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∇× B =
1
c2

∂E
∂t

+ µ0J (5.4)

∇ · E =
ρ

ε0
(5.5)

∇ · B = 0 (5.6)

In these equations we have introduced the vacuum permittivity ε0 and vac-
uum permeability µ0. We will for now use Maxwell’s equations in vacuum,
the theory can be easily extended by introducing a relative permittivity and
permeability that take into account the material properties. Using Gauss’s
law (equation 5.5) we can easily remove the charge density ρ from equation
5.2. The current density J can be substituted using Ampère’s law (equation
5.4). Using also the relation ε0 = 1

µ0c2
we can rewrite equation 5.2:

f = ε0(∇ · E)E + (
1
µ0
∇× B− ε0

∂E
∂t

)× B (5.7)

We now focus on ∂E
∂t × B. Using the product rule for derivatives

∂(E× B)
∂t

= E× ∂B
∂t

+
∂E
∂t
× B (5.8)

and substituting ∂B
∂t using Faraday’s law (equation 5.3) we obtain:

∂E
∂t
× B =

∂(E× B)
∂t

+ E× (∇× E) (5.9)

Substituting this equation into 5.7 we obtain:

f = ε0(∇ · E)E +
1
µ0

(∇× B)× B− ε0E× (∇× E)− µ0ε0
∂S
∂t

(5.10)

We have introduced the Poynting vector S = 1
µ0

E × B in this equation.
The Poynting vector can be thought of as representing the energy flux of
the electromagnetic radiation. Due to our manipulations the time derivative
only operates on this vector.
We can further simplify our expression by eliminating the curl (×) vector
products for both E and B through following identity:

(∇× E)× E = (E · ∇)E− 1
2
∇E2 (5.11)
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In this formula E2 = E2
x + E2

y + E2
z is the total electric field strength. We

can rewrite equation 5.10:

f =ε0[E(∇ · E) + (E · ∇)E] +
1
µ0

[B(∇ · B) + (B · ∇)B] (5.12)

−∇(
ε0
2
E2 +

1
2µ0

B2)− 1
c2

∂S
∂t

(5.13)

In this equation we have also inserted an extra term B
µ0

(∇ · B). We can do
this because this term is zero anyway (equation 5.6). However we added
this term to obtain a certain symmetry. By consequence we can see now that
the expressions between square brackets in equation 5.13 can be rewritten
in a more elegant way using the outer product notation ⊗:

f = ∇ · [ε0E⊗ E +
1
µ0

B⊗ B + (
ε0
2
E2 +

1
2µ0

B2)¯̄I]− 1
c2

∂S
∂t

(5.14)

We have introduced the unit tensor ¯̄I in this equation. The quantity in square
brackets is the Maxwell stress tensor ¯̄T in vacuum. In fact the Maxwell
stress tensor is just an artificially created tensor that is introduced to en-
able a compact notation of the complicated expression that we achieved by
eliminating ρ and J from the right hand side of equation 5.2. In cartesian
coordinates it reads as:

¯̄T = ε0


E2
x − E2

2 + B2
x−B2

2
ε0µ0

ExEy + BxBy

ε0µ0
ExEz + BxBz

ε0µ0

ExEy + BxBy

ε0µ0
E2
y − E2

2 + B2
y−B2

2
ε0µ0

EyEz + ByBz

ε0µ0

ExEz + BxBz
ε0µ0

EyEz + ByBz

ε0µ0
(E2

z − E2

2 ) + B2
z−B2

2
ε0µ0


(5.15)

Till now we have only considered the force per unit volume. We need to
integrate over an arbitrary volume V in which ρ and J are located:

F =
∫
V
∇ · ¯̄TdV −

∫
V

1
c2

∂S
∂t

dV (5.16)

This expression is also known as the conservation law for linear momentum
[13]. This is because F and

∫
V

1
c2
∂S
∂t dV can be interpreted as the time

derivative for the mechanical momentum and field momentum respectively.
The volume integral involving the Maxwell tensor can be transformed into
a surface integral using Gauss’s integration law:∫

V
∇ · ¯̄TdV =

∫
∂V

¯̄T · ndA (5.17)
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n is the unit vector perpendicular to the surface and dA is an infinitesimal
surface element. Finally we note that the fast varying field momentum is
zero when averaged over one oscillation period and by consequence the
term

∫
V

1
c2
∂S
∂t dV can be omitted when considering the time averaged force

so we obtain (<> denotes a time average):

< F >=
∫
∂V

< ¯̄T > ·ndA (5.18)

It is remarkable that the exact material properties of the body under inves-
tigation do not enter equation 5.18. We only need to know the fields on
a surface ∂V that encloses the body to calculate the electromagnetic force
that acts on it, so in most cases we are able to deal with the Maxwell stress
tensor in vacuum. In case the surrounding surface is located in a medium
that can be accurately enough described by a relative dielectric constant εr
and magnetic permeability µr then we can still calculate the force using
equation 5.18 when replacing the Maxwell stress tensor in vacuum with a
more general expression:

¯̄T = [ε0εrE⊗ E +
1

µ0µr
B⊗ B + (

ε0εr
2
E2 +

1
2µ0µr

B2)¯̄I] (5.19)

Strictly spoken the above is only valid for perfectly rigid bodies. Otherwise
electrostrictive and magnetostrictive effects have to be taken into account
[14].

Summarizing this section we have reviewed the Maxwell stress tensor
formalism. With this formalism we can calculate the electromagnetic force
that is exerted on a body that is lying within a volume V that is enclosed
by a surface ∂V . The power of the proposed formalism is its wide applica-
bility: knowledge of the fields on an enclosing surface in principle suffices
to calculate the force of any type of illuminated body. On the drawback
side the formalism is rather cumbersome and does not provide much phys-
ical insight. In the next section we will see that much more transparent
semi-analytical formulas can be obtained for forces acting on waveguide
structures. The Maxwell stress tensor formalism is still useful in this case
to check the validity of the proposed models.

5.3 Optical forces in waveguides

In this section we introduce optical gradient forces through the example of
optical tweezing and make the bridge with gradient forces in optical wave-
guides. Intuitive explanations for forces in optical waveguides are provided.
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Finally we review the theory of optical waveguides and derive a compact
force formula for waveguide modes. In constrast with the previous section
the theory that is introduced in this chapter is mainly derived from very
recent literature.

5.3.1 Microparticle in a gradient field

Before analyzing forces in waveguides it is instructive to take a look into
the case of a microparticle in an optical trap. We skip the full derivation (it
can be found elsewhere [13]) and directly proceed to the final result. The
force acting on a polarizable microparticle (dimensions� λ) is given by:

< Ftrap >=
<(α)

2
∇
〈
|E|2

〉
+ ω=(α) 〈E× B〉 (5.20)

In this equationα is the complex polarizability of the microparticle (α(λ)E =
p) which connects the electric field to the induced dipole moment p, ω is
the frequency of the illuminating (monochromatic) laser. The first term at
the right hand side of the equation is the gradient force, it shows that the
particle will be driven along the gradient of 〈|E|〉2 towards the region with
highest intensity (in all three dimensions), explaining the trapping effect.
The second term is the scattering force which acts in the light propagation
direction. It can be regarded as a consequence of momentum transfer from
the radiation field to the particle. The scattering force is responsible for
pushing the particle out of the trap when the laser beam is not tightly fo-
cused enough. In the next section we will explain how optical trapping of
microparticles is related to optical forces in waveguides.

