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Dankwoord

Gent, juni 2013

Martin Fiers

Computers en programmeren hebben me steeds gepassioneerd. Dit was

reeds duidelijk toen ik op 14-jarige leeftijd in Q-basic een volledige snake-kloon

maakte met map-editor en items. Ook op de universiteit, ondanks het feit dat

ik geen computerwetenschappen heb gestudeerd, werd deze interesse duidelijk

toen ik m’n thesis (de complexe jacobimethode) mocht starten bij Peter Bienst-

man. Een belangrijk element van de thesis was namelijk het programmeren van

een simulatieprogramma.

Peter Bienstman, die tijdens zijn eigen doctoraat het programma CAMFR

heeft geschreven, bleek achteraf er geen groot probleem van te maken als ik tij-

dens mijn doctoraat opnieuw ging programmeren, met een nieuwe opzet: op-

tische circuits simuleren. Ik had het nodig om m’n onderzoek te doen maar het

zou wel even duren om dit te maken. Dit resulteerde in een programma met op

dit moment ongeveer 40000 lijnen code. Men kan zich dan afvragen: wat stelt

zoveel lijnen nu voor? Wel, ik kan u toch vertellen dat het een werk van lange

adem, veel zweet en nachtelijke uurtjes programmeerwerk was.

Thomas, die op dat moment zijn thesis was begonnen in onze groep, zit hier

ook wel voor iets tussen. Verdorie toch moest hij componentjes met 4 poorten

simuleren en dat ging nu net niet, enkel 2 poortjes lukte. Dit boekhoudkundig

probleem heeft ons enkele weken zoet gehouden, maar het resultaat loonde:

plotseling konden we optische filters simuleren. Dat hadden we niet in die

mate verwacht. Nu wilden we heel grote circuits gaan simuleren, maar daar-

voor was het programma te traag. Want ja, we wilden dan 1000 componentjes

tegelijk uitrekenen en dan krijg je van die 1000x1000 matrices die je moet in-

verteren enzovoort. Gelukkig kwam Ken vanuit de reservoir computing groep

to the rescue en programmeerde op korte tijd een efficiente matrix-klasse. En

toen hadden we een zeer snelle simulator. De volgende uitdaging was toen we

les moesten geven aan een 40-tal studenten en we hadden nog geen grafische
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interface om het wat gebruiksvriendelijker te maken. Bijgevolgd heb ik een paar

weken nachtelijke uurtjes geklopt om javascript te leren en een eerste concept

te maken van de grafische interface (opnieuw bedankt Ken voor de hulp toen).

De deadline was krap en ook al hadden we iets min of meer werkend, toch liep

het grandioos fout tijdens het practicum. Yannick, bedankt om het op dat mo-

ment toch in goede banen te proberen leiden. Ik kan uren blijven doorgaan

over de Caphe-verhalen, maar daarvoor dient het dankwoord eigenlijk niet. Ik

ga hier dan ook effectief beginnen met mensen te bedanken.

Allereerst, heel veel dank aan Peter Bienstman, als promotor, om me te

vertrouwen als ik voor de zoveelste keer een zijsprong nam in m’n doctoraat.

En ook bedankt dat ik me na m’n doctoraat kan blijven bezighouden met wat ik

graag doe, namelijk het product dat we toen gecreëerd hebben verder uitwerken

tot een commercieel product! Samen met het programma dat Wim oorspronke-

lijk begonnen is (IPKISS), gaan we een boeiende periode tegemoet. Wim, Pieter,

Danae, Joris en Erwin, en de coaches Greg en Bruno: bedankt! Binnenkort

lopen we tussen de EDA giganten.

Wat houdt zo een doctoraat dan in naast —in mijn geval— veel program-

meren? Voor de lezers die niet uit de groep komen: een doctoraat is typisch het

eindresultaat van +/- 4 jaar onderzoek, en neen, ’t is niet altijd even gemakkelijk

als sommigen van jullie beweren. OK, we moeten geen belasting betalen, en de

werkdruk is over het algemeen acceptabel, maar ons brein ziet toch af hoor in

die periode! Ik wil die lezers dan ook bedanken voor hun belastingsgeld.. hum,

ik bedoel, voor hun vertrouwen in wat we doen en te geloven dat het toch ook de

mensheid een beetje vooruit helpt. Meer hierover kan je lezen in dit doctoraat.

Veel plezier!

Menig collega heeft gelachen toen Kristof een zoveelste poging deed tijdens

de groepsvergaderingen om uit te leggen wat reservoir computing nu betekent.

Intussen heb ik het gevoel dat jullie de ontkenningsfase voorbij zijn, en dat jullie

reservoir computing al iets meer au serieux nemen. Aan die collega’s die nu

reeds wegzijn, Koen, Joris, Wout, ...: bedankt om de nieuwe mensen zo vlot te

ontvangen en niet al te hard te lachen met reservoir computing.

Een zeer dikke dankjewel aan Ilse en Kristien van het secretariaat! Wat jullie

doen mag niet onderschat worden. Wat ben ik blij dat ik steeds bij jullie terecht

kon voor al mijn problemen groot en klein!

Karel en Elewout! Glazen water omgekeerd op elkaars bureau zetten kan

toch amusant zijn. Bedankt Karel om samen een huisje te delen, en erna je

plaatsje af te staan aan Leen. Je droge humor weergalmt nog steeds door ons

huis, maar gelukkig ben ik nu alweer van je af zodat ik geen stapels afwas meer

moet verbergen. Bedankt Elewout voor de humoristische toon op het werk en

het vele werk dat je stak in de afscheidscadeautjes. Jammer dat ik niet weg was

voor jou ;) Diedrik, ooit worden we nog rijk met bitcoins! Hadden we maar niet



iii

geluisterd naar onze collega’s en er toen een 10000-tal gekocht.

M’n bureaugenoten zorgden in m’n doctoraatsjaren voor het nodige amuse-

ment. Ieder had zo z’n eigen stijl. Yannick, steeds zo enthousiast, sportief en

plichtsbewust. Zonder dat je het weet wordt je nog eens CEO. Bart, wandelend

rekenmachine, kon ik jou in m’n computer steken, dan had ik Caphe niet meer

nodig. Je enorme berg kennis verbaast me nog steeds, alsook je opmerkelijke

nieuwsgierigheid. Marie, altijd met een glimlach op de bureau, en voor ons

plantjes zorgen met de overschot van de thee. Nebiyu, for always smiling. I

hope you are fine in Leuven with your wife and child! Gunay, your turkish mas-

sages are the best, unfortunately there’s only a few people that agree with me!

Voor de mensen van ELIS (reservoir lab): ik heb me altijd zeer welkom

gevoeld door iedereen uit jullie groep. Er was geen enkel moment dat ik niet

kon langskomen met lastige machine learning vragen, van het begin van m’n

doctoraat tot de dag voor m’n interne verdediging. Ik voel me altijd in een

mini silicon valley als ik naar beneden kom (alhoewel de groep boven jullie

ironisch gezien niks anders doet dan met silicium werken). Bedankt! Ook Joni

en Ben, bedankt voor jullie immer kritische blik bij het nalezen van m’n papers

en business-plan pogingen, die heb ik ten zeerste geapprecieerd.

Thank you, Caphe-testing colleagues, Bendix, Sarvagya, Alfonso, Sam, Peter

DH, Thijs, Imad, Eva (in no particular order) and probably many others which

I have forgotten here. Thank you Raphaël, for not testing it (I had to put you in

somehow). Thanks Pauline and Kristof, for being such good listeners with all my

problems. Thomas, onze wiskundige discussies van topniveau —waaruit vaak

dan blijkt dat ik het weer fout heb geïnterpreteerd— blijf ik echt leukvinden!

Ook dank aan Podo, Jack, Dolfie, Boelie, Giry De Stomme Van Assche, Milky,

Neel, Nitram enzovoort. Bart, Jeroen, Floris, Sofian, Jonas, Joke, Xavier, jullie

zorgen altijd voor een goede sfeer, wherever we go!

Ik bedank ook m’n ouders om er altijd voor me te zijn geweest. Hoeveel keer

jullie logistieke problemen hebben opgelost, het is haast een wereldrecord denk

ik. Gilles, bro, bedankt voor de ’go kick some ass, brother!’ nota, die me tot Bel-

gisch kampioen heeft gekatapulteerd, en Geraldine, zussie, voor je optimisme

en de immer-vrolijke noot in huis.

Daarnaast bedank ik ook Noella, Ronnie, Els en Raph die steeds geïn-

teresseerd naar mijn doctoraatsverhalen geluisterd hebben. Jullie geloofden

steeds met volle overtuiging —of dat doen jullie mij toch geloven— dat ik iets

nuttigs deed! De Limburgse gastvrijheid heeft een wereld voor me open doen

gaan (omgekeerd met m’n onderzoek geldt dat waarschijnlijk niet ;) ).

Leen. Er is zoveel waar ik je voor wil bedanken. De meeste ken je wel al.

Als ik er dan eentje moet uitnemen: bedankt voor je vele geduld bij alles wat ik

doe. De manier waarop ik hier nu sta is dankzij jou: gelukkig, zelfverzekerd. De

wereld ligt aan ons voeten.
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4.1 Illustration of several simulation tools when designing a multi-

mode interferometer (MMI). An eigenmode solver (top left) cal-

culates the mode profile of a waveguide. This eigenmode is then

used as input for a Finite Difference Time Domain (FDTD) simu-

lation (top right). The output of this simulation can be sent to a

circuit simulation tool. Also, users might want to perform a part

of the simulation using their own code and link these to other tools. 77

4.2 An N-port optical component which is treated as a black box. If

the optical component is linear, the input-output relationship is

fully determined by the scatter matris S. . . . . . . . . . . . . . . . 80

4.3 Structure of a node with N ports. A linear and instantaneous node

is described by a scatter matrix S. State variables (e.g. temper-

ature and free carriers) can be added, accompanied by ordinary

differential equations (ODE). In this case the node becomes non-

instantaneous and can contain nonlinear behavior. . . . . . . . . . 82

4.4 Illustration of a microring resonator. It consists of two parts: the

directional coupler and the (bent) waveguide. We also show the

two memory-containing ports, which come from a laser and opti-

cal spectrum analyzer (OSA). All memoryless nodes are eliminated

from the circuit, so we end up with a small (2x2) generalized con-

nection matrix S of the circuit. . . . . . . . . . . . . . . . . . . . . . 87

4.5 A Coupled Resonator Optical Waveguide (CROW). Each section

is subdivided in a directional coupler and two waveguides. Port

numbers are shown in the left. . . . . . . . . . . . . . . . . . . . . . 90

4.6 Calculating the frequency response of a passive network. Using

KLU, a sparse matrix solver suited for circuit-like matrices, we can

easily calculate scatter matrices of very large networks. . . . . . . . 91

4.7 Left: topology used to simulate a complex system with ML and

MC nodes. Each circle represents a SOA. Splitters are not shown.

Right: the simulation time and memory usage increases linearly

with the number of SOAs. Clearly there is an advantage by elimi-

nating the ML nodes, both in terms of speed and memory usage. . 92

4.8 CROW: Optimizing the κi to match a certain filter (left). With pro-

cess variations, performance deteriorates (right). . . . . . . . . . . 93

4.9 Self-pulsation in a single (all-pass) microring resonator. . . . . . . 94

4.10 Dynamics of a system with three (all-pass) microring resonators

coupled with a feedback loop (zero roundtrip phase at the signal

wavelength), containing two 3dB-splitters, connecting the loop

with resp. a source and a detector. . . . . . . . . . . . . . . . . . . . 95



xiv
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–Summary in Dutch–

Elektronische toestellen zijn sterk verwoven in onze maatschappij. De meeste

toestellen voeren berekeningen uit, zoals het weergeven van een landschap in

een computerspel op een computer desktop, het uitvoeren van wetenschap-

pelijke berekeningen op een supercomputer (bijvoorbeeld proteïne-vouwen),

of een tekstberichtje tweeten op je smartphone. Al deze berekeningen worden

uitgevoerd op een hardware architectuur die is uitgevonden rond het jaar 1936

door Alan Turing: de Universele Turing machine. Samengevat betekent dit het

volgende: een centrale processor (Central Processing Unit, CPU) communiceert

met geheugen, die zowel de data als het uit te voeren programma bevat, en

in- en uitvoer laat het systeem toe om met de buitenwereld te communiceren.

In de hieropvolgende jaren is de technologie steeds verbeterd, met snellere en

kleinere systemen tot gevolg. De observatie dat het aantal transistoren op een

chip iedere twee jaar verdubbeld, heet ook de wet van Moore. Deze door Gor-

don Moore voorgestelde observatie is tot op heden nog geldig, alhoewel de ex-

ponentiële groei stilaan zal beginnen afvlakken.

1 Machinaal leren

Niettegenstaande deze computers reeds zeer krachtig zijn, zijn ze niet goed in

menselijke taken zoals patronen herkennen in grote datasets, het herkennen

van spraak, de motoren van een wandelende robot aansturen enzovoort. Het

heeft veel moeite gekost om een programma te ontwikkelen dat, met gebruik

van een Turing machine, getraind kon worden om een schaakspel te spelen en

om een menselijke tegenspeler te verslaan. Het onderzoeksveld van machinaal

leren houdt zich bezig met systemen te bouwen die, net zoals de mens, kun-

nen generaliseren en leren van voorbeelden. Een veelgebruikt hulpmiddel in

dit onderzoeksveld is een artificieel neuraal netwerk. Dit is een systeem dat

bestaat uit vele neuronen (typisch 1000 of meer), die via synapsen verbonden

zijn met elkaar. Deze neuronen zijn vaak niet-lineair, en het resulterende niet-
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lineaire systeem kan vaak nuttige berekeningen verrichten. Vele van de vooraf

vermelde problemen kunnen met deze systemen opgelost worden als het cor-

rect getraind wordt. Met een techniek die Reservoir Computing heet, wordt het

heel eenvoudig om deze systemen te trainen.

Meestal worden deze systemen op een computer gesimuleerd, waardoor ze

niet vermogenefficiënt zijn. Daarom gebeurt er onderzoek naar zogenaamde

neuromorfische componenten: dit zijn toestellen die bestaan uit kleine bouw-

blokjes die geïnspireerd zijn door het menselijk brein. In tegenstelling tot de

Turing machine werkt dit toestel asynchroon, waardoor geen kloksignaal moet

gedistribueerd worden op de computerchip. Bijgevolg wordt heel veel vermo-

gen bespaard. Als tweede voordeel geldt dat deze chips informatie inherent

op een parallelle manier verwerken, in tegenstelling tot de sequentiële werking

van een Turing machine. Dit betekent dat de informatieverwerking potentieel

sneller kan verlopen.

2 Fotonica

Tegenwoordig is het transferreren van informatie tussen of binnen computer-

chips verantwoordelijk voor meer dan 50% van de vermogenconsumptie van de

totale chip. Het optimaliseren van het vermogenbudget is dus zeer belangrijk.

Deze interconnecties vormen de grootste beperking voor electronica, omdat

de bandbreedte uiteindelijk wordt gelimiteerd door fysische processen van de

halfgeleidermaterialen. Voor een gegeven chipoppervlakte is steeds een maxi-

male bandbreedte, en dus een limiet op de informatieoverdracht naar de chip,

en op de chip zelf.

Fotonica biedt een oplossing op dit probleem. Gezien de draagfrequen-

ties van de optische signalen enkele grootteordes hoger liggen, maar toch

transparant zijn voor de materialen die typisch gebruikt worden in de halfgelei-

derindustrie, zijn de bandbreedtes ook enkele grootteordes groter. De infor-

matie wordt dan gemoduleerd op deze zeer hoge draagfrequenties. Op deze

manier kan informatie via licht, zonder veel verlies, getransfereerd worden over

verschillende honderden kilometers in een optische vezel. Fotonica is dus veel

efficiënter in het transferreren van informatie over lange afstanden, en daarom

wordt het dus ook gebruikt in de ruggengraat (backbone) van het internet, een

stelsel van zeer snelle computerverbindingen waarlangs het grootste deel van

het gegevensverkeer verloopt. Geleidelijk aan komen er producten op de markt

die het optisch signaal tot bij de huisdeur brengen. Dit heet Fiber To The Home

(FTTH). Het onderzoek naar on-chip interconnecties krijgt tegenwoordig zeer

veel aandacht, omdat dit potentieel het verbruik van de chip kan verminderen,

en de signaalbandbreedtes verhogen.
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Figuur 1: FDTD simulatie van een fotonischekristalcaviteit.