5.3.2 Intuitive explanations for the optical gradient force

Equation 5.20 also illustrates the importance of the polarizability. Indeed
the external field induces dipoles in the material. Knowing that dipoles
in a non-homogeneous (=gradient) field experience a net force (see Fig.
5.2a) we have an intuitive explanation for optical forces in waveguides. A
waveguide supporting a guided wave can be seen as a collection of dipolar
subunits. The net force on the waveguide can then be seen as the resultant
of the forces exerted on the subunits (see Fig. 5.2b).

Another way of understanding the optical force is thinking in terms
of impulse. We can think of a propagating wave inside a waveguide as
photons being reflected at the top and bottom of the waveguide, exerting
impulse with each reflection. When there are exactly as many photons at
the top and bottom at the waveguide the impulses cancel out and no net
force is exerted on the waveguide. This is shown in Fig. 5.3.
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Figure 5.2: Gradient dipole force. a, Dipole in a non-homogeneous field.
The dipole experiences a net force towards higher field intensities because
the charges ‘see’ a different electric field. b, The dipole model can also be
used to explain waveguide force if we consider the waveguide as a collec-
tion of dipolar subunits.

The field profile changes drastically when a SiO2 substrate is added to
the simulation at a distance of 100nm of the waveguide 5.4a. The light is
much more concentrated around the bottom of the waveguide. We can in-
terpret this as more photons bumping into the bottom edge, compared to the
top edge (see Fig. 5.4b). As a consequence an impulse imbalance exists and
a net force (towards the substrate) is exerted onto the waveguide. Although
the ‘impulse’ interpretation is limited in providing accurate explanations, it
provides an intuitively accessible view into optical forces.

In general a very instructive intuitive insight is to understand that the
waveguide material always tends to move into regions with high field in-
tensities (similar to a microparticle in a trap). In Fig. 5.4a we can clearly see
that the highest field intensity can be found in the gap between the wave-
guide and the substrate, so the waveguide will indeed be pushed downward
very strongly in this case.

Of course qualitative insights in the origin of the optical gradient force
are useful, but we also need to quantify the force. For this purpose the
Maxwell stress tensor can be used. However in the next subsection we will
show that for the specific case of waveguides a semi-analytical formula can
be obtained.

5.3.3 Optical force formula for waveguides

Assume we have a closed (meaning that there is no exchange of energy with
the outside world) photonic system of which the eigenfrequencies depend
on a spatial coordinate g. In order to focus our thoughts consider a concrete
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Figure 5.3: Optical force impulse model for a waveguide in vacuum.
a, Field profile (Ey, see indicated axes) for the fundamental TM mode of
a single-mode waveguide (width=450 nm, height=220 nm). b, Side view
of the waveguide in Fig. 5.3a. We can think of a propagating wave as
photons exerting impulse on the top and bottom of the waveguide. Due
to the symmetry the impulse contributions cancel out and no net force is
exerted on the waveguide.

example: assume we have a lossless FP-resonator with mirror reflectivity
100 % and g is the mirror separation. This structure only supports eigenfre-
quencies that interfere constructively after a cavity roundtrip. Assume that
ω0(g) is such an eigenfrequency of the cavity and N photons populate this
eigenfrequency. The energy of the system can then be written as:

U = N~ω0 (5.21)

When changing the separation between the mirrors conservation of energy
is required. The mechanical work done to displace the mirrors must be
compensated by a change in the electromagnetic energy of the system. By
consequence the total energy U of the system must remain the same when
the mirror separation is changed over a small distance dg:

dU = 0 = N~dω0 + Fdg (5.22)

We have implicitly assumed that the number of photons is conserved dN =
0 when changing the mirror separation so finally the shift in mirror separa-
tion dg must be compensated by a shift of the eigenfrequency dω0. Solving
for F we find:

F =
−U
ω0

dω0

dg
(5.23)
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Figure 5.4: Optical force impulse model for a waveguide with sub-
strate. a, Field profile (Ey, see the defined axes) for the fundamental TM
mode of single-mode waveguide (width=450 nm, height=220 nm, gap to
substrate=100 nm). b, Side view of the waveguide in Fig. 5.4a. We can
think of a propagating wave as photons exerting impulse on the top and bot-
tom of the waveguide. Due to the close presence of the the SiO2 substrate
the field distribution is not symmetric anymore. There are more photons at
the bottom of the waveguide compared to the top. The imbalance leads to
a net force towards the substrate.
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In fact the closed system we proposed can easily be mapped onto the struc-
ture we are really interested in: a perfect resonator with periodic boundary
conditions (which implies that the wavevector k is conserved) resembles a
waveguide very much. We only need to mimic electromagnetic energy den-
sity in a waveguide through proper choice of the photon number N in our
closed system. The number of photons N carried by an eigenmode with
eigenfrequency ω and optical power P in a waveguide of length L is equal
to [15]:

N =
P

~ω
Lng
c

(5.24)

In this equation we have also introduced the speed of light c (in vacuum)
and the mode group index ng = neff −λ

dneff

dλ . Combining equations 5.23
and 5.24 we can express the optical force in terms of L, P and waveguide
mode parameters:

F =
−PLng
ωc

dω
dg
|k (5.25)

We remind the reader that the derivative is evaluated at fixed k. The formula
was first derived in this form [16]. From the formula it is also clear that
attractive and repulsive force can be obtained depending on the sign of dω

dg .
The idea of having attractive and repulsive optical forces was also proposed
by other authors [17, 18].

However it is useful to express equation 5.25 in terms of the effective
index of the waveguide mode because this will facilitate comparison with
the results obtained in the previous chapter (on small displacement sens-
ing). For this purpose we use the triple product rule. It states that if three
variables obey f(g, k, ω) = 0 (where k = |k| = 2π

λ neff ) then the follow-
ing must hold:

− 1 =
dk
dg
|ω

dg
dω
|k

dω
dk
|g (5.26)

Taking into account the definition of group velocity c
ng

= dω
dk and ω

c = 2π
λ

we can rewrite equation 5.26:

dω
dg
|k = − ω

ng

dneff
dg
|ω (5.27)

Substituting equation 5.27 into equation 5.25 yields [15]:

F =
PL

c

dneff
dg
|ω (5.28)

In this formula the derivative is evaluated at fixed ω. It is striking that the
optical force per unit length and unit optical power is entirely determined
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Figure 5.5: Vertical setup. a, Two fibers can be aligned above a sample
using two translation stages. b, Silicon chip with aligned fibers. The metal
tubes hold the fibers.

by the index sensitivity dneff

dg . We have already introduced this parame-
ter to assess the sensitivity of a waveguide configuration in the context of
displacement sensing. Similar to the capacitive, magnetomotive and piezo-
electric detection and actuation schemes strong optical forces and sensitive
displacement sensing are strongly intertwined.

5.4 Pump-probe set-up in vacuum

In the remainder of this chapter we will report on some experiments that
demonstrate optical gradient forces in integrated waveguide structures. In
fact these experiments can be considered to be the main original contri-
butions to the state-of-the-art in the presented work. First we discuss the
set-up that is used for all these experiments. As we have already explained
in subsection 3.2.2 light from a fiber is coupled in and out the chip using
a grating coupler. The fibers are aligned above the grating couplers using
XYZ translation stages. In Fig. 5.5a a photograph is shown of the set-up
we have built for this purpose. Essentially it is a miniaturized version of
the standard vertical set-ups that are used within the Photonics Research
Group. Fig. 5.5b shows the silicon chip with aligned fibers. The metal
tubes are fiber holders, they clamp the fibers and hold them on their po-
sitions. They are very important because this miniaturized set-up will be
placed in a chamber where it is subject to considerable air turbulence when
removing the air from the chamber.

The vacuum environment is necessary to obtain high mechanical Q os-
cillators. In vacuum the major loss mechanism of gas damping is eliminated
(see also subsection 2.6.1).
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a b c

Figure 5.6: Vacuum chamber. a, The miniaturized set-up is placed into a
vacuum chamber. b, Two vacuum feedthroughs for optical fibers are avail-
able to bring an optical signal in and out the vacuum chamber. c, Top view
of the chamber after sealing. At the left the tube which is used to remove
the air from the chamber is visible. It is connected to a rotation pump, turbo
pump and pressure sensor (not on image).

In Fig. 5.6a we see how the miniaturized setup fits in a vacuum cham-
ber. In order to bring an optical fiber in and out the chamber two special
vacuum feedthroughs are foreseen (Fig. 5.6b). Finally in Fig. 5.6c we have
a top view of the chamber after it is hermetically sealed with the metal lid.
At the left we see the tube that is used to drain air from the chamber. It
is connected to a pump group, consisting of a rotation pump and a turbo
pump (not on image) and a sensor group (to monitor the pressure inside
the chamber). With this system measurements can be done at pressures
as low as 10−4mBar. In fact for our structures loss mechanisms other
than air damping start to dominate for pressures lower than 1mBar so we
can safely claim that air damping is totally eliminated with this set-up. To
demonstrate optical forces typically a pump-probe scheme is applied. This
is shown in Fig. 5.7. The pump signal is provided by a tunable laser source
(TLS) with wavelength λ1. The pump signal is power modulated through
an electro-optical modulator (EOM). The drive signal for this EOM is typ-
ically provided by a sine wave signal generator. The modulated signal is
injected into the device-under-test (DUT) which is located in the vacuum
chamber. If the modulation frequency of the pump signal is close to a
mechanical resonance frequency of the DUT, then the pump signal might
induce a detectable vibration of the suspended waveguide structure. This
vibration can be detected by means of a CW probe signal with wavelength
λ2. It is typically injected at the other side of the chip. After transmission
through the chip the probe signal is separated from the counter propagat-
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Figure 5.7: Pump-probe set-up. The pump signal (λ1) from a tunable laser
source (TLS) is modulated through the electro-optic modulator (EOM) be-
fore it is injected in the device-under-test (DUT). The CW probe signal
(λ2) is simultaneously injected from the other side and after transmission
through the chip it is separated from the counter propagating pump signal
with a circulator. The optical bandpass filter (OBF) ensures that no pump
light reaches the detector. The electrical signal from the detector is ana-
lyzed with the electrical spectrum analyzer (ESA)

ing pump signal in a circulator. Before it falls onto the detector it passes
through an optical bandpass filter (OBF) that ensures the removal of any
reflected pump light. The electrical output signal from the detector can be
analyzed with an electrical spectrum analyzer (ESA) or oscilloscope. Sum-
marized, if the pump signal is modulated sinusoidally and exerts a force
onto the mechanical structure, this structure will respond to this excitation
and vibrate at exactly the drive frequency. This vibration is imprinted upon
the probe signal so in the end the modulation of the pump signal is ‘copied’
to the probe signal. However one must make sure that no other mechanism
but an optically induced vibration is responsible for this copy. In the next
section we will see that other mechanisms than mechanical vibration can
cause a pump-probe cross-modulation. In addition we also have to check
that the recorded vibration is truly optically induced. It is in principle pos-
sible that pure temperature modulation induces vibrations, so we also have
to rule out this thermally induced vibration.
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5.5 Cross-modulation

In this section we discuss some issues that might jeopardize the unambigu-
ous detection of optical forces: thermo-optical and thermomechanical ef-
fects.

5.5.1 Thermo-optical effect through (non-linear) absorption

The modulated optical power from the pump laser will also cause a temper-
ature modulation inside the device. Due to the relatively high thermo-optic
effect in silicon (1.8× 10−4/K) [19] this temperature modulation will also
affect the refractive index of the device. A temperature induced refractive
index change seems in first instance indistinguishable from a vibration in-
duced refractive index change. Both will be converted into a power modula-
tion by an interferometer or resonator (see section 4.5 on phase sensitivity).
However the spectral response is very different. As discussed previously an
underdamped harmonic mechanical oscillator exhibits a sharp Lorentzian
peak in the frequency domain. On the other hand the temperature response
(of the optomechanical transducer) is very similar to a first order low pass
band filter: a flat response for DC up to a certain cut-off frequency, above
this cut-off frequency the response decays with a factor of 10 per decade.
The typical thermal cut-off frequency for the structures considered in this
work is around a few 100 kHz while the resonance frequencies are in the
MHz region. Hence the temperature response is in general attenuated but
not strongly enough to be completely neglected.

However because of the very different spectral response the thermo-
optic background can be easily fitted and subtracted from the useful signal.
In fact in most cases we can model the decaying thermo-optic response
as constant because the frequency spans we consider here are very narrow
(due to the relatively large mechanical Q-factors). Although for most of
our experiments the thermo-optic effect is order of magnitudes smaller than
the mechanical vibration signal, in some circumstances it can dominate the
response.

For example for high optical powers in silicon nanophotonic structures
non-linear two photon absorption (TPA) and free carrier absorption (FCA)
occur [20]. In contrast with the linear regime where absorption (and hence
heat generation) is very low, the heat generation increases very strongly
through TPA and FCA. The situation is even more dramatic for optome-
chanical motion transducers that realize a large transduction coefficient dTx

dg

through a large phase sensitivity dTx
dφ (rather than through a large index sen-

sitivity dneff

dg , see sections 4.6 and 4.5). In such a transducer also the un-
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wanted thermally induced phase shifts are equally enhanced compared to
the vibration induced phase shifts. An illustrative example of a structure
suffering from a large thermo-optic effect is the ring resonator with free-
standing part, which we have previously discussed in subsection 4.6.1. The
phase sensitivity is pretty high in this case as it is enhanced by the finesse
≈ 100 of the racetrack resonator (see equation 4.29). As can be seen in
Fig. 4.15 the probe power that is required to detect the brownian response
is already sufficiently high to have a clear thermal bistability due to TPA,
so an additional pump signal will suffer from large absorption. Hence it is
not possible to present pump probe data for this structure, since the useful
signal was covered with thermo-optic noise in spite of the relatively high
resonance frequency of 65.86MHz.