3 Machinaal leren en fotonica

In deze doctoraatsthesis combineren we de zeer hoge bandbreedtes van fo-

tonica met reservoir computing. We bestuderen een neuromorfische compo-

nent, gebaseerd op fotonischekristalcaviteiten, een optisch bouwblok die in de

onderzoekswereld van de fotonica regelmatig wordt gebruikt. Een dergelijke

bouwblokje slaat optische energie op in de mode(s) van de caviteit. Afhankelijk

van de kwaliteitsfactor (Q-factor) van de resonatie kan licht voor een lange of

korte tijd opgeslaan worden. We spreken over tijdschalen van 1-40 picosecon-

den. Doordat hoge energieën worden opgeslaan, kunnen niet-lineaire effecten

optreden. Het neurale netwerk dat we construeren is dus een niet-lineair dy-

namisch systeem, net zoals de andere artificiële neurale netwerken die in de

literatuur worden bestudeerd. Het type niet-lineariteit is dus wel verschillend

van de klassieke neurale netwerken. In dit doctoraat concentreren we ons op de

Kerr niet-lineariteit, een zeer snelle niet-lineariteit (typisch enkele femtosecon-

den) die de brekingsindex van het materiaal lokaal aanpast, proportioneel met

de lokale intensiteit van het optisch veld. Samengevat bestaat dit doctoraat uit

vier bijdragen.

Fotonische kristal modellering In hoofdstuk 3 simuleren we deze fotonis-

chekristalcaviteiten met behulp van twee simulatiemethodes. De eerste is de

zeer accurate, maar wel computationeel intensieve eindige differentie tijds-

domein (Finite Difference Time Domain, FDTD) methode (zie Figuur 1). De

tweede methode is de benaderde gekoppelde mode theorie (Coupled Mode

Theory, CMT). We tonen aan dat we de Kerr niet-lineariteit kunnen reprodu-

ceren met het benaderde model (met een gedrag dat zeer goed overeenstemt

met de FDTD simulaties). We bekijken ook de dynamica van twee in serie

gekoppelde caviteiten. Door het niet-lineaire Kerr effect zal dit systeem in som-

mige omstandigheden zelf-pulseren, een gedrag dat we met beide methodes

kunnen reproduceren. We concluderen dat we de fotonischekristalcaviteiten

met goede nauwkeurigheid kunnen simuleren met de benaderde gekoppelde

mode theorie, en we zullen deze simulatiemethode ook intensief gebruiken

doorheen de komende hoofdstukken.
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Nanofotonische modellering Om een groot nanofotonisch reservoir te kun-

nen simuleren, is een simulatieraamwerk nodig om dit efficiënt te doen. Daarom

is een nieuw raamwerk ontwikkeld dat zeer efficiënt niet-lineaire optische cir-

cuits kan simuleren, zowel in het tijds- als in het frequentiedomein (hoofdstuk

4). Het resulterende programma, Caphe, is niet alleen nuttig voor reservoir

computing, maar in veel applicaties binnen de nanofotonica, zoals het on-

twerpen van optische filters, het onderzoeken van CMT-gebaseerde modellen

en voor applicaties in de telecommunicatie, waarbij lasers, modulatoren en

detectoren gecombineerd worden tot een systeem.

Taak 1: spraakherkenning Met behulp van ons nieuw simulatieraamwerk,

simuleren we een groot reservoir bestaande uit fotonischekristalcaviteiten. Een

illustratie van het systeem wordt weergegeven in Figuur 2, waar iedere cirkel

een neuron voorstelt. Als eerste taak bespreken we de geïsoleerde gespro-

ken cijfers taak, een standaard referentietaak die vaak wordt besproken in de

reservoir computing literatuur. Onze experimenten1 zijn gebaseerd op eerdere

experimenten van K. Vandoorne, die een nanofotonisch reservoir van opti-

sche halfgeleider versterkers (Semiconductor Optical Amplifiers, SOAs) heeft

gesimuleerd (tot zover onze kennis reikt was dit de eerste keer dat een nanofo-

tonisch reservoir werd voorgesteld in de literatuur). We concluderen dat er

een optimale interconnectievertraging optreedt, waarbij het foutpercentage in

voorspelde cijfers 4.5% is. Dit is gelijkaardig aan de resultaten van het SOA

netwerk, en beter dan de beste klassieke hyperbolische tangens reservoirs. Uit

ons onderzoek blijkt ook dat de fotonischekristalreservoirs het beste werken als

ze dicht bij het lineair regime werken, dus als de ingangsvermogens laag zijn.

Taak 2: signaalgeneratie taak Met hetzelfde soort reservoir genereren we nu

periodische signalen. Dit doen we door het reservoir te trainen met een nieuwe

leertechniek. De opstelling is fundamenteel anders, omdat we de uitvoer van

het reservoir terugvoeden naar de invoer, zoals geïllustreerd in Figuur 3. In-

dien de uitvoergewichten (Wout ) goed worden getraind kan het systeem zelf-

standig arbitraire periodische signalen genereren, zonder dat de gewichten

verder moeten worden aangepast na de training. De vernieuwing zit in het

feit dat we een fotonischekristalcaviteit reservoir gebruiken, in plaats van de

klassieke discrete tijd hyperbolische tangens reservoirs. We concluderen dat de

nieuwe leertechniek ook van toepassing is op ons fysisch nanofotonisch reser-

voir, en dat de performantie beter is (voor evenveel neuronen) dan die van een

1In de wereld van machinaal leren spreekt men vaak van experimenten indien men iets
simuleert. In de fotonicawereld spreekt men van een experiment als er een gefabriceerde chip wordt
uitgemeten. In dit doctoraat gebruiken we voornamelijk de machinaal leren conventie. De resul-
taten zijn dus voornamelijk afkomstig van simulaties.



Figuur 2: Illustratie van een reservoir computer. De invoer (links) wordt aan

het reservoir gevoed (midden). Een uitleeslaag (rechts) extraheert infor-

matie van het reservoir.

Figuur 3: Illustratie van een reservoir met terugkoppeling van de uitvoer. Het

principe is hetzelfde als bij een normaal reservoir, maar de uitvoer

wordt teruggekoppeld naar de invoer.

klassiek reservoir.

De experimenten die in dit doctoraat zijn uitgevoerd tonen theoretisch dat

we een neuromorfisch toestel kunnen maken gebaseerd op fotonischekristal-

caviteiten. Dit kan leiden tot een nieuwe reeks neuromorfische toestellen

die sneller en vermogen efficiënter zijn dan de software-gebaseerde alter-

natieven. Deze kunnen gebruikt worden om complexe taken op te lossen zoals

spraakherkenning, het leren van arbitraire periodische signalen enzovoort.





English summary

Electronic devices are everywhere in our lives. Most of these devices perform

some sort of computation, for example rendering a landscape in a video game

on a desktop computer, performing scientific calculations such as protein fold-

ing on a supercluster, or tweeting a text message on your smartphone. Almost

all of them rely on a hardware architecture that was invented around 1936,

called the Universal Turing machine, invented by Alan Turing. Loosely speak-

ing, a central processing unit (CPU) communicates with memory, which con-

tains both the data and the program to be executed, and input/output allows

the system to communicate to the outside world. In the years that followed,

each improvement has focused on miniaturizing these systems, making them

faster and processing more data. This scaling obeys Moore’s law, stated by

Gordon Moore, which says that the number of transistors on a computer chip

would double roughly each two years. Even today, this observation is still valid,

although the growth will eventually slow down.

1 Machine learning

These computers, although already extremely powerful, are not very good

at human-like tasks: finding patterns in a huge amount of data, recognizing

speech, controlling the actuators of a walking robot, and so on. It took a great

amount of effort to create a program, using the principles of the Turing ma-

chine, that could play a game of chess and defeat a human player. The field

of machine learning is a research field that tries to build systems that are able

to generalize, and learn from examples, much like humans can. A tool that is

commonly used in this field is an artificial neural network. This is a system

that consists of a large number of neurons (typically 1000 or more), which are

connected to each other through synapses. The neurons are usually nonlinear.

The resulting nonlinear dynamical system is able to perform computation, and

it appears, when properly trained, to be able to cope very well with several of

the aforementioned problems. A subfield of this research is called reservoir

computing, which makes the training of these systems particularly easy.
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Because these systems are typically simulated on a computer, they are not

really power efficient. For this reason, researchers are trying to create so-called

neuromorphic devices, i.e., chips that contain building blocks that are directly

inspired by neurons, and that do not follow the general pattern of the Turing

machine. Because such a system operates in an asynchronous manner, it can

avoid the energy consumption due to clock distribution. Also, these chips are

inherently parallel, similar to the artificial neural network, as opposed to the

sequential operation of a Turing inspired machine.

2 Photonics

Nowadays, optimizing the power budget is very important. Data connections,

i.e., transferring data on or between chips, take up more than 50% of the total

power consumption of a computer chip. These interconnects pose a huge bot-

tleneck for electronics: the electronic bandwidth is ultimately limited by physi-

cal processes of the semiconductor material, and for a given square inch of die,

there’s only so much information that can get on or off the chip.

Photonics offers a promising solution to the interconnect problem. It does

not have the bandwidth limitations that electronics have, because the carrier

frequencies are a few orders of magnitude larger, yet these optical signals are

fully transparent for these high frequencies. This means that light can transfer

a data density that simply cannot be reached on the same wire using electron-

ics. With photonics, one can also transmit light over 100s of kilometers of fiber

without much loss, so photonics is much more power efficient for transferring

data over long distances than electronics. Photonics already takes care of the

internet backbone, and it is getting used more and more in end products such

as Fiber To The Home (FTTH). Also, the research in on-chip optical intercon-

nects is gaining much attention, again because it can improve the bandwidth

and reduce the power consumption.

3 Machine learning and photonics

In this dissertation, we combine the extremely high bandwidths of photonics

with reservoir computing. We study a hardware neural network based on a spe-

cific type of optical component called the photonic crystal cavity. This compo-

nent stores energy in the mode(s) of the cavity. Depending on the quality factor

(Q-factor) of the resonance, light can be stored for a short/long time, on the

order of 1-40 picoseconds. Because cavities can store high amounts of energy,

it becomes possible to study nonlinear effects that only occur for high powers.
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Figure 1: FDTD simulation of a photonic crystal cavity.

The neural network constructed from these cavities is therefore a nonlinear dy-

namical system, although the nonlinearities are different from the ones we en-

counter in classical artificial neural networks. In this dissertation, we focus on

the ultra-fast (on the order of femtoseconds) Kerr nonlinearity, which changes

the material refractive index locally proportional to the intensity of the field.

Summarized, this dissertation exists of four contributions.

Photonic crystal modeling In chapter 3, we simulate these photonic crystal

cavities using two methodologies: the accurate, but computationally intensive

Finite Difference Time Domain (FDTD) (see Figure 1), and the approximated

Coupled Mode Theory (CMT). We show that we can reproduce the Kerr non-

linearity with the approximated model (with a quasi-perfect behavior), and we

investigate the dynamics in a series of two coupled cavities. The nonlinear dy-

namics cause the system to self-pulsate for certain parameters, an effect that we

can reproduce using both methodologies. The conclusion is that, with good ac-

curacy, we can model these resonators using the approximated coupled mode

theory, which we will use extensively throughout the next chapters.

Nanophotonic modeling As a second step towards simulating a large nanopho-

tonic reservoir, we created a framework for the efficient simulation of (option-

ally highly nonlinear) optical circuits, both in the time and in the frequency

domain (chapter 4). The resulting framework, Caphe, is not only used for

reservoir computing, but for many applications in the field of nanophotonics,

mainly for designing optical filters, investigating CMT-based models and for

telecommunication applications (laser-modulation-detection).

Task 1: speech recognition Using our novel framework, we simulate a nanopho-

tonic reservoir with photonic crystal cavities (a reservoir typically looks like

Figure 2, where each small circle represents a neuron). We first perform the

isolated spoken digit recognition task, a commonly used benchmark in reser-
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Figure 2: Illustration of a reservoir computer. The inputs (left) are fed to the

reservoir (middle). A readout layer (right) then extracts information

from the reservoir.

voir computing. Our experiments2 were guided by previous experiments of K.

Vandoorne, who used a nanophotonic reservoir of Semiconductor Optical Am-

plifiers (SOAs) to solve the same task (which was, to the best of our knowledge,

the first time a nanophotonic reservoir was proposed). We conclude that there

is an optimal interconnection delay, which produces Word Error Rates (WER)

of about 4.5%, which is similar to the SOA network, and better than state-of-

the-art classical hyperbolic tangent reservoirs. Also, we find that the photonic

crystal cavities work best close to the linear regime, i.e., when the input powers

are not too high.

Task 2: signal generation task Using the same reservoir, we generate periodic

signals by training the reservoir with a novel learning method. This setup is

fundamentally different from the previous one, because we now feed back the

output of the reservoir to the input, as shown in Figure 3. By properly train-

ing the weights of the readout layer of the reservoir (Wout ), the system can au-

tonomously generate arbitrary periodic signals after training without further

modifications to the reservoir. The novelty is that we have used our photonic

crystal cavity reservoir, instead of the typically used hyperbolic tangent discrete-

time reservoirs. We conclude that the new learning method is also applicable for

this physical nanophotonic reservoir, and that the performance, for the same

number of neurons, is better than the performance of the classical hyperbolic

tangent reservoirs.

The experiments that were conducted theoretically show that we can create

a neuromorphic device based on photonic crystal cavities. This can lead to a

2In the machine learning literature one typically uses the term experiments, when simulations
are performed. In the photonics literature, an experiment typically means actually measuring a
physical device. In this dissertation we mainly use the machine learning convention. This means
most results in this dissertation are the result of simulations.
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Figure 3: Illustration of a reservoir with output feedback. In addition to the

original reservoir, the output is fed back to the input.

new breed of neuromorphic devices that are more power-efficient and faster

than software-based equivalents in solving difficult tasks such as recognizing

speech, learning arbitrary periodic patterns and so on.





1
Introduction

Over the past decades the amount of research related to the human brain has
grown tremendously. Why are people interested in this type of research? The
answer is quite simple: humans are really good at ... human-like tasks: steering
a car, distinguishing a cat from a dog, (un)successfully reading the hand-writing
of a colleague and so on. All these tasks are very difficult to solve with a regular
computer which uses a pre-determined step-by-step algorithm. Let’s take the
example of an image recognition task: suppose we want to create an algorithm
that will distinguish the picture of a cat from the picture of a dog. You could
write down properties of a cat, being generally more furry, smaller, and with a
longer tail, and then try to detect these features in the picture. On that basis, the
computer then decides whether the picture is showing a cat or a dog.

But imagine that suddenly you add an additional class, let’s say an elephant:
then again you’ll be looking for unique properties (for example the big ears)
and add them to your algorithm. And so on. All of this is very cumbersome,
and it is exactly these type of questions that sparked the research of artificial
intelligence and machine learning. With Machine Learning (ML), you can feed
in thousands of images of different animals (optionally together with the correct
classification), and let the computer itself become able to learn the features that
distinguish one animal type from the other. If the training has succeeded, it
will be able to associate unseen images with the correct animal. All of this can
happen without writing an explicit algorithm that is dedicated to this task.
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Machine learning has been used successfully to perform a wide variety of
tasks, ranging from speech recognition and hand writing recognition to robot
locomotion, epileptic seizure detection and so on. Research in this field has
looked for inspiration in different areas. For instance, mathematically inspired
methods such as kernel machines [1] were fueled by the research field of statis-
tics. Bayesian Networks (BN), based on probabilistic graphical models, are of-
ten used to solve decision problems under uncertainty (for example: given a set
of symptoms, what is the disease), and Dynamic Bayesian Networks (DBN) are
used for temporal problems.

Artificial Neural Networks (ANN) are a tool for information processing, and
use more biologically plausible models inspired by neuroscience. The latter is
now an extensive research area with many variations and flavors, one of which
is Reservoir Computing1.

Despite these achievements, the capacity of the artificial neural networks we
built so far are inferior to the capacity of the human brain. The human brain of a
grown-up person has about 1011 (one hundred billion) neurons, and each neu-
ron is connected on average to 7000 other neurons through synapses [2]. Still,
it only consumes about 23 watt in rest state! Compare this to a modern super-
computer: if we could, with one computer operation, model one connection of
the brain, and we would need to model 1015 connections, then this would corre-
spond to a computational power of one petaflop2. Although it is very difficult to
speak of an average firing rate [3], let’s assume for simplicity that a neuron fires
100 times per second. This means we need a supercomputer with 100 petaflops
to model a human brain. Too see things in perspective: the fastest supercom-
puter available at the time of writing (see [4]) is the Sequoia, at Livermore, and
delivers an impressive 16.3 petaflops for a power consumption of 7890 kilowatt.
Nature is far ahead of us here.