Nevertheless we applied the thermo-optic effect also in a useful way,
it helped us to distinguish between attractive and repulsive forces between
waveguides. However before proceeding to experimental results we will
first briefly discuss thermomechanical forces.

5.5.2 Thermomechanical effect

The temperature modulation also gives rises to strain modulation in the
material through the thermal expansion coefficient. In fact the mismatch
between the thermal expansion coefficient of silicon and silica is responsi-
ble for vibration of the beam (TOcoef,SiO2 = 0.5 10−6K−1 and TOcoef,Si =
2.59 10−6K−1 at 25◦C for silicon [21]). In contrast with the thermo-optic
effect we have a physical displacement here which makes it hard to sepa-
rate the thermomechanical effect from an effective optical force since both
phenomena will show a Lorentzian response.

However the thermomechanical effect can be modeled through a finite
element simulation. At this point we wish to acknowledge Prof. Bjorn
Maes for implementing the simulation in software. According to the sim-
ulation a displacement of 1.5 pmK−1 can be expected in-plane for a stan-
dard silicon nanophotonic waveguide (of approximately 24µm) resting on
silica supports. For out-of-plane displacement 14 pmK−1 is found which
is very close to the value of 11 pmK−1 that has been reported by other
authors for a similar structure [22]. We can conclude that unrealistic tem-
perature shifts would be required to explain the experimentally found dis-
placements (=on the order of nanometers). Finally we will see that also
experimental proof is available that the encountered forces are truly elec-
tromagnetic in nature. For example repulsive and attractive forces can never
be explained through a thermomechanical model.
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5.6 Experimental results

5.6.1 Optical force in a directional coupler

We will first discuss the case of an ordinary directional coupler. In Fig.
5.8a a microscope picture of the device is shown. A schematic drawing and
SEM-picture of this type of device can be found in the previous chapter
(Fig. 4.21). Also in the previous chapter we have analyzed the optome-
chanical transduction of this device in detail (see subsection 4.6.3).

As announced previously we will restrict ourselves to TE-polarization
for practical experiments. Two guided modes are available for this polariza-
tion: their mode profiles are shown in Fig. 5.9. As can be seen the ground
mode is symmetric in Ex (field component parallel with substrate, see Fig.
5.9 for definition of axes), while the second mode is anti-symmetric in Ex.
In fact based on these field profiles we can already make qualitative predic-
tions about the optical force. In case of the symmetric mode (Fig. 5.9a) we
observe strong fields in the gap in between the waveguides. Similar to the
microparticle the waveguide will be driven towards regions with high inten-
sities so we can expect an attractive force for this mode. The anti-symmetric
mode can be seen to have higher fields at the outer boundaries of the wave-
guides compared to the fields in the gap. In this case the waveguides will
be pushed apart and a repulsive force is to be expected. This qualitative
insight is confirmed by calculations. The result can be seen in Fig. 5.8b
where the normalized force (pN µm−1mW−1) is plotted in function of
the gap between the waveguides. We indeed see that the symmetric mode
has an exclusively attractive nature (negative force value=attractive force)
while the anti-symmetric mode is repulsive for sufficiently large gaps. For
very small gaps the anti-symmetric mode shows an attractive force. This
behavior is due to edge effects at the top and bottom of the strip wave-
guides we are considering here. For slab waveguides the anti-symmetric
mode conserves its repulsive character, even at very small gaps [23, 24].

The force is normalized for the waveguide length and the optical power
carried by the optical mode. The circles are obtained using the ‘waveguide
force formula’ (equation 5.28) while the solid black line is the correspond-
ing calculation using the Maxwell stress tensor (equation 5.18). As can
be seen in Fig. 5.8b the match between the two formalisms is perfect.
The equivalence of equations 5.28 (semi-analytical force formula) and 5.18
(stress tensor) has also been verified by other authors [15, 16, 22, 25].

However in the case of an ordinary directional coupler such as the one
shown in Fig. 5.8a both propagating modes are always excited simultane-
ously with equal amplitude and hence they are counteracting each other’s
force. Since the symmetric mode always has a larger amplitude we can
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Figure 5.8: Directional coupler optical force simulation. a, Microscope
picture of a freestanding directional coupler, the freestanding portion is of
length L≈ 24µm b, Optical force simulation for the symmetric and anti-
symmetric mode (g=220 nm, w=445 nm, t=220 nm). Negative values corre-
spond to attractive forces. Circles are obtained through the semi-analytical
formula 5.28. The black solid line is the corresponding calculation with the
Maxwell stress tensor formalism (equation 5.18).

only obtain a net attractive force for this structure.

The results of a pump probe experiment are shown in Fig. 5.10. The
curves in Fig. 5.10 b were obtained by sweeping the frequency of the sig-
nal generator and the electrical spectrum analyzer in parallel. We see that
the measured responses increase with increasing pump power as expected.
Using the calibration procedure with the brownian force (see subsection
4.2.3) we can estimate the vibration amplitude for each data point and ex-
tract the optical force exerted on each of the two waveguides for different
pump powers (Fig 5.10a). Forces on the order of pN and amplitudes on the
order of nm are obtained.

An important issue concerning this experiment has not been addressed
yet. It is not straightforward to simply add the modal contributions to obtain
the total force. In practice one might expect a beating force when two
propagating modes are present in the structure. In other words a force that
varies in the propagation direction of the waveguide can be expected.

The force beating issue is intrinsic to a bimodal system and will be
addressed in a specific subsection of this section. We will however first
discuss how we can excite the symmetric and anti-symmetric mode indi-
vidually and by consequence obtain a purely attractive or repulsive force.
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a b

Figure 5.9: Mode profiles symmetric and anti-symmetric TE modes
(g=220 nm, w=400 nm, t=220 nm) a, Ex mode profile of the symmetric
ground mode. b, Ex mode profile of the anti-symmetric ground mode.

a b
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Figure 5.10: Optical force in a directional coupler (g=220 nm,
w=400 nm, t=220 nm) a, Extracted optical force for different power lev-
els. Blue circles: force exerted on the lower frequency oscillator. Red
crosses: force exerted on the higher frequency oscillator. b, Measured and
fitted vibration amplitudes in function of drive frequency for different pump
powers. Black solid lines are fits to equation 2.47.
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Figure 5.11: Tunable force device. a, Schematic drawing. Basically we
have a Mach-Zehnder Interferometer (MZI) with arms of unequal length
(length difference ∆L ≈ 113µm ). One of the couplers is a standard
Multi-Mode-Interferometer (MMI) 3dB-splitter, the other is a freestand-
ing directional coupler. b, SEM-picture of the device, showing where the
pump power is entering the device and how it is divided in two equal parts.
Due to the delay length the phase difference between the fields that arrive
at the waveguide coupler section varies with wavelength, hence different
mode superpositions can be excited in the coupler section.

5.6.2 Attractive and repulsive force

In order to control the sign of the force we must control the excitation of
the two modes in the directional coupler section. This can be done with
the structure shown in Fig. 5.11. We have already introduced this device
in subsection 4.6.3 where we discussed its motion transduction (see also
Fig. 4.25). The freestanding waveguide coupler (length L) acts as one of
the couplers in a Mach-Zehnder Interferometer (MZI). The other coupler
is an ordinary 3dB-splitter of the Multi-Mode interferometer type (MMI)
which splits the pump light into two equal parts. One arm of the MZI is
∆L longer than the other. Because of this delay length the phase difference
between the fields that arrive at the waveguide coupler section varies with
wavelength. When the fields arrive in phase the symmetric mode will be
excited. In case the fields arrive in counter phase the anti-symmetric mode
is favored. Hence simply tuning the pump wavelength allows us to sweep
from an attractive to a repulsive force and vice versa.

We did a sweep of the drive frequency for a number of wavelengths.
The result for two of such sweeps is shown in Fig. 5.12a. The trace
with the red (blue) circles is obtained with a pump wavelength 1551.4nm
(1553.5nm). From the corresponding fits (black solid lines) we can ex-
tract an optical force. If we repeat this procedure for a large number of
wavelengths and plot the extracted force for each of them, then we obtain
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5.12b. In this plot we have already assigned a sign to the measured forces,
however in principle we cannot directly detect the force sign from simple
amplitude measurements such as the curves shown in Fig. 5.12a. Neverthe-
less for several wavelengths we measured a zero force (twice in Fig. 5.12b),
which strongly suggests that the attractive and repulsive force cancel each
other out for these wavelengths. One can of course argue that the force
with a magnitude that is approximately twice as large as the other must be
the attractive one since this ratio is predicted by theory. The spectral dis-
tance between a wavelength that we assume to generate an attractive force
and a wavelength that we assume to generate a repulsive force is approxi-
mately around 2.1nm. In Fig. 5.13 we have shown the time domain traces
for pump wavelengths 1547nm and 1549nm taken with an oscilloscope
(both relative to the same reference = the signal generator drive signal, not
shown in the graph). The fit reveals a phase shift of 169◦, showing that the
displacements (in function of time) are almost in counter phase for these
pump wavelengths. Phase shift measurements indeed prove that attractive
and repulsive forces are obtained but strictly speaking we must still rely on
the amplitude argument to determine the force sign.

One technique that allows to measure the force sign directly is to look
into the interference with the thermo-optic background. The idea is that the
thermo-optic effect acts similar in phase (‘phase’ is always defined relative
to the drive signal) for wavelengths that differ only 2.1nm. However as we
have just discussed the displacement signals can be thought of as being in
counter phase and by consequence they will interfere differently with the
thermo-optic background. Therefore in our fitting model we must add a
term PTO which takes into account the thermo-optic background.

Pmod
Pcw

= |
Fopt,AC
k

dTx
dg

χmech + PTO| (5.29)

In fact an increase in temperature (=increase in optical power) increases
the index contrast through the thermo-optic effect and leads to a decrease
in coupling strength. A gap increase is also equivalent to a decrease in
coupling strength. A gap increase that comes with an increase in optical
power must be attributed to a repulsive force, by consequence the thermo-
optic background and a repulsive force signal will interfere constructively.
Indeed for the curves shown in Fig. 5.12a the fitted value for PTO is
equal in magnitude, but different in sign. For the 1553.5nm trace we find
<(PTO) > 0, while for the 1551.4nm trace <(PTO) < 0. The former
corresponds to repulsive, the latter to attractive forces.
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a b

Figure 5.12: Tunable force experimental results. a, Measured response
for a drive frequency sweep around the mechanical resonance frequency.
The trace with the red (blue) circles is obtained with a pump wavelength
1551.4nm (1553.5nm). From the corresponding fits (black solid lines)
we can extract an optical force magnitude. b, Extracted force for different
wavelengths. Error bars origin from the uncertainty on the exact optical
power level inside the device and its exact temperature.
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Figure 5.13: Measured phase shift in the time domain. Vibration re-
sponse for wavelengths 1547nm and 1549nm. The fits reveal a phase
shift of 169◦.
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5.6.3 Force beating

In a directional coupler the optical power can be thought of as coupling
back-and-forth between the waveguides when propagating through the cou-
pler. The coupling happens with a period of Lprop,period = λ

n+−n− . Since
the electromagnetic field distribution is also changing along the propagation
length we must also investigate how the optical force is varying over this
period. These calculations can be done with the Maxwell stress tensor for-
malism. The result of such a calculation for a parallel waveguide structure
(waveguide width w = 445nm, thickness t = 220nm, gap g = 220nm)
with a coupling period of approximately 120µm is shown in Fig. 5.14. The
pink and blue curves show the force of the pure modes (repulsive and attrac-
tive mode respectively). These curves are completely flat because there can
be no beating. In the most extreme case (equal excitation of the repulsive
and attractive modes) the beating force amplitude is calculated to be 25%
of the average optical force for our device (black curve in Fig. 5.14). The
red and green curves show mixed mode superpositions with a 5% to 95%
distribution of the optical power between the modes. In principle the beat-
ing is the most significant (in terms of effect on measurement) for parallel
waveguides that are freestanding over a length that is much shorter than the
coupling period. In any case in the analysis of our experimental data we are
only able to fit the average force that is exerted onto the waveguide. How-
ever if the freestanding portion is sufficiently long, then averaging of the
beating effect is obtained and the beating will be much less than the worst
case 25% and it is acceptable to ignore the beating.

5.6.4 Slot waveguide

We have already introduced the slotted waveguide in subsection 4.6.2 of
the previous chapter. Also for this structure we have explored optical actu-
ation. The calculated forces are shown in Fig. 5.15. Similar to the case of
the index sensitivity (see Fig. 4.16) we observe a strong enhancement of the
optical force in the TE polarization for smaller gaps due to strong field gra-
dients. In fact many of the conclusions made in subsection 4.6.2 can be re-
peated. Slotted waveguides with small gaps and a field vector that is orthog-
onal to the gap create the largest forces. In Fig. 5.16a the result for a pump-
probe experiment for a slotted waveguide is shown. We obtain nm displace-
ments for only 1mW power and obtain around 5 pN mW−1 µm−1 [26].
Interestingly non-linear spring softening is observed. In Fig. 5.16b an ex-
periment for a parallel waveguide pair is shown where non-linear spring
hardening is observed. The (be it very rough) model for mechanical spring
hardening we have introduced in section 2.7 predicts that (for typical pa-
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Figure 5.14: Force beating. Normalized calculated force
(pN mW−1 µm−1) for different relative mode excitations (anti-symmetric
A, symmetric S): pink (100%A), red (95%A, 5%S), black (50%A, 50%S),
green (5%A, 95%S), blue (100%S). Forces above (under) dotted line are
repulsive (attractive).
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Figure 5.15: Theoretical force in a slotted waveguide. a, Normalized
calculated force (pN mW−1 µm−1) for a slotted waveguide in function of
gap for TE and TM polarizations. b, Detail of Fig. 5.15a.
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Figure 5.16: Displacement spectra showing non-linearities. a, Displace-
ment spectrum in a slotted waveguide with non-linear spring softening. b,
Forward and backward pump wavelength sweep for a parallel waveguide
pair. The observed non-linear spring hardening and corresponding bistabil-
ity might be caused by mechanical non-linearity.

rameters) bistability can occur for vibration amplitudes < 10nm so proba-
bly the observed behavior can be explained by this model. The spring soft-
ening is much harder to explain. It could be explained through non-linearity
in the exerted force. For an attractive force the non-linearity should indeed
be of the softening type but the observed non-linearity is too high to match
our theoretical calculations. We conclude that more research is required
here to explain the observed behavior.