Of course, this has to do with the standard architecture of a modern com-
puter. A computer is good at processing large amounts of data, i.e., number
crunching, following an explicit algorithm which you tell it to execute. It does
not try to replicate the structure of the brain. So you’d need to tell the computer
to simulate neurons and synapses using connection matrices, complex models
of neurons and so on, which poses a considerable overhead to the computer.
If, on the other hand, we completely abandon the normal CPU architecture,
and make a hardware architecture that resembles the brain (inspired by neural
networks), then we can drastically reduce the power needed to perform these
calculations. This is because, in this case, we embed the connection matrices

1But also a Bayesian Network could be implemented as an Artificial Neural Network.
2A flop is the abbreviation for floating point operations. It is used commonly in computer sys-

tems to denote the computational power of a system. One petaflop means 1015 floating point oper-
ations. More common is the term flops, which refers to floating point operations per second.
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and neuron models in the hardware itself. This is exactly the topic of this dis-
sertation: designing a hardware implementation of a neural network.

As hardware platform we will use nanophotonics. The reason we choose this
platform is because it has several advantages over electronic implementations.
First, light has an amplitude and a phase, which means that more degrees of
freedom are present in the network. This is beneficial for the computational
power of the system. Second, in electronics, the signal speed is ultimately lim-
ited by capacitors and resistors in the circuit, hence this limits the speed of pro-
cessing. The available bandwidth in photonics on the other hand is several or-
ders of magnitude larger. Furthermore, photonic circuits have nonlinearities
which can operate at the ps or even fs time scale.

It is still too early to tell which will be the killer application for photonic
reservoir computing. Until now, most of the research in this field has focused
on solving benchmark tasks which are well-known for classical reservoir com-
puting in order to be able to compare the advantages and disadvantages w.r.t.
the classical case (i.e., software only). One of these tasks is the speech recog-
nition task [5–8], and it has been shown theoretically that these optical imple-
mentations can outperform classical reservoir computing. The research in this
dissertation, together with previous research, confirms that optical reservoirs
can solve these problems faster and more efficiently.

However, the design tolerances for photonics are very stringent, and have to
be taken into account when designing a nanophotonic reservoir. In particular,
the refractive index is sensitive to slight variations in thickness of the processed
wafers and the actual thickness of the guiding structures. Especially in resonant
structures, this can lead to a significant shift of the resonance. If a reservoir
is designed to work on a certain resonance, then it is important to make the
designs tolerant to these variations.

Furthermore, the focus of previous and current research in photonic reser-
voir computing has been on off-line learning rules. Nevertheless, another im-
portant class of learning rules, the on-line learning rules, provide a way to im-
mediately feed back information about the dynamics of the system during train-
ing. Accounting for these dynamical effects during training can be very benefi-
cial for certain tasks and has not yet been investigated so far in optical reservoir
computing. A research paper by D. Sussillo [9] has sparked the interest of the
reservoir computing community. In this paper, a new on-line learning rule was
proposed that is exceptionally robust for highly dynamical systems —such as
our nanophotonic neural network— and that can be used for several applica-
tions such as signal generation and an N-bit memory.

The remainder of this chapter is structured as follows: first, we will explain
how the current generation of computer chips is reaching its limits after a long
history of scaling to smaller dimensions. We show how nanophotonics has the
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potential to revolutionize the industry of information processing, because it can
overcome these limitations. We then briefly introduce the reader to this field,
starting from photonics in general and then moving on towards photonics on a
chip, i.e., nanophotonics. After that, we introduce a list of nanophotonic com-
ponents that could be used for creating a nanophotonic neural network. We
then describe the goals of this dissertation, and introduce the thesis outline.

1.1 Information processing: the current state

The data that we have to our disposal nowadays is quasi-unlimited. Mainly
by the advent of the internet3 and the World Wide Web (invented by sir Tim
Berners-Lee and Robert Cailliau), the amount of data has grown exponentially.
Nowadays we look at YouTube videos, stream a movie to our tablet, have video
conferences and use video surveillance. Furthermore, computers perform a va-
riety of resource intensive tasks such as image recognition, speech recognition
and analyzing the behavior of visitors on a web-site.

The reason why it is possible to keep analyzing the increasing amount of
data, is because the semiconductor industry has continuously scaled down the
dimensions of transistors, the basic building block of virtually any computa-
tional device. A modern CPU has more than one billion (109) transistors. For
smaller dimensions, the threshold voltage needed to switch the transistors is
lower (along with reduced resistance and capacitance), such that they are faster
and consume less power. However, the race towards faster processors has ac-
tually slowed down (and even halted). This is because it becomes increasingly
difficult to fabricate smaller devices. One can increase the speed of a chip by in-
creasing the current, but at some point, chips generate just as much heat as the
package is able to dissipate. Also, signal timing becomes very important and for
higher speeds it becomes much more difficult to keep correct operation of the
different functional blocks on the chip. Moreover, electronics runs into band-
width limitations: ultimately, there is a limit to the amount of information one
can carry over an electronic wire. This is illustrated in Figure 1.1 where we show
two electronic wires that transfer information. In this figure, A refers to the to-
tal area of all cross-sections4. In [10] it is shown that the maximum bandwidth
is proportional to the ratio of this surface cross-section of the wires divided by
their squared length, i.e., B ≤ PA/l 2. P is typically around 1016 for a resistive-
capacitive on-chip wire. The ratio A/l 2 is a fundamental upper bound and is
determined by the used materials and system geometry.

3Internet used to be a shorthand for internetworking, which was the result of interconnecting
different networks in order to exchange data.

4We could, instead of using one large cable of cross-sectional area A, use several small cables of
the same total cross-sectional area A, and obtain the same total bit-rate capacity B .
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Figure 1.1: Illustration of the capacity limit of electronic wires. The band-

width is proportional to A/l 2, which means that there is a physical

limit on how much data can be sent over a certain distance given a

limited area A. In modern microprocessors, we are close to this limit.

But there are other problems as well. Interconnections (i.e., sending around
data on a chip) nowadays take up more than 50% of the total power budget of
a microprocessor, and this is rising towards 80% [11]. There are also ecological
reasons why we should consider optimizing the power budget of these intercon-
nections: in the US in 2006, the amount of power consumed in datacenters was
estimated to be 1.5% of all US electricity [12, 13], and this power consumption
approximately doubled in 2011.

Using photonics is the only known physical solution to circumvent this
bandwidth limitation. The underlying reason is the very high carrier frequency
of optical signals, which, for telecommunication wavelengths is on the order
of 300 THz. This means that dielectrics can be used to guide the waves, which
have very low losses. For example: in optical fibers, a fascinating bandwidth
of 70 Tb/s over a single fiber has recently been reported [14], and commercial
systems can send up to 500 Gb/s of information through a single fiber over a dis-
tance of 700 kilometers. Also on-chip, the bandwidth supported by a dielectric
waveguide is much larger than that of a resistive metal wire.

Photonics offers a solution to many other problems for interconnections,
of which we only mention a few here: first, the interconnection energy can,
in certain circumstances, be lower than its electrical equivalent. Second, with
photonics one can create very precise timing in clocks and signals (reducing
the need for synchronization circuitry). This is because the degradation (loss,
time jitter) of optical signals in dielectric materials is several orders of magni-
tude smaller than the degradation of electrical signals in metallic wires. Third,
there is no electromagnetic interference. As a consequence of all previously
mentioned points, the overall design complexity of a chip can be reduced. A de-
tailed description of all possible benefits of optical interconnects can be found
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Figure 1.2: The electromagnetic spectrum. The most interesting part for pho-

tonics is in the visible to near-infrared window. Silicon becomes trans-

parent around 1110 nm, and two wavelengths often used in telecom-

munication are wavelengths around 1310 nm and around 1550 nm.

Other material systems such as Silicon Nitride operate in the visible

region.

in [11].

In the next section, we give a small introduction in the field of photonics,
and we then further elaborate on nanophotonics as a platform with great po-
tential for faster and more power-efficient information processing.

1.2 Nanophotonics

In photonics we study the interaction of light with matter. More specifically, the
field studies the propagation and the generation of light in different media such
as dielectrics, air and metals.

Photonics has many applications such as sensing (gas sensing, biosensing),
telecommunication, lighting, photovoltaics, CD/DVD drives and so on. For
most photonic applications, the wavelengths of interest are between the visible
and the infrared, as shown in Figure 1.2.

A recent trend in photonics is the drive towards miniaturization of com-
ponents and integrating many of them on a single chip. These so-called
(nano)photonic integrated circuits have a better performance, are cheaper, are
more robust, and consume less power than bulk photonics, than low-contrast
integrated photonics and than electronics.

One excellent material for guiding light is silicon. Silicon has very low losses
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(a) Layers of the SOI stack. (b) Standard etch depths of 70 and
220 nm.

Figure 1.3: The layers of a standard SOI stack. The thickness of the bottom

Silicon layer depends on the way the SOI stack was fabricated and

whether or not the final wafer is thinned. The top layer is patterned

to create nanophotonic structures. Typically, etch depths of 70 and

220 nm are used.

in wavelengths that are useful for telecommunication (1310 nm and 1550 nm),
and thanks to the high index contrast, we can produce very small devices. To
make nanophotonic chips, typically one starts from a Silicon On Insulator (SOI)
wafer, see Figure 1.3(a). Using different resists and etching processes, the wafer
is then paterned (see Figure 1.3(b).

1.2.1 Fabrication of nanophotonic chips

There are essentially two ways to define optical features on-chip. Both methods
are based on a resist that covers the chip. Part of the resist is then removed, and
in a next step, the unprotected parts of the chip can be etched, or other mate-
rials can be deposited on top of it. The first method for modifying the resist is
by using electron beam lithography. In electron beam lithography (often abbre-
viated as e-beam lithography), a beam of electrons is incident on the resist in
order to remove parts of it. For example: photonic wire waveguides are fabri-
cated in [15, 16] and photonic crystal cavities are fabricated in [17, 18]. Even
though e-beam steering can allow accurate dimensional control, it is slow and
unsuitable for mass production due to the small writing area. Figure 1.4 shows
some examples of nanophotonic components.

The second way to define optical features is by using a resist that is sensitive
to light (a photoresist). Photoresists are used a lot in electronic chip fabrication,
and moreover silicon is a good material to guide light, so we can reuse standard
Complementary Metal Oxide Semiconductor (CMOS) technology to manufac-
ture photonic chips. In this technology, the SOI wafer is patterned using deep
UV lithography. Recent advances in the lithography processes made it possi-
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(a) Crossing (b) Taper

(c) SEM image of a crossing (d) SEM image of multiple tapers

Figure 1.4: Some examples of nanophotonic subcomponents created by opti-

cal lithography. These components are building blocks for integrated

optical circuits. Because a nanophotonic circuit is planar, crossings

(left) are sometimes needed. Tapers (right) are used to spread light

from a narrow waveguide to a broad one. On the bottom, Scan-

ning Electron Microscope (SEM) pictures of the fabricated devices are

shown.

ble to accurately pattern optical structures with a dimensional control of 1-5
nm [19], which enables mass-fabrication of nanophotonic devices and circuits.
A detailed step-by-step description of the process we use at imec can be found
in [19].

One big challenge when it comes to guiding light on a chip, is to control the
light in a very accurate manner. The features that exhibit guiding properties
are only sub-micron scale (e.g., 450 nm thick and 220 nm high for a rectangular
waveguide), and the phase of the light is very sensitive to slight variations in
these dimensions. Surface roughness causes scattering and back reflections,
which lead to more losses and performance degradation. We will discuss the
impact of this precision on the performance of our devices in chapter 3 and 6.

1.2.2 Nonlinearities

Nonlinear processes cause a change in the refractive index n of the material. De-
pending on the used materials and the type of nonlinearity, the strengths of the
effects can vary over different orders of magnitude. Furthermore, the timescale
at which the different nonlinear effects occur varies from the microsecond (µs)
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scale to the femtosecond ( f s) scale.

The fastest nonlinearity that we will encounter in this dissertation is the Kerr
effect. The Kerr effect causes the refractive index to change in response to an
applied electric field. This can be either an externally applied field or the opti-
cal field itself. In the latter case, n = n0+n2I , where I is the intensity of the light
and n2 is the Kerr constant. As n2 is usually very small, this effect is only relevant
for high intensities. For silicon, n2 is on the order of 10−13cm2/W for telecom
wavelengths [20] (which is still a factor 200 higher than in silicon oxide). In res-
onant structures, the Kerr effect can cause a bistability of the output, and very
interesting nonlinear behavior arises when coupling several of these cavities.

One of the other important nonlinearities that has to be taken into account
is the temperature effect. Due to temperature changes caused by high opti-
cal powers or resistive heating, the refractive index can vary according to n =
n0 + dn

dT ∆T . For silicon, dn
dT ' 1.86 ·10−4K −1 [21, 22]. Sometimes heaters are po-

sitioned on top of the optical structures in order to control the refractive index,
for example in nanophotonic beam steering [23, 24].

In nanophotonic resonators such as photonic crystal cavities and ring res-
onators, the intensity inside the resonating structure can become very high,
meaning that nonlinear effects will play a more important role. In addition
these resonant devices are very sensitive to phase changes caused by refractive
index changes. We can estimate the wavelength shift ∆λ using the following
equation:

∆λ

λ
= ∆n

n
, (1.1)

where ∆n is the change in refractive index. In the case of a thermal effect, for
λ' 1550 nm and n ' 3 and a temperature increase of ten degrees, this results in
a significant shift of about 1 nm.

1.2.3 Building blocks for optical neural networks

As we explained previously, nanophotonics could be used as a platform to cre-
ate an artificial neural network. Artificial neural networks, which we will discuss
in more detail in chapter 2, consist of a large number of nonlinear elements
that are connected to each other and together perform computation. There are
several potential building blocks to consider when designing such a nanopho-
tonic neural network. Semiconductor Optical Amplifiers (SOAs) have been ex-
tensively investigated in the doctoral thesis of K.T. Vandoorne [8], and ring res-
onators are being investigated by T. Van Vaerenbergh, see for example [25, 26].
Another interesting class of components are photonic crystal cavities, which are
the emphasis of this doctoral thesis. The main differences between photonic
crystal cavities and the other devices are:
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• Photonic crystal cavities are passive devices (as opposed to SOAs, which
consume approximately 1 mW per SOA). If the insertion loss (IL) of a cav-
ity is sufficiently low, we do not need much regeneration of the signal in
the network, leading to low-power reservoirs.

• Cavities store energy in a cavity mode. This leads to a considerable build-
up of energy, which causes nonlinear effects such as temperature effects,
the plasma dispersion effect due to free carriers, and Kerr-nonlinearities
to become present. This is an advantage when a reservoir task needs non-
linearity. Furthermore, the cavity has a time constant, which is a memory
mechanism that is similar to that in leaky hyperbolic tangent reservoirs.
By playing with the dimensions of the device, we can modify this time
constant.

• The resonance mechanism for a ring resonator and a photonic crystal
cavity are very similar. However, a photonic crystal cavity is inherently
bidirectional. This can be advantageous because this adds additional
feedback paths into the system.

• Photonic crystal cavities can have two possible architectures. Either the
cavity is put within the guiding structure (inline cavity), which means that
the transmission only equals unity when the device is at resonance. In the
other case, the cavity is next to the waveguide (side cavity), and the trans-
mission equals zero at resonance. This makes them behave fundamen-
tally different, and gives additional degrees of freedom when designing a
reservoir.

• The cavity can be made to be very compact, which means we can put a
large number of cavities on one chip. This is especially true for 1D wire
cavities (which are discussed in section 3.3), which can be fabricated with
a very small footprint of about 10-20 µm using SOI technology. Ring res-
onators on the other hand, with bend radii of 5 µm and larger, have a
footprint of at least 100µm2, and SOAs, with a length of at least 500 µm,
are relatively large compared to the other two devices.

1.3 Goal

The goal of this dissertation is twofold.

First, we assess whether we can design a nanophotonic reservoir computer
based on passive photonic crystal cavities, which we can train to perform com-
putation. We want to train this novel architecture for the speech task, where we
use a conventional off-line learning rule. Additionally we investigate whether
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we can successfully use an on-line learning rule and train the network to gener-
ate periodic signals. Moreover, we identify and study the design challenges for
fabricating a passive nanophotonic reservoir.

Second, we provide the researchers in nanophotonic reservoir computing
with a framework with which they can model current and future optical cir-
cuits. It has to be fast and flexible, and it has to allow the simulation of different
topologies easily. Furthermore, it needs to have an efficient way to add new
building blocks. This has resulted in the circuit simulator called Caphe5, which
turned out to be useful not only for reservoir computing applications, but for
the nanophotonic research field in general.

1.4 Thesis outline

This thesis is structured as follows: in chapter 2, we introduce the field of reser-
voir computing, and discuss the learning methods which we will use throughout
this dissertation.

Chapter 3 then deals with the detailed modeling of photonic crystal cavities,
the nanophotonic building block which we use for constructing the reservoir.

Then, in chapter 4, we discuss the mathematical framework which we have
developed during this thesis, where we use high-level approximated mathemat-
ical models to simulate large networks of nonlinear nanophotonic components.