5.7 Chapter summary

We have introduced optical forces and explained the difference between ra-
diation pressure effects (e.g. spacecraft) and gradient optical forces. We
have also discussed the Maxwell stress tensor formalism which can be used
to simulate various types of electromagnetic forces. For forces in integrated
waveguide structures we have derived a semi-analytical formula which sug-
gested a strong correlation between large optical forces and efficient small
displacement sensing. Moreover intuitive explanations were provided to
explain optical forces.

Furthermore we introduced our pump-probe setup and discussed the
difficulties that perturb the transduction scheme (thermo-optic and thermo-
mechanical effects). Finally we have demonstrated optical forces in parallel
waveguides (attractive and repulsive) and in slotted waveguides.
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6
Feedback

Doing a Ph.D. is like becoming all of the Seven Dwarves. In the beginning
you’re Dopey and Bashful. In the middle, you are usually sick of it (Sneezy),
tired (Sleepy), and irritable (Grumpy). But at the end, they call you Doc,
and then you’re Happy.
R.T. Azuma

6.1 Introduction

AS discussed in subsection 1.3.2, optical cooling of micromechanical
resonators is of great interest to the scientific community [1, 2]. In

general the major incentive is the possibility to cool a micromechanical
resonator to its quantummechanical ground state [3] and hence to gain addi-
tional insight in the less well understood aspects of quantum mechanics. In
the case of optical cooling light is used to extract energy from the resonator
and hence to dampen its motion. However it is also possible to reverse this
process and amplify the resonator motion through positive optical feedback
(sometimes this process is referred to as ‘heating’ of the mechanical res-
onator).

When the feedback is sufficiently large regenerative oscillations occur
and the resonator acts as an oscillator. In the literature this regime is called
‘parametric instability’ [1]. Compared to the optical cooling regime, the
‘heating’ regime has received less attention in the physics community. Nev-
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ertheless oscillators might be the shortest route towards a practical applica-
tion for optomechanics, for example as a reference clock on chip. In the
literature this concept is often referred to as ‘photonic clock’ [4]. When
thinking of (mass) sensing applications, especially in aqeous or gaseous en-
vironments, micromechanical resonators suffer from very low quality fac-
tors (see subsection 2.6.1). This limitation might be overcome by positive
feedback, as has been demonstrated with electrical feedback schemes [5, 6].
Both for the sensing and reference applications higher mechanical reso-
nance frequencies are beneficial.

In the next section we explain the difference between active and pas-
sive feedback schemes. In the remainder of the chapter we elaborate on the
experimental implementation of an optomechanical active feedback exper-
iment. First we select the optomechanical device that fits best our exper-
imental requirements and discuss the full experimental setup. Afterwards
we show some experimental results. These results can be considered as a
novel and important contribution in the context of this work and optome-
chanics in general. In particular we focus on the important parameters that
govern access to the regime of parametric instability.

6.2 Active vs. passive feedback

Passive cooling or amplification requires the mechanical resonator to be
implemented in an optical cavity with extremely high optical Q because the
mechanical oscillation period needs to be smaller than the optical cavity
lifetime. Expressed in terms of the cavity optical bandwidth ∆ωcav and the
mechanical resonance frequency ωmech we require ∆ωcav � ωmech. Un-
der this condition a laser beam with frequency ωlaser can cool or amplify
the mechanical resonator motion depending on whether the laser light is
blue- or red detuned compared to the cavity resonance frequency ωcav (see
Fig. 6.1). In fact we can explain the whole process through the Doppler ef-
fect where the mechanical oscillator generates two sidebands with frequen-
cies ωcav − ωmech (lower frequency sideband) and ωcav + ωmech (higher
frequency sideband) [1]. The former can be interpreted as absorption of a
phonon by a laser photon, the latter as emission of a phonon by the photon.
If the laser light is exactly on resonance ωcav = ωlaser both processes are in
equilibrium and the net energy exchange between the mechanical resonator
and the light is zero.

However in case the laser light is slightly red-detuned compared to the
cavity resonance (ωcav > ωlaser), then the photon frequency upconversion
(or phonon absorption) process is resonantly enhanced and the mechani-
cal resonator is cooled (Fig. 6.1a). On the other hand if the laser light
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Figure 6.1: Passive cooling and heating of a mechanical oscillator. The
optical cavity transmission (T) spectrum is shown in function of the opti-
cal frequency. Two frequency side-bands to the laser frequency ωlaser are
created through interaction with the mechanical oscillator: ωcav ± ωmech
a, The laser is red-detuned (ωcav > ωlaser). The photon upconversion pro-
cess is resonantly enhanced, hence the mechanical oscillator is cooled. b,
The laser is blue-detuned (ωcav < ωlaser)). The photon downconversion
process is resonantly enhanced, hence the mechanical oscillator is heated.

is slightly blue-detuned compared to the cavity resonance (ωcav < ωlaser)
then the photon frequency downconversion (or phonon emission) process
is resonantly enhanced. In this case the mechanical resonator is receiving
phonons and the motion is amplified (Fig. 6.1b).

From the technological point of view such a high Q is not easy to fab-
ricate, especially if additional boundary conditions apply. For example the
resonator might be required to be fully integrated or operate in an aqueous
environment. An ultra-high Q also limits the intrinsic optical bandwidth of
the system and the high circulating optical powers might result in heating
of the cavity material and non-linear effects. Consequently instability of
the optical resonance wavelength can be expected through the thermo-optic
effect, which is a considerable drawback.

In this chapter we present a system with active feedback that does not
include an optical cavity, hence strongly reducing bandwidth, heating and
fabrication issues. The feedback force is provided by the optical gradient
force that we have thoroughly discussed in chapter 5. In an active feedback
system the motion of the mechanical resonator is continuously monitored.
Using the recorded signal a feedback force that has a distinct phase rela-
tion to the resonator vibration is generated. If we assume the mechanical
resonator to be harmonic (with spring constant k, effective mass m and
damping constant Γ, Fbrown(t) is the brownian force), then the system can
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be modeled as:

kx(t) + Γẋ(t) +mẍ(t) = Fbrown(t) + Ffb,opt(t) (6.1)

The optical feedback force Ffb,opt(t) can be thought of as providing an
additional damping term Γoptẋ(t) which can be added to or subtracted from
the intrinsic damping term at the left hand side of the equation.