Afterwards, we will perform simulation experiments on two different tasks.
The first task is the speech recognition task, discussed in chapter 5. In this chap-
ter, we train a nanophotonic reservoir of photonic crystal cavities so it can clas-
sify isolated spoken digits.

The second task is a signal generation task, where the same reservoir is sim-
ulated with a feedback loop, and where the reservoir is trained to generate peri-
odic patterns.

Chapter 7 finally deals with the main conclusions and future perspectives.

1.5 Publications

Publications in international journals

1. M. Fiers, E. Lambert, S. Pathak, P. Dumon, B. Maes, P. Bienstman, W. Bo-
gaerts, Improving the design cycle for nanophotonic components, submit-
ted for publication in Journal of Computational Science, (accepted).

5The name originally refers to CAvity PHEnomenological modeling framework, much like CAvity
Modeling Framework CAMFR, developed by my promoter Peter Bienstman.
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2. T. Van Vaerenbergh, M. Fiers, J. Dambre, P. Bienstman, Simplified descrip-
tion of self-pulsation and excitability by thermal and free-carrier effects in
semiconductor microcavities, Physical Review A, 86(6), p.063808 (2012)

3. M. Fiers, T. Van Vaerenbergh, F. Wyffels, D. Verstraeten, B. Schrauwen,
J. Dambre, P. Bienstman, Generating Periodic Patterns Using Optical Res-
onators, submitted for publication in IEEE Transactions on Neural Net-
works and Learning Systems.

4. T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Mor-
thier, B. Schrauwen, J. Dambre, P. Bienstman, Cascadable Excitability in
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to the circuit level and back (invited), SPIE Optics and Photonics, Czech
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microring, Proceedings of the 2012 Annual Symposium of the IEEE Pho-
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4. W. Xie, M. Fiers, S. Selvaraja, J. Van Campenhout, P. Absil, D. Van Thourhout,
High-Q photonic crystal nanocavities on 300 mm SOI substrate fabricated
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International Conference on Group IV Photonics, United States, p.30-32
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2
Reservoir Computing

“I think I can say fairly that Deep Blue did not destroy chess. There was perhaps
even a mini boom in chess popularity as a result of the Deep Blue matches.”
(Feng-hsiung Hsu, one of the main programmers of Deep Blue, after Deep Blue’s
1997 match win over World Chess Champ Garry Kasparov).

As we have mentioned in the introductory chapter, there are several ways to
process information. On one side, there’s the conventional computer, which is
good at processing large amounts of data, following a predefined step-by-step
algorithm. However, there is a wide variety of tasks which humans typically find
easy to solve, but where the solution cannot be described adequately in an algo-
rithmic way. Typically these are tasks where one wants to understand the nature
of the input, and where one wants to be able to generalize, i.e., respond to un-
seen input, as is the case for speech and image recognition, robot locomotion
and so on. It is not surprising that there exist artificial systems inspired by the
human brain, that perform much better on these tasks. A particular brand of
so-called artificial neural networks are the topic of this chapter.

This chapter is structured as follows: in section 2.1 we first give an introduc-
tion to these two forms of computation, i.e., conventional versus brain-inspired
computation. In section 2.2 we give an introduction to the field of machine
learning. A decade-old technique called Reservoir Computing (RC) makes it
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particularly easy to perform training, and is routinely used in this dissertation.
Therefore, we give a more rigorous introduction to Reservoir Computing in sec-
tion 2.3.

This chapter does not aim to be a comprehensive discussion on machine
learning methods nor a rigorous proof of mathematical properties of these
systems. Instead, we want to give an overview of the main ideas behind ma-
chine learning and reservoir computing, from a practical and engineering point
of view. The doctoral thesis of D. Verstraeten [1] provides a more complete
overview of state-of-the-art techniques and contains in-depth information on
the history, mathematics, comparison with other techniques, different perfor-
mance evaluation methods and so on.

2.1 Information processing

The theoretical framework described by Alan Turing [2] formed the basis for
some first discrete-symbol computers, and as such it forms the basis for most
modern systems able to perform computation. In his work, Alan Turing pre-
sented an abstract device, the Turing machine, that describes how algorithms
can be executed. It consists of a processing unit (the head) that contains a pro-
gram which defines its behavior. The head operates on a separate storage device
for symbols (the tape). This architecture can be rendered more general by stor-
ing the program in the same memory as the data. This architecture, called the
universal Turing machine can simulate any given Turing machine.

An important property of the universal Turing machine is that the behavior
of its processing unit is explicitly programmed. Moreover, it is step-based, and
it reads discrete symbols, not continuous values. The popularity of this archi-
tecture is due to various technological and historical reasons, and until today is
the most common way to perform computation.

This architecture was later adopted by Von Neumann, who describes an
electronic digital computer. This computer has a Central Processing Unit (CPU),
memory that stores both the programs and data, an external storage, and input-
output mechanisms. Almost all personal computers nowadays are based on this
architecture1.

Standard computer programs (that are executed on a Von Neumann-based
machine) are very good at processing large amounts of predictable data in a

1The term von Neumann architecture arose from von Neumann’s paper, "First Draft of a Report
on the EDVAC", dating from June 1945. It was unfinished when his colleague Herman Goldstine
circulated it with only von Neumann’s name on it. Credit should go to J. Presper Eckert and John
Mauchly for their contributions as well.

Alan Turing cites the First Draft in "Proposals for Development in the Mathematics Division of an
Automatic Computing Engine (ACE)," presented to the National Physical Laboratory, 1945, as the
definitive source for understanding the nature and design of a general-purpose digital computer.
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deterministic way. However, it is not the only architecture that is capable of
performing computation. The human brain, as a best example, is not an ex-
plicitly programmed, discrete, step-by-step system. And yet it is very efficient
in a range of tasks that a computer cannot solve easily, such as speech and im-
age recognition, controlling the motion of a robot arm, medical diagnosis and
so on. What makes our brain so unique? Most of it is due to the fact that our
brain can learn by example, based on a limited dataset, and then generalize to
solve the problem with unseen input. It thereby “understands” the nature of the
problem, whereas the computer typically cannot.

These are the typical problems that are investigated in the research fields
of Artificial Intelligence and Machine Learning. Artificial Intelligence is a very
broad research field, and involves general problems such as how to define in-
telligence (see for example Alan Turing’s test). It investigates reasoning, per-
ception, communication, knowledge and so on. Machine Learning (ML) tech-
niques are used to solve many of the problems that are investigated in AI. One
important concept in this field is the Artificial Neural Network (ANN). These
systems appear to be computationally very rich, although it is not trivial to
train such a system. Artificial neural networks, when trained properly, outper-
form traditional algorithms in a wide variety of tasks: speech recognition, robot
control and localization, epileptic seizure detection, brain computer interfaces,
handwriting recognition, financial forecasting, attractor learning, tunable pat-
tern generators and many more.

A lot of research effort goes into efficiently training neural networks. Some
of these training methods are explained later in this chapter and give us a better
understanding of why these methods work so well. There is also a research effort
to try and make the neural network as large as possible. Just as an illustration,
we list some of these extraordinary large artificial neural networks.

The SPAUN The Semantic Pointer Architecture Unified Network [3] (SPAUN)
consists of 2.5 million virtual neurons. It is capable of remembering a sequence
of digits and predicting the next logical digit, almost in the same way as humans
do, but it takes one hour to simulate one second of neural behavior2.

A Cat’s brain In the paper "The Cat is Out of the Bag: Cortical Simulations
with 109 Neurons, 1013 Synapses" (2009), Rajagopal Ananthanarayanan and his
colleagues at IBM describes how conventional supercomputers can perform a

2Raymond Kurzweil predicts that within a few decades, machine-intelligence will exceed human
intelligence. This technological singularity, according to futurists such as Kurzweil, will be possible
thanks to the exponential growth of processing capacity, as predicted by Moore’s law.
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Figure 2.1: Image from "The Cat is Out of the Bag: Cortical Simulations with

109 Neurons, 1013 Synapses". Growth of the Top 500 supercomputers

(N=1 is the strongest computer, and SUM is the sum of all computing

power) overlaid with the results from the paper and a projection for

realtime human-scale cortical simulation.

full cortical simulation of the brain of a cat3. Figure 2.1 shows how they predict
that real-time human-scale simulations are inevitable by the year 2018.

SpiNNaker The SpiNNaker Project, involving several UK-based universities
and companies, including ARM, is developing a hardware platform based on
the ARM chip, targeting to combine 50,000 chips to create 1 billion of simple
computing elements. It is different than the other approaches, because the
focus of this project is to make an efficient implementation of a brain without
explicitly using the Von Neumann architecture. Instead, these very simple com-
puting elements look very similar to the neurons of an artificial neural network.

The Human Brain Project This large-scale European project4 is another
project that is aimed towards understanding the human brain. Its first goal
is to integrating several ICT-based research platforms, one of which is a Neu-
romorphic Computing Platform, which makes it possible to translate brain
models into a new class of hardware devices and to test their applications.

3This just illustrates the processing capacity of current supercomputers. This certainly does not
mean that we can now manufacture a robot cat or simulate a virtual cat on your desktop (for exam-
ple, this system does not yet get input from virtual sensing organs such as vision, touch and smell,
nor does it simulate any muscle or organ).

4http://www.humanbrainproject.eu/
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2.2 Machine Learning

The goal in Machine Learning is to create a system that, for a certain task, tries
to discover how the desired output is related to its inputs. This should be done
in a robust way, such that the system is able to respond to input it has not seen
before. Instead of mapping the input explicitly to the output, the system has
learned in some way, e.g. by generalizing from training examples. Fundamental
work on statistical learning theory [4] and neural networks [5] has made the field
of ML grow explosively. The combination of increasing computational power
and theoretical progress in understanding the nature of learning, has made ma-
chine learning into a well-established and respected research area.

2.2.1 Different learning methods

Basically, there are three classes of ML methods based on the way they imple-
ment learning:

• Unsupervised learning methods: These systems learn only from the ex-
amples presented to them. They have no clue as to what behavior is re-
quired. The main goal of these types of algorithms is to discover regular-
ities or structure in the data without explicitly having to program them.
Examples are Self Organizing Maps (SOM) [6] or K-means clustering [7],
and applications include data clustering and information retrieval.

• Reinforcement learning methods: In these methods, the system receives
information about how well it is doing, but it does not receive the exact
information of what the output should be. When presented with an ex-
ample input, the response of the system is evaluated and scored, but the
actual correct behavior is never given. These algorithms are popular in
the robotics community, as it is often easier to define a reward signal than
an explicit training signal. For example, a walking robot can be rewarded
for moving faster, and a penalty is given when it falls. The system then
learns from the rewards and penalties. This technique is also popular for
learning complex games such as Go [8] and Backgammon [9].

• Supervised learning methods: This type of learning mechanism relies on
a set of known input examples with a given desired output. This set is
used for training the system. Although in many real world applications
this information is not available, knowing the exact input and output for
several samples can greatly accelerate the learning process and lead to
superior accuracy.

It is also possible to combine several of the above-mentioned methods.
For example, a semi-supervised learning methods combines the first and third
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method. In many applications (especially in imaging), collecting label sam-
ples (i.e., known input-output pairs) is time-consuming and expensive, so this
technique relies on relatively few labeled samples (from which class separation
may be inferred), in combination with a large number of unlabeled ones (from
which the structure of the data can be discovered).

In this dissertation we focus on supervised learning methods, where we have
a priori knowledge of the correct output. Typically, this method involves the
minimization of a set of weights. To avoid that these weights become too large
(which is typically an indication that the system is overfitting), some sort of
regularization is usually performed (this will be further explained in section
2.3.3.1). In one way, this is similar to the principle of Ockham’s Razor: simple
rules (i.e., rules where the weights are not very large) typically generalize better
(because they do not overfit).

As we mentioned before, Artificial Neural Networks (ANN) can be used to
solve machine learning problems. These ANNs are attractive because they are
biologically plausible (which means they resemble the way our brain is built),
and because they can be simulated very fast on current computers. In the next
section we explain in more detail what these ANNs are.

2.2.2 Artificial Neural Networks

An Artificial Neural Network (ANN) is essentially a model of the brain structure.
It consists of neurons and connections, just like the brain. Most of the time the
term Neural Network is used, and from the context it is usually clear whether
it involves an artificial or biological network. A simple ANN with a feedforward
topology is shown in Figure 2.2.

2.2.2.1 Neuron types

Depending on the application, different models are used in literature. Here we
will briefly discuss three neuron categories.

Threshold gates or perceptrons A first category of neurons, based on McCull-
och-Pitts neurons, only produces digital output. They and are also called
threshold gates or perceptrons. Even though these models are very simple,
they are universal for computations5 with digital input and output, meaning
that every Boolean function can be computed by some feedforward neural
network with a single hidden layer.

5Computationally universal or Turing complete means that they can model any Turing machine.
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Input layer Hidden layer Output layer

Figure 2.2: A simple artificial neural network. This kind of network is called a

feedforward neural network (with one hidden layer), since all signals

propagate in one direction and there are no feedback connections. A

neuron can either perform a weighted sum on it’s inputs and apply

a nonlinear transformation (such as a thresholding function or a sig-

moid function), or it can be based on differential equations, as in the

case of spiking neurons. In the case of a spiking neural network, the

connections (in this case also called synapses) can also embed an ex-

ponential filter.
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Neurons based on an activation function (analog neurons) A second gener-
ation is based on computational units that apply a nonlinear "activation func-
tion" with a continuous set of possible output values, based on a weighted sum
of the inputs. The most common activation function is a sigmoid-type function
such as the logistic or fermi function:

fermi(x) = 1

1+exp(x)
, (2.1)

and the tanh function, given by:

tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x)
= 2fermi(2x)−1 (2.2)

It is proven that using these neurons, certain boolean functions can be com-
puted with fewer gates than using a NN with threshold gates [10]. A character-
istic feature of these neurons is that they are differentiable, which means that
they support learning algorithms that are based on gradient descent, such as
backpropagation [11, 12].

The input-output relationship of the first two neuron types is given by

y j = f

( ∑
i∈S j

Wi j yi

)
(2.3)

Where yi is the output or activation level of the i th neuron, S j is a set of
indices of neurons with connections leading from neuron i to neuron j , and
wi j is the weights between those connections.

Spiking neurons A third type of neurons is commonly referred to as spiking
neurons. These are biologically more realistic but they are more complex to
model. The resulting networks are called Spiking Neural Networks [13, 14] and
it has been shown theoretically that they can perform more complex opera-
tions than analog neurons [15]. These neurons communicate through isolated
spikes instead of continuous values, and the information is entirely encoded in
the precise timing and/or firing rate of the neurons. The use of spiking neu-
ral networks for engineering applications has been the topic of the PhD of B.
Schrauwen [14]. The biggest challenge for these networks is to find a proper way
to represent data. Usually, information in the real world is of analog nature, and
this has to be translated to isolated events (spikes). There are different ways to
encode analog information in spike trains and each method has its advantages
and disadvantages. In this thesis we do not investigate spiking neurons, but
the interested reader can find a good starting point for further reading in [14].
This does not mean that this architecture is uninteresting for photonics. In fact,
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(a) (b) Recurrent network

Figure 2.3: Different network topologies for neural networks. (a): a feedfor-

ward neural network or multilayer perceptron. (b): a recurrent neural

network.

in our research group, the research of T. Van Vaerenbergh is dedicated to sim-
ulating and using optical spikes using microring resonators as nanophotonic
component for information processing.

In this dissertation we will construct a nanophotonic neural network based
on Photonic Crystal Cavities. These cavities can be classified as analog neurons,
and we will investigate their activation function in detail in Chapter 3.

2.2.2.2 Network topologies

Neurons are connected to each other through connections. The topology (i.e.,
the way they are connected) is fully determined by the weight matrix W, where
Wi j determines both the connectivity (a nonzero value means neuron j is con-
nected to neuron i) and the strength -or weight- of the connections. Usually,
neural networks are divided into two important sub-classes, depending on their
connectivity:

Feedforward Neural Networks (FFNN) or Multi-Layer Perceptrons (MLP)
(see Figure 2.3(a)). In a feedforward network there are no recurrent connec-
tions. The nodes of the network are divided into different layers, with infor-
mation flowing from the input layer, through different intermediate layers to
the output layer. These intermediate layers are also called hidden layers be-
cause their activation is usually not measured. One important consequence
of the unidirectional propagation is that these networks cannot store temporal
information. This means that in most cases these systems are inadequate for
temporal problems such as signal generation or speech recognition. Neverthe-
less there are solutions to this problem, for example by implementing a tapped
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delay line into which the samples of the inputs are fed chronologically, where
all taps are used as inputs to the network. This is called a Time-Delay Neural
Network (TDNN) [16]. The drawback of this approach is that many parameters
are needed (more with increasing delays) and furthermore it is a rather artificial
way to incorporate time which has no biological analogon.

The best-known training rule is the error-backpropagation rule [5], in which
the weights of the connections are repeatedly adjusted so as to minimize a mea-
sure of the difference between the actual output vector and the desired output
vector.

In general, feedforward neural networks are robust to noise, they can learn
by example and generalize the problem, and they have the ability to model
highly nonlinear systems.

Recurrent Neural Networks (RNN) (see Figure 2.3(b)). The solution to the
shortcoming involving temporal data is to introduce feedback loops in the sys-
tem, where every connection has a delay. This has an important consequence:
the new state of the system not only depends on the inputs, but also on the
previous state of the system, and hence on all previous inputs. In this way
information stays present in the network for a certain time and is mixed with
new information as the simulation progresses. This means that the RNN is ide-
ally suited for solving temporal problems. Applications include the controlling
and modelling of complex dynamical systems [17], speech recognition [18, 19],
handwriting recognition [20] and so on.

Although it looks like a RNN solves the shortcomings of a FFNN, there are
not many learning rules and those that exist are rather involved and converge
slowly [21]. Most learning rules use gradients to update the network parame-
ters [5, 22–24], but these become very small after only a few timesteps. There
are extensions to these learning rules using second order derivatives of the er-
ror surface, but these are very involved [25, 26]. Another problem is that slight
changes in initial parameters can have sudden changes in the qualitative be-
havior of the system, making them dvery difficult to train.

2.2.2.3 Hardware implementations of artificial neural networks

Artificial Neural Networks are simulated on a computer. In practice, this means
constructing a connection matrix, setting up a mathematical model of the neu-
rons, and then applying matrix multiplications and nonlinear function transfor-
mations to simulate the reservoir step by step. There exists dedicated simula-
tion software for simulating spiking neurons. A graphical processing unit (GPU)
can be used in some cases to speed up the simulations.

The translation stage from a neural network model to a conventional com-
puter program that is executed by a microprocessor is far from optimal. While a
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computer program essentially runs sequentially, a neural network is inherently
a parallel system, where the calculations in all neurons happen at the same time.
This is what powers research towards hardware implementations of neural net-
works. In the electronic domain, research has demonstrated implementations
such as an FPGA [27], VLSI [28] and even systems based on a single dynamical
node [29]. Also the SpiNNaker project which we encountered in the introduc-
tion of this chapter is a good example of a hardware platform in the electronic
domain. In the field of nanophotonics, K. Vandoorne has shown using simula-
tions that an integrated circuit of Semiconductor Optical Amplifiers (SOAs) can
be used to solve a speech recognition task [30], and in this dissertation we will
continue research on nanophotonic neural networks.

A more detailed overview of the existing research towards hardware imple-
mentations can be found in [31].

2.3 Reservoir Computing

In this section we describe a relatively new (about a decade old) field of research
in machine learning. The Reservoir Computing (RC) method tries to overcome
the complex learning issues with recurrent neural networks. The first early de-
scriptions of what is now called Reservoir Computing date from the nineties
and can be found in [32, 33]. Both papers describe systems in which a neural
network is fixed and left untrained, and only a separate output layer is trained.
After these publications, it took some time before the same idea emerged again.
In two seminal publications, H. Jaeger [34] and W. Maass [35] independently
described a novel training method, which marked the birth of the research field
of Reservoir Computing. Later, in 2004, another publication by J. Steil [36] pre-
sented similar ideas but from a completely different perspective. In this section
we will give a short introduction to the approach of the three authors, and we
conclude this last section with a rigorous mathematical description of a RC sys-
tem. We show how the RNN is constructed and how the output layer is trained,
both on-and off-line.

Echo State Network (ESN): In [34], H. Jaeger describes the Echo State Network
(ESN). This is a recurrent neural network with random topology and random
weights. The weight matrix is globally scaled until the desired dynamical regime
is reached. The input is fed into this dynamical network, and the states of the
network are then used to train a simple linear regression or classification func-
tion. The ESN is very popular from an application point of view, because of
its ease of construction and its excellent performance on a variety of difficult
benchmark tasks. An ESN has fading memory. This means that, when the sys-
tem is perturbed, after a while the network returns to a rest state and forgets the
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input it has seen. Formally, the network should asymptotically forget its initial
state when it is driven by an external signal. An equivalent term used in this
context is that the network has the echo state property. The ESN transforms the
input to a high-dimensional state space of the neural network. The dynamics
should be rich enough, so the linear readout can easily separate different fea-
tures of the reservoir. However, when the network is too excitable, it can move
to a regime where the echo state property no longer holds. The optimal dynam-
ical regime strongly depends on the actual application, and finding the optimal
parameters for this regime can be a laborious job of tweaking the global scaling
parameter, the input scaling, the type of neuron and so on. Nevertheless, find-
ing an optimal reservoir is purely an optimization task and, in most cases does
not involve fundamental roadblocks.

Liquid State Machine (LSM): The Liquid State Machine (LSM), presented by
W. Maass [35], is an architecture that shows many similarities with the ESN.
Where the ESN is more practical from an engineering point of view and does
not aim to be biologically correct, the LSM originates from a research lab ac-
tive in robotics and neuroscience, where the focus lies in the modeling of neu-
rons in a way that is biologically realistic (spiking neurons). The LSM contains
two parts: a dynamical network of spiking neurons, and output neurons that
transform the high-dimensional transient states into stable readout values. Two
properties are defined as necessary and sufficient conditions in order to per-
form computation with a LSM machine: a separation property (SP) and an ap-
proximation property (AP). The separation property states that different input
streams should lead to a separation between the trajectories of internal states6.
The approximation property states that the output should be able to distinguish
and transform different internal states into given target outputs. Whereas the
SP depends mostly on the complexity of the liquid, the AP depends mostly on
the ability of the readout mechanism to adapt itself to the required task. The
simplicity of the readout makes it easy to evaluate the information processing
capabilities of the model. The LSM has been used successfully in speech recog-
nition [37] and robotics [38], where a spiking neural network is used to perform
the computation. As we discussed in 2.2.2.1, spiking neurons have proven to be
more powerful for computation, but it is not trivial to encode/decode temporal,
analog data into a train of spikes. Also, it is much more difficult to tune the neu-
rons into the right dynamical regime because of their discontinuous behavior.
As a consequence, most of the reservoir computing implementations are of the
ESN type.

6In the case where you consider the LSM to be a real physical liquid, the separation property
could reflect that different perturbations give rise to different wave patterns in the liquid.
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Figure 2.4: By mapping the original feature space to a higher dimensional fea-

ture space, it becomes easier to separate them with a linear plane (hy-

perplane). In this example, time traces of two (different) spoken digits

are shown, which represent the state of the reservoir. Here, it is clear

that the constructed linear plane can separate the two digits relatively

well (picture courtesy of D. Verstraeten).

BackPropagation DeCorrelation (BPDC): In BackPropagation DeCorrelation
(BPDC) [36], a network is trained on-line, i.e., the weights are changed during
the simulation while new samples are fed to the network. The BPDC rule adapts
only the weights of the output neurons where the rest of the RNN is kept fixed.
It aims at temporal decorrelation of the network activations w.r.t. the inputs
and one-step backpropagated errors, such that the output neuron can optimally
read out from the dynamical reservoir.

Reservoir Computing A common idea behind all these approaches is that
these systems transform the input signal to a high-dimensional state of the so-
called reservoir (here, it is just a synonym for the RNN), which makes it easier to
extract relevant features. The readout neurons are then trained to extract these
features, whereby we rely on well-known and tested methods such as linear
regression and regularization. As an illustration, Figure 2.4 shows a (reduced)
phase space of a reservoir that processes two spoken digits. It also shows how a
two dimensional plane can easily separate the two spoken digits.
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Figure 2.5: A classical discrete-time Reservoir Computing (RC) system. It con-

sists of a Recurrent Neural Network (RNN), called the reservoir, an in-

put layer and a readout layer. The reservoir weights Wr es are usually

chosen randomly (but globally scaled to reach the desired regime),

and are unmodified. Input u[k] is fed to the reservoir and excites the

dynamical system. Features of the dynamical system can be extracted

by the linear readout layer. Using a set of known training inputs and

desired outputs, the output weights Wout are trained in order to mini-

mize the difference between the actual output and the desired output.

Multiple readouts can be trained to extract different features. For example,
in a robot there are different joints that have to be controlled, and different out-
put neurons can be trained to steer different muscles.

By far the most involving part of setting up a RC system is to tune the reser-
voir to the correct dynamical regime. Different parameters influence the dy-
namics of the reservoir, such as the size of the reservoir, the type of nonlinearity
and the topology. Optimal values for all these parameters depend on the spe-
cific task which needs to be solved.

The number of publications in Reservoir Computing has grown tremen-
dously over the past few years. The popularity of the approach lies in its sim-
plicity and good performance on a variety of tasks, such as speech recogni-
tion [27], detection of epileptic seizures [39], robot localization [40], time-series
prediction [41, 42] and so on. Most commonly, the reservoir is of the ESN type,
i.e., it uses sigmoidal analog neurons to simulate the RNN.
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2.3.1 Mathematical description of the reservoir

In this section we give a more rigorous mathematical description of a RC system.
We depict the system in Figure 2.5.

The states of a reservoir of size N at timestep k are then given by x[k]7, k ∈N.
x[k] is a column vector with dimensions (N ,1). The next state of the reservoir is
calculated using the following update equation:

x[k +1] = (1−η)x[k]+ηf(Wi n u[k]+Wr es x[k]), (2.4)

where Wi n (N ,K ) is the weight matrix to feed K inputs u[k] to the reservoir, Wr es

(N , N ) is the connection matrix of the reservoir with N neurons and η is the leak
rate of the neurons.

Typically, a reservoir is simulated in discrete time. Although in photonics we
are inherently making use of a continuous-time system, for this introduction we
will limit ourselves to a discrete-time system8.

f is the nonlinear activation function. As we mentioned before, in most ap-
plications we will use a hyperbolic tangent function:

tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x)
. (2.5)

An important property of a RNN is its spectral radius. The spectral radius is
defined as the absolute value of the largest eigenvalue of the system’s Jacobian
at its maximal gain state. For a hyperbolic tangent reservoir where each neuron
is described by f(x) = t anh(x), all neurons have a maximal gain of one and the
spectral radius can be simplified to:

SR = max
(∣∣ei g (Wr es )

∣∣) . (2.6)

The spectral radius gives an indication of the stability of the network. In a
nonlinear reservoir however, the actual gain is dependent on the current states
of the neurons. If this value on average exceeds 1, then instability can occur. In
most cases, a value close to 1 is desirable. Intuitively, the reservoir should react
with strong dynamics to input signals from different classes so that the prob-
lem becomes linearly separable. This enables the linear readout to more easily
perform the classification. For this reason, the spectral radius should be cho-
sen large, because then it is more sensitive to the input. On the other hand, if
the reservoir is too dynamic (and even chaotic or unstable), two slightly differ-
ent inputs can lead to two completely different trajectories of the system, and it

7In the remainder of this dissertation, we will use square brackets to denote a discrete-time de-
pendency, such as x[k], and round brackets to denote a continuous-time dependency, such as x(t ).

8The same theories and learning methods can be applied to continuous-time systems, if we sam-
ple the system at fixed time intervals, i.e., x[k] = x(∆tk). Given the typical timescales in photonics,
∆t is typically between ps (10−12 s) and ns (10−9 s).
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becomes impossible for the readout to extract useful information from the sys-
tem. This optimal regime is usually referred to as the edge of chaos (or rather,
the edge of stability). A rigorous proof on why this is beneficial is out of the
scope of this introduction, but can be found in chapter 2 of the PhD thesis of D.
Verstraeten, and in [43, 44].

Usually, the reservoir is constructed as follows (there are many variations on
this scheme, but for simplicity we only show the most common way to construct
the reservoir):

1. Wr es (N , N ): The weights are drawn from a continuous random distribu-
tion (e.g., a gaussian distribution with zero mean and unit standard devia-
tion) or discrete set (e.g.,-1,1), and globally scaled to reach a certain spec-
tral radius (see equation (2.6)). Usually, a good starting value is a value
close to, but smaller than 1. Often, only a fraction (usually 10%) of the ele-
ments of Wr es are non-zero. This determines the sparsity of the topology.
For typical benchmark tasks, around N = 1000 neurons are used.

2. Wi n (N ,K ): The input weights are constructed in the same way. They are
globally scaled with the input scale factor, and can be either sparse or fully
connected.

2.3.2 Training the reservoir

There are two different approaches to train a reservoir: off-line and on-line
learning.

Off-line learning In this technique, all input signals are fed to the network and
the dynamical responses of the network x[k] are recorded. Afterward, the out-
put weights Wout are trained by using all this data and the desired outputs of the
system. The speech task which we will investigate in chapter 5 has been trained
off-line.

On-line learning In on-line learning, the learning is done incrementally. The
output weights are modified immediately, or soon after a new sample is ac-
quired. In chapter 6, we will train a network to generate periodic patterns using
an on-line learning rule.

Since we will use both methods in this dissertation, we will elaborate on the
training procedures in the follow two sections.

2.3.3 Off-line training

Consider a dataset which consists of a number of examples, each of them being
a number of samples long. The dataset is first split into a train set I and a test-
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ing set J . For the train set, Ttr ai n,i is the length of the i-th example. Summing
them gives the total number of samples D tr ai n = ∑

i Ttr ai n,i , for i ∈ I . Simi-
larly, D test = ∑

j Ttest , j , for j ∈ J . In a first phase we feed all training samples
sequentially to the reservoir, and collect the states x[k] in a large state matrix A
(D tr ai n , N ). Furthermore, B (D tr ai n ,L) is a matrix with the desired L outputs.
The problem we want to solve is the following: find proper output weights Wout

(N ,L), corresponding to the linear readout layer, such that

A ·Wout = B. (2.7)

We assume this system is overdetermined, which is normally the case as the
number of neurons is fixed and usually we have many samples to feed to the
neural network. To solve this problem, we perform a least squares linear regres-
sion which minimizes the difference (calculated as a sum of squares) between
the desired output and the output of the reservoir:

Wout = min
W

‖A ·W−B‖2. (2.8)

To solve this problem we can use the pseudo-inverse of the matrix A, also
called the Moore-Penrose generalized matrix inverse [45]:

A† = (
AH A

)−1
AH (2.9)

Where we use AH to denote the conjugate transpose of the matrix A. The
solution for Wout is then given by:

Wout = A†B = (
AH A

)−1
AH B (2.10)

To our knowledge, all RC systems that have been studied before have a real-
valued readout layer. This also holds for the photonic simulations that were
performed in this dissertation: although optical signals are complex-valued, we
first transform them to real-valued signals, either by using the magnitude of the
signal or by splitting it into a real and an imaginary part. For the remainder of
this dissertation we will assume that A is real, so instead of using the conjugate
transpose of A we can use the regular transpose: AT .

After calculating the output weights, we can test the system by feeding the
test data into the reservoir. If the response of the system on the test inputs is
given by A′, then the output of the system is given by

y = Wout A′. (2.11)

The final performance of the RC system is then calculated by using some
metric involving the desired output of the testing set B′ and the actual output y
(for example, using the mean square error).
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In the previous method, we have considered a train and a testing set, which
is usually the case for classification tasks. Another class of tasks exists in which
we want to predict the next time sample. This is called one-step-ahead pre-
diction, and can be solved in the same way. The input is a time-series, and the
desired output is the same time-series but shifted by one timestep. This method
can also be used in signal generation tasks where it is called teacher-forcing. In
this case, a feedback loop is created after the training phase, replacing the input
by the trained reservoir output. Now the system has to autonomously generate
its next timestep. This is particularly relevant for robotics applications. The net-
work can have difficulties generalizing and can be very sensitive to noise after
training, but regularization and pruning can improve these results [46]. In the
next section, we discuss regularization in more detail.

2.3.3.1 Regularization

In solving equation (2.10), a big issue is the problem of overfitting. Overfitting
means that a model fails to capture the underlying properties of the data, and
usually occurs when the system is learning noise rather than trying to generalize
the problem. Overfitted models will typically perform very well on the training
set but very badly on the testing set. Consider, as an example, two young stu-
dents that are learning the multiplication tables with numbers above 10. The
first student is told to learn all combinations by heart. The second student is
taught to actually multiply the numbers and understand how 15*6 is actually
just 10*6 + 5*6. The first student, roughly speaking, is overfitting and will not
be able to multiply a combination of two numbers it hasn’t seen before. The
second student however, learns how to perform a general multiplication, and is
able to understand the underlying properties of the data9. The same happens
to the reservoir: if the system has too many parameters to be trained, there is
a risk that these parameters will capture the noise rather than the underlying
properties of the data. The solution to this problem is to use regularization.
This is done by adding a penalty term (scaled by γ) for large output weights to
the minimization problem:

Wopt ,γ = min
W

(‖A ·W−B‖2 +γ‖W‖2) . (2.12)

As norm, we have used the standard Euclidean norm10, given by the sum of
squares of each item:

||W||2 =
n=N−1∑

n=0

l=L−1∑
l=0

Wn,l . (2.13)

9Arguably, there’s an optimum where people use a combination of both remembering by heart,
and performing the calculation, in order to score high on a multiplication test.