6.3 Experimental implementation

An additional advantage of an active feedback scheme is its versatility: in
principle it can be implemented with every device that allows a sufficient
sensitive motion transduction and generation of a sufficiently strong optical
force. Nevertheless we prefer the optomechanical device that allowed us to
demonstrate attractive and repulsive forces (see subsection 5.6.2) for prac-
tical implementation. In this section we will first comment on this choice
and afterwards discuss the full experimental set-up.

6.3.1 Optomechanical device choice

The exact phase relation between the oscillating beam and the feedback
force is of crucial importance for controlling the sign of the feedback and
switching between the amplifying and damping regimes. Of course this
phase relation depends on the delay in the feedback loop, which cannot be
altered easily in a flexible way. However the typical mechanical oscillation
periods that we encounter in our optomechanical devices are in the range
of 100-500 ns so tunable delays on the order of a few hundreds of nanosec-
onds are required to actively control the phase of the feedback force. The
required delay can also be implemented in flexible way by simple wave-
length tuning. To achieve this the phase (or sign) of the optical force needs
to be tunable. In contrast with the other optomechanical structures we have
implemented experimentally (a slot waveguide in a Fabry-Pérot resonator,
a single-mode waveguide in ring resonator, an ordinary directional coupler,
see section 5.6), this condition is fulfilled for the tunable force device.

To initiate the envisioned self-pulsating behavior a sufficiently strong
initial vibration is required to provide the feedback loop with an input sig-
nal. The initial vibration is provided by the brownian force, which is known
to be relatively weak (see section 4.2). Consequently for better detection of
the vibration we require the preamplification technique that we have elabo-
rated on in section 4.7.
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Figure 6.2: Tunable force device. a, Transmission spectrum of the tunable
force device. Also the transduction spectrum (taken by measuring the brow-
nian mechanical response at different probe wavelengths and no pump sig-
nal) is plotted. For the feedback experiments we set the probe wavelength
to 1549.5 nm (dashed vertical line). b, Measured force when sweeping the
pump length. For the feedback experiments we use the purely attractive
force (λattr=1542.2 nm) and the repulsive force (λrep=1544.1 nm).

The device we use for our feedback experiments is not the same as the
one we have introduced in chapters 4 and 5. Consequently we have to char-
acterize the device again in terms of transmission, transduction and optical
force response. These results are shown in Fig. 6.2. We also mention that
the suspended waveguides have natural mechanical frequencies 5.98 MHz
and 6.24 MHz.

6.3.2 Set-up

In Fig. 6.3 the pump-probe set-up with feedback loop is shown. First we
note that the preamplification technique was implemented: an EDFA fol-
lowed by an optical bandpass filter (2.4 nm bandwidth) is placed in front of
the detector to amplify the probe signal. The obtained electrical signal is
then used to drive an electro-optical modulator, which modulates a pump
laser. The generated optical force that acts onto the optomechanical device
closes the feedback loop. A delay line is implemented in the feedback loop.
In practice the delay line consists of an additional optical fiber that can be
varied in length between 0 and 31 m in steps of one meter. The delay of an
optical fiber is approximately 5 ns per meter so we can scan a full range of
155 ns with a resolution of 5 ns.
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Figure 6.3: Experimental pump-probe set-up with feedback loop and en-
hanced detection scheme. The devices are placed in a vacuum chamber to
reduce air damping.

6.4 Experimental results

In order to obtain regenerative oscillations the gain in the feedback loop
needs to be sufficiently high and the phase of the force needs to be set prop-
erly (see equation 2.45). The gain can be controlled through the optical
power that is injected by the pump laser, the phase can be controlled by
either the length of the feedback loop or the chosen pump wavelength. In
order to analyze the influence of the different parameters we will each time
keep two out of three parameters (pump power, delay length and wave-
length) constant and vary the other.

6.4.1 Pump power

In first instance we established an attractive optical force (λattr=1552.4 nm,
see Fig. 6.2b) and fixed the feedback loop delay length such that the optical
force provided a maximum amplification. The vibration was then mea-
sured for different optical pump powers (Fig. 6.4). For an optical power
of −14 dBm (estimated power at the device) we observe that the apparent
mechanical Q (≈10300) has more than doubled compared to the case with-
out feedback (≈4760). When the optical power is increased to −9 dBm
(and −4 dBm) we observe a strong amplification of the oscillations.

In this case the peak linewidth of the mechanical oscillation is much
smaller than the minimum achievable resolution bandwidth of the electrical
spectrum analyzer (10 Hz). In fact the measured peak shape is no longer
Lorentzian but rather a convolution of the Lorentzian shape we wish to
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Figure 6.4: Feedback experiments for different optical pump powers (esti-
mated power inside the device). The lowest (purple) trace (labeled ‘no fb’)
originates from the thermal brownian vibration without any optical feed-
back force. When inserting −14 dBm in the device, the damping is more
than halved and the apparent mechanical Q increases from 4760 to 10300
(values obtained through fits to a Lorentzian model). For higher optical
feedback powers we observe strong, coherent oscillations. The measured
responses are not Lorentzian because in fact we measure the Gaussian filter
shape of the electrical spectrum analyzer. The black solid lines are fits to
equation 2.47.
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measure and the Gaussian shape of the electrical band pass filter from the
electrical spectrum analyzer. Using this convolution model it is in principle
still possible to fit a curve that matches the experimental data. However we
found that such a fit does not permit a reliable extraction of the linewidth.
We can only conclude safely that the linewidth must be much smaller than
10 Hz.

In principle taking a sufficient amount of samples in the time domain
and performing a discrete fourier transform would allow to determine the
peak width more accurately. The finitude of the time trace would cause
the final result of the discrete fourier transform in the frequency domain
to be convoluted with a sinc2 window function with a 3 dB bandwidth of
approximately 1.2 fs

N where fs is the sampling frequency (needs to be at
least twice as large as the mechanical resonance frequency according to the
Nyquist sampling theorem) and N the number of samples. In order to re-
solve the Lorentzian peak the sinc2 bandwidth needs to be smaller than the
spectral width of the Lorentzian peak (FWHM1.5dB) [7] so (1.2 2fmech

N <

1.2 fs

N < FWHM1.5dB). From this we can derive a condition for the re-
quired number of samples in function of the mechanical Q: 2.4Q < N .
However implementation of this solution was not possible within the time
frame of this work.

6.4.2 Delay length

In 6.5 the results of an experiment for different delay lengths in the feed-
back loop are shown. The pump wavelength (λattr=1542.2 nm for attrac-
tive force) and optical pump power are kept constant here. The length of
the feedback loop was altered in steps of 5 ns until we found maximum
damping (Q≈180, curve labeled ‘85 ns delay’). The damping is increased
over a factor of almost 16 (initial Q=2900). In this case the optical force
can be seen as an additional damping, which adds to the intrinsic damping
of the system. Shortening the feedback loop with 85 ns corresponds ap-
proximately to a phase shift of π (mechanical oscillation period ≈168 ns).
The exerted optical force is now subtracted from the intrinsic damping and
consequently strongly amplified motion is found (curve labeled ‘negative
damping’).