10Other norms can be used too, giving rise to different properties of the regularization.
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This type of regularization (with Euclidean norm) is called ridge regression [47]
or Tikhonov regression [48], where γ is the ridge regression parameter. The op-
timal output weights are found to be:

Wout =
(
AT A−γI

)−1
AT B (2.14)

Another way to perform regularization is by is adding noise to the recorded
state values of the dynamical system before training [47]. However, adding noise
is inherently non-deterministic (which means reproducing results is more dif-
ficult), and the system has to be optimized for different noise levels. In con-
trast, the ridge regression parameter can be optimized with an algorithm that
is independent of the size of the dataset, which makes it computationally more
efficient for large datasets [49]. So in practice, the ridge regression method is
usually preferred.

2.3.3.2 Cross-validation

Correctly measuring the performance of a reservoir consists of several steps.
First, the dataset is split into a training set, a validation set, and a testing set.
Using the training set and validation set, one can optimize the parameters of
a reservoir (including the spectral radius, input scaling, but also the regression
parameter). With these optimal parameters, the performance is again measured
using the testing set, which contains unseen data.

If the number of samples is small, the choice of training and validation set
can influence the measured performance. For example, a class that needs to be
classified might be missed in the chosen training set, leading to misinterpreta-
tion of the results. To this end we will simulate the reservoir for different combi-
nations of training and validation sets. This is called cross-validation. Further-
more, in this process, we will look for the optimal ridge regression parameter γ
for each choice of training and validation samples.

It is easier to illustrate this process with an example (in fact, we will use this
method for the isolated digit recognition task in chapter 5). Consider there are
500 spoken digits. We combine the first 100 digits in set 1, the next 100 digits in
set 2, and so on. We now have 5 sets. To perform cross-validation, we will first
consider the training set 1,2,3,4, and test with the spoken digits from set 5. This
is called one fold. Next we will train using the samples from sets 1,2,3,5, and
use set 4 to test. This is the second fold. And so on. In this example, we have
F = 5 folds, where each set has been used once for testing, while the other sets
are used for training. For each fold f , we have trained the system for several γ,
logarithmically spaced to cover a broad range, and selected the best γ f for this
fold.

Ideally, for very accurate results, there should be as many folds F as there
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are spoken digits (this is called leave one out cross-validation). On the other
hand, the computational resources needed increase with larger F . A trade-off
between this computational cost and selection accuracy has to be made, and
for the speech task we chose F = 5.

In this dissertation, we are mainly focussed on performance trends that we
can discover as a function of the large amount of parameters. Furthermore there
are only a relatively few samples (500 samples). For this reason we decide, as
in K. T. Vandoorne’s doctoral thesis, not to use a testing set, so that we have
more samples for the parameter optimization. This means that the absolute
WER has no actual meaning (indeed, it would be unfair to re-use samples during
testing11). The advantage is that parameter trends will be slightly more accurate
due to having more samples in the training and validation set.

2.3.3.3 Unbalanced datasets and Fisher relabeling

Suppose a classification task has to distinguish between two classes A and B. The
output of the linear classifier should be 1 if the system recognizes class A, and
-1 if it recognizes class B. This can be done by either performing a least squares
regression (which minimizes the quadratic error between the projection of each
point onto a hyperplane), or by using the Fisher linear discriminant12, which
creates a linear hyperplane by minimizing the the within-class variance, while
at the same time maximizing the between-class variance.

There is a problem with least squares regression: if there are much fewer
examples of class A (n1 examples) than there are of class B (n2 examples), the
hyperplane constructed by the linear readout layer typically shifts towards the
class with more examples (in this case class B), and it can happen that the two
classes are not separated well by the hyperplane anymore. This means that the
reservoir will be less capable of generalizing when it sees new data. This is illus-
trated in Figure 2.6, where the dashed line represents the separating hyperplane
which is likely to yield more errors due to the unbalanced dataset.

To compensate for this unbalance, we can relabel the outputs of the classi-
fier. Instead of using 1,-1, we will use n1+n2

n1
,−n1+n2

n2
. The new labels reflect the

unbalance and counteract the shifting of the hyperplane. In [50] it is shown that
this type of relabeling is equivalent to using the Fisher linear discriminant (see
also [51]), hence the name Fisher relabeling.

The same issue will occur in the isolated digit recognition task. In this task,
one wishes to make a distinction between 10 spoken digits. This means we will
use ten classifiers, one for each spoken digit. Each classifier should return a

11As it would be unfair to have the examination questions before going to the actual exam.
12Often the Fisher linear discriminant is interchanged with Linear Discriminant Analysis (LDA).

The latter however uses a few more assumptions, such as normal distributed classes and equal class
covariance.
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Figure 2.6: In an unbalanced dataset, the linear separation plane can shift to-

wards the class with more samples. In this illustration two classes, A

and B are used. Because there are more samples of class B than there

are of class A, the separating plane (dashed lines) will be skewed to-

wards class B. In this case, the example of class B marked in red is

classified wrongly. By relabeling the weights (in this case, increasing

the strength of label ’A’, and decreasing the strength of label ’B’), the

resulting separation plane (full line) is more accurate, leading to a cor-

rect classification of the red ’B’. This technique is also called Fisher

relabeling.
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positive or negative response based on whether the corresponding digit was
applied on the input of the reservoir (positive) or not (negative). Without re-
labeling, there is a big unbalance in the dataset: when each digit has the same
number of examples, the classifier for the spoken digit ’1’ only has 1/10th of the
examples that return a positive response. Using the Fisher relabeling technique
we can compensate for this unbalance.

2.3.4 On-line learning

The disadvantage of off-line learning is that the learning is performed in
batches, in which all data has to be known before training. In on-line learn-
ing, the output weights are changed during training and new information can
be added to the network during the learning process. For example in stock
market prediction, as soon as a prediction is made, the actual stock market con-
ditions are available and the system can correct for errors it made in predicting
the current condition.

On-line learning is used often for training systems that predict the behav-
ior of a nonlinear dynamical system such as the Mackey-Glass system [52], the
Nonlinear Autoregressive Moving Average (NARMA) task and robot locomotion.

There are several ways to perform on-line learning. In the introduction we
have talked about BackPropagation DeCorrelation (BPDC) [36]. Another very
popular way to modify the weights is by using the Recursive Least Squares (RLS)
algorithm, which is a special case of the discrete Kalman filter [53, 54]. The RLS
rule is used extensively in the last chapter of this thesis, so we will give a brief
mathematical description of the method here.

The RLS method wishes to minimize the difference between the output y[k]
of a system and a desired function s[k] by recursively modifying the readout
weights. We define the difference between the output neuron and the desired
function as follows:

e−[k] = Wout [k −1]x[k]−s[k] (2.15)

In which the minus subscript is used to denote the error prior to the weight
update at time k. The next step in the process is to update the weights in such
a way that it reduces the magnitude of e−[k]. The error after the weight update
equals:

e+[k] = Wout [k]x[k]−s[k] = y[k]−s[k] (2.16)

All weight modification schemes have a simple goal: reduce errors during
training (|e+(t )| < |e−(t )|) and converge to a stable solution where the weights
do not change anymore (e+(t )/e−(t ) → 1).

In the RLS modification scheme, the output weights Wout are modified each
timestep according to the following rule:
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Wout [k] = Wout [k −1]−e−[k]P[k]r[k]. (2.17)

Here, we used ri = t anh(xi ). The outputs are sometimes referred to as firing
rates, which clearly refers to the firing-rate descriptions of a neuron13.

In a nanophotonic network, there is no equivalent of the firing rate. Instead,
to modify the weights, we will use the following equation:

Wout [k] = Wout [k −1]−e−[k]P[k]s[k], (2.18)

where s[k] can be either the complex amplitudes a[k] corresponding to the
mode of a photonic crystal cavity (see section 3.2.1), or we can use path splitters
to ’tap’ an amount of power from the network to a detector and use that for the
readout.

The P[k] matrix is a (N xN ) matrix that is updated at the same time as the
weights according to the following rule:

P[k] = P[k −1]− P[k −1]x[k]xT [k]P[k −1]

1+ rT P[k −1]r[k]
. (2.19)

Here P is a running estimate of the inverse of the correlation matrix of the
network rates r plus a regularization term, i.e.,

(∑
k r[k]rT [k]+αI

)
[55]. The ini-

tial value for P is given by:

P[0] = I

α
, (2.20)

in whichα acts as a learning rate. The convergence properties of this system
are explained in more detail in D. Sussillo’s paper [56]. In summary, α should be
significantly smaller than the number of neurons N , but not too small, because
then the weights can change so rapidly that the algorithm becomes unstable.
Whenα becomes too large, the training converges more slowly and training can
even fail. Typical values of α (for a network of 1000 neurons) range between 1
and 100.

A much simpler rule exists, that does not use a full matrix P but a single
scalar time-dependent learning rate η(t ). The weight modification rule is given
by:

Wout [k] = Wout [k −1]−η[k]e−[k]r[k], (2.21)

Although this basic delta rule cannot generate the same complexity of sig-
nals and converges more slowly than the RLS rule, it is much easier to imple-
ment, from a hardware point of view, and more biologically plausible.

13The analog tanh neuron is an approximation of a spiking neuron, where the output of the neu-
ron (given by equation (2.3)) represents the firing rate. Conceptually, this firing rate is proportional
to the repetition rate of spikes that are fired by the spiking neuron.
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2.3.4.1 Generating periodic patterns using FORCE

In 2009, a new technique called FORCE was proposed by D. Sussillo and L.F.
Abbott [56]. In their paper, the authors describe a technique which is used to
modify the chaotic spontaneous activity of a RNN into a wide variety of desired
patterns, such as the motor output for steering a robot leg. Initially, the authors
follow the ESN approach, where only a layer of output neurons is trained, but
later they use different architectures in which the internal weights of the RNN
are also trained, which is, from a biological point of view, more realistic. In this
dissertation we restrict ourselves to the ESN architecture, because it is easier to
implement, especially when designing a hardware reservoir, and computation-
ally less demanding.

In the case of a signal generation task, it forms an alternative to the off-line
teacher forced learning method.

The output neuron generates the periodic pattern which we want to train,
which is fed back to the input neuron, as shown in Figure 2.7. There are several
important differences with previous on-line learning approaches. First, in this
rule, it is no longer the desired signal s[k + 1] which is fed to the input during
training (one-step-ahead prediction as in teacher forcing), but rather the actual
network output y[k +1]. The learning rule (either RLS or the delta rule), which
keeps the error small, allows the system to sample instabilities in the RNN and
stabilize them. This difference, although numerically small, has an extremely
significant implication for the network stability. Because the method requires
the (first-order) error to be kept small, the authors call this method First-Order
Reduced and Corrected Error (FORCE).

Second, the spectral radius of the network (see equation (2.6)) is chosen
larger than one, which means that the network is initially unstable. As we
have seen before, a larger spectral radius means the network can respond with
richer dynamics, which can lead to better separation of trajectories in the high-
dimensional phase space. If it is chosen too high, the system becomes unsta-
ble and cannot give sensible information of the inputs anymore. However, it
has been shown in [57, 58] that the correct type of input (here: feeding back
the neuron output after the weight change) can induce a transition between
chaotic and nonchaotic states. Although the systems described in [56] are
based on leaky hyperbolic tangent neurons, we will show in this work that the
FORCE technique also works for nonlinear nanophotonic cavities, which can
also exhibit chaos when excited in certain regimes before the training phase.

Third, as opposed to other weight modification methods where the errors
e+(t ) and e−(t ) can be quite large, the weight changes in FORCE learning are
kept small during the simulation. This is done by making one large jump in the
output weights in the beginning of the simulation, in order to come close to the
desired signal, and then keeping the error small using an appropriate learning
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Figure 2.7: An RNN network with feedback. Note that the output weights

Wout [k] are now time dependent. The output is fed back to the in-

put. The purpose of this network is to autonomously generate peri-

odic patterns after Wout has been trained.

rule, such as the RLS rule.
Thanks to these three properties, the FORCE learning rule is very robust (it

converges easily) and stable (meaning that after a very long time the system is
still able to generate the same pattern).

Chapter 6 is fully devoted to the training of nanophotonic reservoirs using
this novel technique. We will demonstrate that it is possible to train a nanopho-
tonic reservoir that autonomously generates periodic patterns.

2.4 Software framework

All reservoir simulations performed in this thesis have been performed using
the the OrGanic Environment for Reservoir computing (OGER) [59]. OGER is
used to set up, simulate and post-process RC experiments. OGER is publicly
available14, is written in the Python scripting language, and it extends the MDP
toolbox [60], by providing extra functionality in the context of machine learning
in general and reservoir computing in particular. It contains different standard
reservoirs, datasets, tasks and and it contains most training mechanisms that
were described in this chapter.
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3
Photonic Crystal Cavities

Photonic crystals allow us to fully control the propagation of light in a dielectric
medium. Because of this, very compact structures can be made, and moreover,
light can be trapped in a very small volume (photonic crystal cavities), locally
increasing the intensity of the field. This allows us to take advantage of the non-
linear properties of the material, which are useful for many reservoir tasks. This
thesis is focused on performing reservoir computations with photonic crystal
cavities, and thus it is very important to understand the physics behind them.
This is explained in section 3.1.

Figure 3.1: A 2D photonic crystal cavity with a line defect (W1 defect).
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During this research we have performed a lot of simulations based on these
photonic crystal cavities1. For example, full-wave electromagnetical simula-
tions such as a Finite Difference Time Domain simulations (FDTD) are very
accurate, but consume a lot of time and become impractical for 100s of ele-
ments. Because of this, we seek descriptive models that need only a fraction
of the computation power (both in terms of speed and memory). In section
3.2.1 we explain the Coupled Mode Theory (CMT), a simplified analytical model
that allows us to focus on the dynamics of these cavities rather than perform-
ing brute-force simulations in FDTD. To check whether the CMT is accurate
enough, we perform a series of FDTD simulations and compare the results of
these simulations with the simplified model in 3.2.2. We find that the corre-
spondence between the two methods is very good, which means that from now
on we can use the simplified model for simulating large circuits.

Although the emphasis of this thesis is on theoretical results, we have al-
ready designed and measured photonic crystal cavities (section 3.3). We can
use these measurement results to better match the simulation parameters to
realistic values and, more importantly, they give us an idea of how close we are
to fabricating a full nanophotonic reservoir using the standard SOI technology
(as we have seen in section 1.2).

3.1 Photonic crystals: principle

The book Molding the Flow of Light [1] is an excellent reference for all theory on
photonic crystals. Although a full description is not possible here, we will sum-
marize the most important concepts in the next section. We briefly describe
why we chose to perform 2D simulations in section 3.1.2 and explain how non-
linearities are relevant to these cavities in section 3.1.3.

3.1.1 Periodicity and band gaps

The most important thing about photonic crystals is that they are periodic, as
can be seen in Figure 3.1. The repeating pattern is called the crystal lattice. Light
can be represented as a wave, and waves that meet certain criteria can travel
through a periodic potential without scattering (apart from impurities and de-
fects in the lattice). These are the so-called guided Bloch modes. Additionally, a
lattice can have a range of energies and directions in which light cannot propa-
gate. This is called a band gap. If, for some frequency range, a photonic crystal
prohibits the propagation of electromagnetic waves of any polarization travel-
ing in any direction, we say that the crystal has a complete photonic band gap.

1In the next chapter we give a more broad overview of possible modeling methods (see section
4.1). We only discuss Finite Difference Time Domain and Coupled Mode Theory here.
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Axis of
propagation

(a) 2D photonic crystal with a line defect.

(b) Definition of the lattice and hole size.

Figure 3.2: A 2D photonic crystal with rectangular lattice. The rods have a

high dielectric constant, the surrounding has a low dielectric constant.

Light propagates in the horizontal direction through a line defect (also

called a W1 defect). The lattice is defined by the two vectors a1 and a2,

both have magnitude a. The rods have a radius defined by r = 0.25a

and the defect rods have a radius r = 0.25
3 a. These parameters will be

used later on for our simulations.

In the rest of the study we restrict ourself to 2D photonic crystals, as this is the
structure we investigated mostly in this thesis (in section 3.1.2 we briefly explain
what happens when adding a third dimension).

In Figure 3.2(a) we show a two-dimensional photonic crystal with a square
lattice. The lattice is defined by the two vectors a1 and a2, which are perpendic-
ular and both have magnitude a. The structure is invariant in the z-direction
(perpendicular to the plane). For certain values of the spacing, this crystal can
have a photonic band gap in the xy plane. Inside this gap, no propagating states
are permitted, and the incident light is reflected.

The reciprocal lattice (b1,b2) is defined such that ai ·b j = 2πδi j . So in this
case, (b1,b2) = ( 2π

a 1x , 2π
a 1y ).

As explained in [1], the magnetic field can be described by a function, the
Bloch state, that depends on n (the band number), and the wave vector k =
kz 1z +k∥:

H(n,kz ,k∥)(r) = e i k∥ρe i kz z u(n,kz ,k∥)(ρ) (3.1)

Here, ρ = x1x +y1y and kx 1x +ky 1y . u(ρ) is a periodic function, u(ρ) = u(ρ+R),
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Figure 3.3: Image of the y-component of the magnetic field H for the first TM

mode at the X-point. The structure is a 2D rectangular lattice of rods

surrounded by a low-index medium, as shown in Figure 3.2(b).

for R = j a1 +ka2, where j ∈N and k ∈N.
As the Bloch state with wave vector k∥ and the Bloch state with wave vector

k∥+ j b1 +kb2 are identical, we only need to consider a zone for which −π/a <
kx <π/a and −π/a < ky <π/a. This is called the Brillouin zone (again, we refer
to the book for more information). Given further symmetry properties of the 2D
rectangular lattice, we only need to consider three important points in k-space:

1. Γ-point: k∥=0.

2. X-point: k∥=b1 =π/a1x

3. M: k∥=b1 +b2 =π/a1x +π/a1y

These are also illustrated in Figure 3.11 in the result section, where we calcu-
lated the band diagram. From the Γ-point to the X-point we consider waves that
propagate in the x-direction, starting from waves with very long wavelength in
the x-direction near k∥ = 0 to waves that have a wavelength corresponding to
k∥ = π/a (the X-point). Since k = 2π/λ and kz =0, this corresponds to λ = 2a,
which can clearly be seen from the mode profile in Figure 3.3.

Furthermore, due to the invariance in the z-direction, the modes for a 2D
structure can be split in transverse-electric (TE) and transverse-magnetic (TM)
modes. For a TE mode, H is normal to the plane and E is in the plane. For
TM we have just the reverse: E is normal to the plane and H is in the plane.
In our study we restrict ourselves to waves that propagate in the plane with no
kz -component.

3.1.2 3D vs 2D photonic crystals

In practice, to create a full photonic bandgap in all directions we would need
a 3D periodic structure. This is very difficult to fabricate in SOI technology be-
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cause of a limit to the number of etching and depositing steps restricts the ca-
pability to create arbitrary geometries. A solution for this is to guide light by
total internal reflection for the vertical direction (z-axis), and use periodicity in
the (x,y) plane. We call this 2D (PhC) + 1D (TIR) structures. This is only efficient
if the refractive index of the guiding material is large enough compared to the
surroundings, otherwise a lot of light will be scattered upwards and downwards
(towards the substrate). The upward scattered light can be used to characterize
the photonic crystal cavities in a noninvasive way [2].

An impression of a fabricated 2D photonic crystal is shown in Figure 3.1. To
model this system correctly, one should use 3D simulation methods based on
the fully vectorial maxwell equations. Luckily, the shape of the cavity resonance
is very similar, whether the structure is a 1, 2 or 3 dimensional photonic crys-
tal cavity, so the resulting dynamical effects (in which we are interested in this
dissertation) will be roughly the same.

In this dissertation we focus on simulating 2D photonic crystals for several
reasons. First, they are mathematically more simple to study than 2D (PhC)
+ 1D (TIR) devices and we can base our research on extensive studies which
have been performed prior to this thesis (such as the work performed by M.
Soljacic [3]). In these studies, a rectangular grid of rods was used, with TM po-
larized light. In principle, it is possible to extend this study using a triangular
lattice of holes, with TE polarized light (which is easier to manufacture, espe-
cially in SOI technology). In practice this appeared to be nontrivial (finding a
good resonance, fitting nonlinearities and so on). Second, doing a 3D simula-
tion with a resonant structure becomes very impractical since this requires a
huge amount of computational power. Especially if we want to simulate this
system for different input powers and nonlinear materials, simulation times of
months become necessary.

3.1.3 Nonlinearities

As explained in section 1.2.2, there are several nonlinear effects that can arise in
dielectric structures. These are usually small because they scale with the inten-
sity of the electromagnetic field. However, in a cavity there is a huge amplifica-
tion of the field intensity, and the nonlinear effects can become relevant. In the
rest of this chapter, we describe what happens when we include these nonlin-
earities. For this dissertation, we have focused on the Kerr nonlinearity, which is
easy to model both in descriptive models and in an FDTD simulation. The rea-
son the Kerr nonlinearity is easy to model in FDTD is because we can assume it
is instantaneous, so we can simply include it in the refractive index of the mate-
rial. The behavior of slower nonlinearities (e.g., thermal nonlinearities) is often
qualitatively very similar.
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Figure 3.4: Illustration of the two type of cavities that are used throughout

this dissertation. Top: a physical 2D layout of the cavity. Bottom: the

schematic representation. Left: an inline coupled cavity. Right: a side-

coupled cavity.

Figure 3.5: Exciting the cavity mode using a point source in an FDTD simula-

tion.

3.1.4 Photonic crystal waveguides and cavities

By using linear defects, we can guide light from one location to another. The
basic idea is to create a waveguide by modifying a linear sequence of unit cells,
as shown schematically in Figure 3.2(a) and Figure 3.4. Light that propagates in
the waveguide with a frequency within the band gap of the crystal is confined
to the defect, and can be directed along it.

A cavity can be created by introducing a point defect, as shown schemati-
cally in Figure 3.4 and illustrated with an FDTD simulation in Figure 3.5. The-
oretically we need an infinite number of layers of the bulk crystal around the
cavity to stop light from propagating through these layers. By using only a few
layers, light can tunnel through these layers and enter the cavity region. Light is
still confined inside the cavity, as it is surrounded by the rectangular lattice. For
this 2D topology, the cavity supports a dipole-type localized resonant mode [3].

An optical resonator can be inside the guiding structure, or next to it. If
the cavity is inside the guiding structure, it represents an inline coupled cavity,
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Figure 3.6: A schematic representation of two coupled cavities in series. The

reference planes are chosen symmetrical on both sides of the cavity.

The distance from the center of the cavity to the reference plane de-

termines the phase reflection parameter φk .

which we will use mostly in this dissertation. If the cavity is outside the guid-
ing structure, it represents a side-coupled cavity [4]. In Figure 3.4, we show an
example 2D structure and the schematic representation for both cases.

3.2 Simulation of photonic crystal cavities

In this section we first explain the Coupled Mode Theory (CMT), a descriptive
model for the photonic crystal cavity. This allows us to gain insight in the steady-
state characteristics and nonlinear dynamics of the cavities. After this, we com-
pare this approximate model with a full simulation of a 2D photonic crystal (as
explained in the beginning of this chapter) using the FDTD method (see 4.1).
We design a photonic crystal waveguide and a proper cavity, match the non-
linear behavior of a single cavity to the CMT model, and then look at a series
of two coupled resonators. The non-trivial dynamical system of two coupled
resonators in FDTD is captured very accurately with the Coupled Mode Theory,
which means the Coupled Mode Theory can be used to simulate large photonic
reservoirs without sacrificing much accuracy. In the later chapters, we therefore
use the CMT equations to simulate photonic reservoirs.

3.2.1 Coupled Mode Theory

The Coupled Mode Theory offers an elegant way to dynamically describe pas-
sive optical resonators [5, 6]. This theory shows good correspondence with ex-
periments of such passive resonators [7–9], and it often results in models which
are still analytically solvable, both for varying power and varying wavelength of
the input light.
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3.2.1.1 Equations

Figure 3.6 shows the schematic representation of two coupled inline cavities in
series.

To model this geometry we use the Coupled Mode Theory as developed by
H. Haus and co-workers [10]. The time-domain evolution of the cavity energies
(ak ) is given by:

dak

dt
=

[
j
(
ωr,k −ω+δωk

)− 1

τ

]
ak +dk si n,2k +dk si n,2k+1, (3.2)

and the output is given by

sout ,2k = exp( jφk )si n,2k +dk ak , (3.3)

sout ,2k+1 = exp( jφk )si n,2k+1 +dk ak , (3.4)

for inline coupled cavities, and

sout ,2k = exp( jφk )si n,2k+1 +dk ak , (3.5)

sout ,2k+1 = exp( jφk )si n,2k +dk ak , (3.6)

for side-coupled cavities. k = 1, . . . , N ; with N the number of cavities (N is not
limited to 2 as shown in the figure). The frequency of the input light is given by
ω, while the resonance frequency of each cavity is given by ωr,k . Furthermore
dk = j exp( jφk /2)/

p
τ, where τ is the lifetime of the cavity and φk represents

a phase shift due to the finite distance d between the reference plane and the
cavity, and also depends on the resonator mirror reflection properties. Although
the qualitative behavior for one cavity does not depend on this phase shift, the
collective behavior of two or more coupled cavities can fundamentally change
by modifying φk . In the discussion that follows, we assume there is no addi-
tional phase shift nor loss between the reference planes of the two cavities (i.e.
si n,2 = sout ,1). The nonlinear frequency shift is δωk =−|ak |2/(P0τ

2), with P0 the
‘characteristic nonlinear power’ of the cavity [3]. In these equations |ak |2 is the
energy in the cavity mode. |si n,2k |2 (resp. |si n,2k+1|2) represents the power flow-
ing in the (single-mode) waveguide in the forward (resp. backward) direction.
Thus, |si n,0|2 ≡ Pi n is the input power, |sout ,2N+1|2 ≡ Ptr ans is the transmitted
power.

We can furthermore define the detuning of the cavity as:

∆k = (
ω−ωr,k

)
τk (3.7)

This dimensionless parameter describes how far we are removed from reso-
nance.
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3.2.1.2 A single cavity

We first study a single inline cavity, the steady-state behavior and the phe-
nomenon of bistability. Since we only have one cavity, we omit the cavity
number suffix and define si n = si n,0 and sout = sout ,1. Pi n = |si n |2 is the input
power entering the cavity from the left, and Pout = |sout |2 is the output power
on the right of the cavity. |a|2 is the optical energy inside the cavity and has
units of J .

When the system is in steady-state, the left hand side of equation 3.2 be-
comes zero, and we can write:

0 =
[

j (ωr −ω+δω)− 1

τ

]
a0 +d · si n (3.8)

Furthermore we know that ∆= (ωr −ω)τ, and δω=−|a|2/(P0τ
2), so

0 =
[

j

(
∆

τ
− |a|2

P0τ2

)
− 1

τ

]
a0 +d · si n (3.9)

d · si n = 1

τ

[
j

(
−∆+ |a|2

P0τ

)
+1

]
a (3.10)

Also, sout = d ·a and d = j e jφ/2/
p
τ, so

d · si n = 1

τ

[
j

(
−∆+ |sout |2

P0τ|d |2
)
+1

]
sout /d (3.11)

−e jφ

τ
· si n = 1

τ

[
j

(
−∆+ |sout |2

P0

)
+1

]
sout (3.12)

If we then multiply both sides with their complex conjugate, we get

Pi n =
[

1+
(
∆− Pout

P0

)2]
Pout (3.13)

Pout

Pi n
= 1

1+ (∆−Pout /P0)2 (3.14)

This steady-state is shown for different detunings in Figure 3.7. If the de-
tuning ∆= (ωr −ω)τ becomes larger than

p
3, there is bistable behavior, which

means there are several stable steady-state solutions for a given input power.
In the linear case, δω = 0. If we further substitute ∆ = (ωr −ω)τ, we get

the standard Lorentzian curve which we will use later on to fit with the FDTD
results:

Pout

Pi n
= 1/τ2

1/τ2 + (ω−ωr )2 (3.15)
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Figure 3.7: Steady-state curves of a single cavity with Kerr nonlinearity de-

fined by a characteristic power P0.

3.2.1.3 Dynamics of two coupled cavities in serie

In this section we focus on the dynamical behavior of two identical cavities that
are coupled in series as shown in Figure 3.6. Whenever the parameters for the
two cavities are identical, we again omit the index, i.e. φk = φ, dk = d and so
on. For a dynamical system, a linear stability analysis reveals whether or not the
system is stable. This is done by examining the eigenvalues of the system’s Ja-
cobian. If all eigenvalues have a negative real part, the system is stable. In some
cases, an unstable fixed point implies chaos or self-pulsation. To distinguish be-
tween both, one can calculate the system’s maximal Lyapunov exponent. If this
exponent is larger than zero, the system is chaotic. For a stable periodic solu-
tion, the maximal Lyapunov exponent is zero. This is elaborated in detail in our
paper [5], and the stability analysis for this system of two cavities is summarized
in Figure 3.8.

For example: from Figure 3.8(a) we see that a series of two resonators will
self-pulsate when φ = 0.2π, Pi n = P0 and ∆ = 2. The resulting Pout for this sys-
tem is shown in Figure 3.9.

For larger circuits with arbitrary topology, it becomes very cumbersome to
evaluate the Jacobian and calculate the largest Lyapunov exponent. Just as an
illustration, we show the dynamics of a series of three coupled cavities in 3.10.
We can see that, depending on the input power, we can have different sorts of
dynamics, ranging from stable to self-pulsing to chaos.

In the rest of this dissertation, we study even larger networks. Therefore, we
have created a mathematical framework and the accompanying software, called
Caphe, to study arbitrary topologies consisting of components with dynamical
nonlinear behavior. This is a prerequisite to simulating a nanophotonic reser-
voir and is elaborated on in chapter 4.
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Figure 3.8: Transmission (Ptr ans /Pi n ) and classification of the dual-cavity

device for different φ. Different regimes are indicated: (S) stable, (BI)

bistable, (SP) self pulsing and chaos. Note: in this figure the definition

of detuning is chosen opposite, i.e., ∆= (ω−ωr )τ.

Figure 3.9: Example time-trace for φ= 0.2π, Pi n = P0 and ∆= 2.
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Figure 3.10: Time-trace for a series of 3 cavities (shown in inset). φ= 0.5π and

∆ = 0.75. Depending on the input power, the dynamics can range

from stable to self-pulsing to chaos. This demonstrates the rich dy-

namics of a nonlinear dynamical system consisting of photonic crys-

tal cavities. In the following chapters, we will make networks of 100s

of resonators, and predicting the regions of stability becomes very

difficult.
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3.2.2 FDTD

In this section we show simulation results for a square lattice of dielectric
columns (see Figure 3.2(a)). We use the values supplied by the paper of M.
Soljacic [3] as a starting point: the rods have a radius of r = 0.25a, and the re-
fractive index of the rods is 3.5 while the surrounding medium has a refractive
index of 1.5. These values are used to compare the FDTD method with the Cou-
pled Mode Theory, and we show that it is possible to describe this very complex
system with only a few variables and parameters.

3.2.2.1 2D photonic crystal with a rectangular lattice

Figure 3.11 shows the calculated bandgap of the 2D rectangular lattice (see in-
set (1)). The lattice constant a allows us to use dimensionless variables. The
normalized frequency is defined by:

ωn = ωa

2πc
(3.16)

While the k-vector is given by 2π/a. The horizontal axis shows the value of the
in-plane wave vector k∥. As we move from left to right, k moves along the trian-
gular edge of the irreducible Brillouin zone, from Γ to X to M, as shown in inset
(2) of Figure 3.11.

Fully-vectorial eigenmodes of Maxwell’s equations with periodic boundary
conditions were computed by preconditioned conjugate-gradient minimiza-
tion of the block Rayleigh quotient in a planewave basis, using a freely available
software package called MPB [11].

The modes for TE and TM can be completely different (recall that the TM
polarized modes have an electric field that is perpendicular to the plane, and
a magnetic field along the plane). Between the different bands of the TM-
polarized modes, there is a region where no light can propagate, which means
it has a complete bandgap for the TM polarization (this is explained in more
detail in the book on photonic crystals [1]). For the simulated structure, there is
a bandgap from ωn=0.2424 to ωn=0.2897. We can use this to trap light inside a
so-called photonic crystal cavity.

3.2.2.2 2D photonic crystal waveguide and cavity

To find the resonance wavelength of a cavity we have used the freely available
FDTD simulator called MEEP [12]. The parameters for the FDTD simulation
which we performed are listed in table 3.1.