6.4.3 Wavelength tuning

Finally we show that in the proposed structure wavelength tuning can also
be used to switch between the damping and amplifying regimes (Fig. 6.6).
Again we set the delay length in order to achieve maximum damping for a
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Figure 6.5: Feedback experiments for different delay lengths in the feed-
back loop. The length of the feedback loop was set to achieve maximum
damping for λattr=1542.2 nm (Q≈180, curve labeled ‘85 ns delay’). The
damping increased with a factor of 16 compared to the case without feed-
back (initial Q=2900). Shortening the feedback loop with 85 ns retrieved
strongly amplified motion (curve labeled ‘negative damping’).
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Figure 6.6: Simple wavelength tuning allows to switch from the damped
regime (curve labeled ‘λattr=1542.2 nm’) to the regime of parametric in-
stability (curve labeled ‘λrep=1544.1 nm’).

purely attractive force (curve labeled
‘λFB,attr=1542.2 nm’). Simple switching of the pump wavelength to 1544.1 nm
(see Fig. 6.2b) is sufficient to get access to the regime of parametric insta-
bility (curve labeled ‘λFB,rep=1544.1 nm’).

For all feedback experiments presented here also shifts of the resonance
frequency were observed (see Fig. 6.4, 6.5 and 6.6). They might be related
to the fact that the feedback force is not purely acting as a damping force,
but also causes an optical spring force component.

Summarizing this chapter we have shown amplification and cooling of
micromechanical oscillators by means of active optomechanical feedback.
We demonstrated switching between the amplification and cooling regime
by simple pump wavelength tuning. Integrated micromechanical oscillators
might be a first step towards practical applications.
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7
Conclusion and outlook

Uiteindelijk bereikt ook de slak de ark, niet waar? En weet, in de duisterste
dagen kan je je nog steeds laven aan de borst van onze vriendschap.
Bram, Elewout, Koen, Marie, Wout (31 maart 2009)

7.1 Conclusion

THE work presented in this thesis is mainly focused on the exploration
and demonstration of the optical gradient force as a novel actuation

method for nanomechanical systems on a chip. We have first sketched the
broad context in which this work fits: a general introduction on photon-
ics, Micro-electro-Mechanical Systems (MEMS) and nanotechnology was
given in chapter 1. We have explained that a powerful symbiosis between
these fields exists and introduced the concept of Nano-Opto-Mechanical
Systems (NOMS).

Since our main target reader group consists of electronic and photonic en-
gineers a refresher on continuum mechanics is provided in chapter 2. In
this chapter we have reviewed all the necessary concepts that are required
to understand the mechanical aspects of our optomechanical devices.

The design and fabrication of nanophotonic passive structures in a silicon-
on-insulator (SOI) wafer through Deep-Ultra-Violet lithography can be con-
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sidered to be one of the core competences of the Photonics Research Group.
A brief summary of this technology can be found in chapter 3. However
since nano-optomechanical structures need to be freestanding (preferably
with subµmeter gap sizes) some additional issues must be resolved. In
particular critical-point-drying was presented as a solution for the stiction
phenomenon. Stiction occurs during the drying cycle of fluids (e.g. wet
etchants or rinsing water) that are in contact with the freestanding part of
the device. It can cause the destruction of the device through unwanted
sticking of the freestanding structure to a neighboring surface.

Accurate small displacement sensing in integrated optomechanical struc-
tures was discussed in chapter 4. We found that both index sensitivity and
phase sensitivity are important parameters that govern the overall sensing
performance. Index sensitivity describes how strongly the effective index
of a certain waveguide type changes with displacement. We have investi-
gated a few waveguide configurations (single-mode waveguide with sub-
strate, slotted waveguide and a pair of parallel single-mode waveguides).
We found that in the case of small gaps a field polarization that is parallel
to the direction of movement is beneficial for sensitive motion detection.
Phase sensitivity describes how efficient a (motion induced) phase change
is translated into a (measurable) output power change of the transducer.
This conversion is achieved by means of an optical resonator or interferom-
eter. We concluded that optical resonators with high finesse are beneficial.
By analyzing the dominant noise factors in the detection scheme we also
found that preamplification of the optical probe signal prior to detection is
highly beneficial in some cases.

Experimental results for the displacement sensitivity in the fm
√
Hz−1

range were achieved. However our theoretical calculations show that there
is still plenty of room for improvement (through smaller gaps, proper po-
larization). We also introduced the brownian thermal force in chapter 4.
The thermomechanical noise in micromechanical oscillators allows for cal-
ibration of other forces. Hence we have defined a detection and calibration
scheme for optical forces.

Subsequently in chapter 5 we discussed the main results of this work and
demonstrated optical forces on a chip in various configurations: a slotted
waveguide in a cavity, an out-of-plane moving waveguide in a ring res-
onator and forces between parallel waveguides. In this last structure we
also showed tuning between attractive and repulsive forces by simple pump
wavelength tuning. We pointed out a remarkable correlation between ef-
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fective optomechanical actuation and sensitive motion detection.

Finally in chapter 6 we demonstated a system with active optomechani-
cal feedback. In this scheme the recorded vibration is fed back to the me-
chanical oscillator as an optical force. Both sensitive detection and efficient
actuation are required to establish a sufficiently strong feedback signal. De-
pendent on the sign of the feedback the thermomechanical motion can be
damped or enhanced. In the latter case the regime of parametric instabil-
ity might be reached. In this regime the feedback is sufficiently strong to
overcome the intrinsic damping and strong coherent oscillations occur. We
also showed that the control over damping and amplifying regimes could
be controlled through simple wavelength tuning.

7.2 Outlook

For sure from the scientific point of view the future of optomechanics is
undoubtedly very bright. Nobody can really predict whether the field of
optomechanics will produce some commercial killer applications, but the
scientific value is unquestionable. The remarkable convergence between
nanoscale miniaturization in photonics and mechanics and the opportunities
that arise from combining these fields are simply too disruptive to ignore.
Not surprisingly the number of publications in the field is rapidly growing.
As we have explained in chapter 1 optomechanics might open the door to-
wards all kinds of fascinating quantum mechanics phenomena. However on
the shorter term also practical applications might not be out of reach (see
section 1.3.2). Especially in applications where GHz mechanical oscillators
are desired (e.g. mass sensing, reference oscillators and filters) optome-
chanics might save the day. The unprecedented displacement sensitivity
and actuation efficiency that potentially could be established within nano-
optomechanical structures might provide the key to overcome the dramat-
ically increasing stiffness in high frequency oscillators (stiffness increases
quadratically with mechanical frequency).

The findings presented in this work have set the trail for a new class of
nanophotonic structures, interacting with each other through light induced
forces. Whether integrated optomechanical devices will be as successful
and disruptive as their integrated electrical counterparts (Micro-electro me-
chanical systems) is an exciting question to be answered in the next decade.
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