Since it is very difficult to calculate the mode profile with the FDTD simu-
lator, we will use a simple point source to excite the waveguide. This has the
drawback, however, that it creates a lot of unwanted scattering. The solution
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Figure 3.11: Banddiagram for a 2D photonic crystal with a rectangular lattice

(shown in inset (1)) for TM polarization. We traverse the k-space

in the 2D plane. One can see that there is a region of frequencies

where no light can propagate for any direction (the bandgap). Also,

above the light line, no light can propagate. The simulations were

performed with MPB [11]. Inset (2) shows the irreducible Brioullin

zone for this structure.

Name Description Value
a Lattice constant 1

(unit cell in the FDTD simulation)

r Radius of the rods 0.25a

nr od Refractive index of the rods 3.5

nmedi um Refractive index of the surrounding medium 1.5

ωn Source center frequency (normalized) 0.2615

dωn Source normalized resonance width 0.008

n2 Kerr coefficient 1.5 ·10−5 µm2/W

Table 3.1: Values used for the time-domain FDTD simulations.



PHOTONIC CRYSTAL CAVITIES 63

to this problem is to perform two simulations: a reference simulation without
cavity and a simulation with cavity. Dividing the resulting spectra results in the
correct transmission. For now, we do not use nonlinear effects so we put n2 = 0
µm2/W . Below we explain the procedure in slightly more detail:

1. Reference simulation: this simulation is performed without the cavity.
This means we exactly simulate the structure of Figure 3.2(a). The input is
a point source with a gaussian-shaped frequency profile that is launched
at the left of the simulation window. We measure the output in a flux plane
at the right of the simulation window: Fr e f (ωn).

2. Cavity simulation: we use the same source, the same flux plane, but we
add a cavity in the center of the simulation window. This simulation takes
much longer as the resonance causes light to slowly die out. The output is
Fcav (ωn). Figure 3.5 shows the simulation where one can clearly see that
the mode is excited.

3. Calculate the normalized transmission through the cavity:
T (ωn) = Fcav (ωn)/Fr e f (ωn). This function is then fitted to the Lorentzian
shape, which we derived in section 3.2.1.2. We repeat the equation here
in a slightly modified form which we actually used to perform the fitting):

L(ωn) = Aγ2
n

γ2
n + (ωn −ωr,n)2

(3.17)

Here, ωr is the resonance frequency of the system, and γn = 1/τn is the
(normalized) linewidth of the resonance. The linewidth is inversely pro-
portional to the Q-factor of the system and is given by: Q = ωr,n/2γn =
ωr /2γ. Figure 3.12 shows the resulting spectrum. For our system we find
after fitting that ωr,n=0.262087, and γ=0.000204194. This results in a Q-
factor of 641.76.

3.2.2.3 Behavior of a photonic crystal cavity with Kerr nonlinearity

Because of the resonance, high powers can be stored inside a cavity. This also
means that nonlinear effects (that typically depend on some higher order power
of the electric field) are greatly enhanced inside the resonator. In this disserta-
tion, we use the Kerr effect (parameter n2) as dominant nonlinear effect (see
1.2.2). For the following simulations, we used n2 = 1.5 ·10−5µm2/W . By adding
this nonlinear term to the rods, we were able to observe a bistable behavior,
similar to Figure 3.7.

It is very important to know how good the 2D photonic crystal cavity actu-
ally matches the CMT behavior. If the behavior is very similar, we do not need
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Figure 3.12: Finding the resonance in the photonic crystal cavity using a 2D

FDTD simulation. The resonance is of a Lorentzian shape, and by

fitting this theoretical curve (equation 3.17) to the normalized trans-

mission we can calculate the linewidth and resonance wavelength of

the photonic crystal cavity.



PHOTONIC CRYSTAL CAVITIES 65

the very intensive FDTD simulations anymore to study large networks of res-
onators.

To check the similarity, we calculate, using FDTD, the transmission for dif-
ferent input powers. This means we launch an input pulse with a certain power
into the photonic crystal waveguide and then observe how much power is mea-
sured behind the cavity. We repeat this simulation for different input powers to
obtain a part of the bistability curve (represented by the blue crosses in Figure
3.13). To get to the upper branch of the curve, we need an additional ’trigger’
pulse (see the circle on Figure 3.13, in our simulation this is a very short pulse
superimposed on the CW signal), and measure the output power after the trig-
ger pulse has died out. We then fit the analytical formula from equation 3.15
to the result and obtain a detuning of ∆ = −3.4411. The good correspondence
between FDTD and the analytical model confirms that the Lorentzian-shaped
resonance is indeed a good approximation of the physical reality. The specific
value of P0 depends on n2. For a realistic value n2 of 1.5 ·10−5µm2/W , P0 can
be brought below 77 mW [3].

In practice however, it is very difficult to observe this behavior. This is
mainly due to losses inside the cavity which trigger other effects such as free
carrier absorption and heating of the material. Both have the effect of changing
the refractive index of the material, as explained in 1.2.2. The time scale for the
temperature effect (∼ µs) is several orders of magnitude slower than the Kerr
effect (∼ fs), which means that if we can measure fast enough and P0 < Pl aser ,
we can in principle observe the Kerr effect. In practice, linear losses will have
a detrimental effect on the nonlinear effects, as shown by T. Van Vaerenbergh
in [6]. Also, the plasma effect (caused by free carriers), induces a blueshift of the
resonance and counteracts the Kerr effect. When using a longer wavelength,
the two photon absorption, and hence the generation of free carriers, is re-
duced. Also, free carriers can be extracted from the ring using a PIN junction.
In this way, we might be able to experimentally isolate the Kerr effect. Experi-
mental measurements of these nonlinearities have been performed in a similar
photonic crystal cavity structure [13], or in Si3N4 ring resonators [14].

3.2.2.4 2 cavities in a row

The final step in comparing the CMT to FDTD is simulating a series of 2 cou-
pled cavities. This structure is represented schematically in Figure 3.6 and a 2D
FDTD simulation is shown in Figure 3.14. We use the same parameters for the
geometry of the system, but now the first cavity is coupled to a second cavity.
The purpose is to reproduce the self-pulsing which we observed in the simpli-
fied model, and of which we showed the conditions in section 3.2.1.3.

We get an extra degree of freedom here: the number of rods between the
two cavities. This determines the phase φ, and greatly influences the dynamics
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Figure 3.13: Bistable curve for a nonlinear photonic crystal cavity. The blue

dots are the result of the FDTD simulations. This is fitted to the an-

alytical formula for a lorentzian-shaped resonance with nonlinearity

(full line in red).

Figure 3.14: Ez-field of the FDTD simulation of two cavities in a row after 170

optical periods. The system is self-pulsing. Simulation parameters:

Pi n = 5.6254/P0, d = 14 (number of rods between the two cavities)

and ∆= 2.225.

in the two cavities. We choose d = 14, or 14 rods between the centers of the two
cavities. The phase differenceφ determines the distance between the two peaks
in the linear transmission of two cavities [5]. This linear transmission can be
calculated for a given ∆ using FDTD simulations, and this transmission should
be the same as predicted by CMT for a certain φ. In this way we fit φ to be φ =
0.2314.

For this set of parameters, coupled mode theory predicts the component
to start self-pulsing at around Pi n = 5.52/P0 . The exact power at which self-
pulsing starts is quite ambiguous since there is a region just before self-pulsing
where the output power is also pulsing, but is damping out to a steady-state
value. From our simulations in Figure 3.14, we will use Pi n = 5.6254/P0. Figure
3.14 shows a field plot after 170 optical periods.
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Figure 3.15: Comparison of the CMT and FDTD simulation. The simplified

CMT model is able to accurately describe the physical behavior of

two coupled nonlinear resonators.

Figure 3.16: A 1D wire cavity. The radius increases towards the center accord-

ing to a parabolic profile.

We find that apparently there is still a small error in predicting φ, since the
component is not yet self-pulsing in CMT for the used Pi n , whereas it does
self-pulsate in FDTD. When increasing φ slightly to 0.2333, we can reduce the
threshold for self-pulsing. With these adjusted values, we get a reasonable
match between the CMT and the FDTD time traces, as shown in Figure 3.15.
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3.3 Measurements

Although in the previous section we described a 2D rectangular topology, there
are other ways to create a resonant cavity using the principles of photonic crys-
tals. One-dimensional Photonic Crystal Cavities (PhCC) (like the wire cavity in
Figure 3.16) are attractive because of their structural simplicity and smaller size
compared with higher dimensional PhCCs. There are many applications for
these structures such as a thermo-optic optical switch [15], opto-mechanical
devices [16], nano-sensors [17] and so on. Recently, it has been demonstrated
independently by E. Kuramochi [18] and Q. Quan et al [19] that one can cre-
ate very high Q-factor photonic crystal cavities by creating holes in an SOI wire
waveguide.

There are several ways to fabricate photonic crystal cavities. The by far most
used technique is e-beam, since it is one of the few techniques that fulfills the
accuracy requirements on these length scales. However, due to its direct se-
quential writing, e-beam lithography is time consuming for large area struc-
tures. So although photonic crystals can be made with high accuracy using e-
beam lithography [20], [21], this does not allow us to efficiently create a large
network of interconnected cavities. Especially since the area in which e-beam
is performed is relatively small, one will have to reposition the structure several
times during fabrication, and stitching errors will arise that cause unwanted re-
flections.

There are other methods that are faster, such as Laser Interference Lithogra-
phy [22], but these have complex fabrication procedures, where two interfering
laser beams create a pattern onto the photo resist, after which the substrate has
to be rotated, and the thickness of the resist has to be controlled very accurately.

We base our fabrication on the standard SOI technology and use lithogra-
phy techniques as described in 1.2. As this technology becomes increasingly
accurate, it becomes possible to create relatively high Q-factor cavities, as we
show further on. The complete fabrication process of our 1D cavity prototypes
has been done on a 300mm SOI wafer using a CMOS pilot line at imec with 193
nm deep ultraviolet immersion lithography. Note that this is different from the
standard 200 mm process from ePIXfab [23], which is used more often. The re-
sults shown here are a first characterization of photonic crystal cavity devices
which were fabricated on a 300mm SOI wafer.

3.3.1 Design and fabrication

To design a 1D wire cavity, we have used the structure as proposed in [24], which
is illustrated in Figure 3.16. The radius of the holes r (i ) is given as a parabolic
function:

r (i ) = max
[
rmi n ,r0

(
1− (i /m)2)] (3.18)
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Parameter Description Value
a Lattice constant 0.4µm

r0 Radius of the largest hole 0.3a = 0.12µm

rmi n Minimum hole size 0.22a = 0.088µm

m Radius parameter 21

i Hole index [-14..14]

Table 3.3: Parameters used for the fabrication of the 1D wire cavity.

Because the effective index is slightly different from the designs in [24], and
because we know that the fabricated hole size depends to a large extent on the
dose strength during processing, we have put several variations of this design
on the mask. These variations are:

1. Using a modified radius rm(i ) = F · r (i ), for F ∈ [0.8,0.9,1,1.1].

2. Using different waveguide widths w ∈ [0.46,0.48,0.50,0.52,0.54,0.56,
0.58]µm.

3.3.2 Measurement and post-processing

The fabricated components have been measured using a semi-automatic mea-
surement setup, which allows us to automatically move over the different struc-
tures without manual re-alignment. Thanks to this system, it was possible to
measure these many variations in a relatively short period of time.

There are several important parameters which we want to extract from the
raw spectral data:

1. The resonance wavelengths λr . These can be found by performing a sim-
ple peak detection. There can be multiple peaks in the spectrum.

2. The Q-factor, or quality factor, of the resonator. The higher the Q, the
longer light stays inside the resonator. This can be calculated by fiting the
spectrum to the Lorentzian curve, as we have done before. Here, we opt to
fit to the logarithmic spectrum, because the result will be more accurate.

Llog (λ) = 10 · log10

(
A(λ3dB /2)2

(λ−λr es )2 + (λ3dB /2)2

)
(3.19)

λ3dB is the full width at half maximum (FWHM) of the resonance. The
Q-factor is then equal to Q =λr /λ3dB .

3. The finesse of the resonator. This is defined as the free spectral range di-
vided by the full width at half maximum (FWHM) bandwidth of the res-
onator:

F = Q ·F SR

λ3dB
(3.20)
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Figure 3.17: Measurement of the photonic crystal cavities with ww g =
0.46µm, F = 1.1. Three distinct resonances are found, with a max-

imum Q-factor of 5067 (the left resonance). See Table 3.4 for more

information.

The finesse is only determined by the loss in the resonator. The higher
the finesse, the sharper the peaks while still maintaining a good (large)
FSR. High finesses are useful for spectrometers, that benefit from a small
bandwidth (high spectral resolution) and large FSR (large spectral range
for measuring).

3.3.3 Results

Figure 3.17 shows the result from detecting peaks and fitting them to a Lorentzian
curve to extract the Q-factors. The final measurement results are shown in Ta-
ble 3.4. The insertion loss is defined as the actual loss from the device itself. To
remove the influence of fiber-chip, chip-fiber and waveguide losses, we mea-
sured the same structure without a cavity (i.e., a reference waveguide), and
normalized the spectrum to this measurement.

For some measurements with high-Q cavities, we see a red shift of the spec-
trum. This is a nonlinear effect most likely caused by temperature.

3.3.4 Acknowledgements

The author wishes to acknowledge imec to provide the opportunity to de-
sign test-chips for the 300 mm wafer run, which was the first step towards all
measurements which were reported in this section. Furthermore, the author
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F λr Q-factor finesse Insertion Loss (dB)
0.8 1564.44 5097 3.4

0.9 1533.88 9238 149.2 14

1559.67 2914 49.1 1.4

1 1490.99 18629 376.6 20.6

1520.92 6526 129.4 6.6

1548.75 1336 26 2.3

1.1 1479.92 5067 112.8 18.2

1512.91 2092 45.6 6.8

1542.02 566 12.1 3

Table 3.4: Measurement results for the 1D wire cavity for ww g = 460µm.

wishes to acknowledge Shankar Kumar Selvaraja to perform the processing,
and Weiqiang Xie for doing most of the measurements.

3.4 Conclusions

In this chapter we have made a detailed analysis of the photonic crystal cavity
which we use as a basic building block for nanophotonic reservoir computing.
These cavities can be simulated with approximate models using only a single
dynamical variable, called the coupled mode theory (CMT). We have shown in
this chapter that these approximate models are still valid when coupling two of
these resonators, by comparing them with accurate finite difference time do-
main (FDTD) simulations. In particular, we were able to observe self-pulsation
in a series of two cavities, in both the simplified CMT model and in an FDTD
simulation. By tuning the parameters, we were able to match the time-trace of
both simulation methods. In later chapters we will further investigate how we
can use a large network of photonic crystal cavities to solve a speech recognition
task (chapter 5) and a signal generation task (chapter 6).

Photonic crystal cavities are also useful outside the field of reservoir com-
puting. When coupling three of these resonators, chaos is quite common at low
powers. This could be used for integrated random bit generators [25] or chaos
communication [26].
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4
Caphe: A framework for simulating

large networks of optical components

A large part of this PhD is devoted to the numerical modeling of optical circuits.
However, the software that is present today does not meet the stringent require-
ments we need in the context of reservoir computing. For this reason, we have
developed our own circuit simulator, called Caphe.

Caphe allows us to define building blocks which are coupled to other build-
ing blocks using ports. Each block can have an arbitrary number of ports and
each component has its own set of arbitrary Ordinary Differential Equations
(ODE) equations. This degree of freedom enables fundamental research on a
variety of non-trivial components and circuits, with a quasi unlimited freedom
in the way to define a topology, and the way to define and couple state variables.

Currently, the tool is used in numerous applications such as frequency-
domain analysis of optical ring filters, time-domain analysis of optical ampli-
fiers, microdisks and microcavities, and of course simulation of nanophotonic
reservoirs. Although the original purpose of the simulator was to simulate
optical circuits, the ODE equations do not limit us to optical components: dif-
ferent neuron types, and even financial models based on ODE equations, can
be plugged into the simulator, which makes Caphe a very flexible and powerful
tool for researchers in other domains as well.

This chapter is structured as follows: in section 4.1 we give a broad overview
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of the simulation methods which are often used in nanophotonics. In section
4.2 we explain the concept of a scatter matrix, and propose a generic compo-
nent which includes a scatter matrix, state variables and Ordinary Differential
Equations (ODEs). In section 4.3 we create a circuit consisting of several nodes,
and we explain how we can derive a generalized connection matrix from this
circuit by eliminating linear, instantaneous nodes from the circuit. Then we de-
scribe how the time-domain integration routine works. In section 4.4, we show
how we can speed up the calculations in frequency domain. Then we explain
how we can use the generalized connection matrix (by solving the system in
the frequency-domain), to speed up simulations in the time-domain consid-
erably. In section 4.5 we give a few examples that demonstrate the usefulness
of Caphe outside the domain of reservoir computing. We show a typical use-
case of designing a filter in the frequency domain. Another example shows the
time-domain simulation of a microring resonator using several dynamical vari-
ables such as the complex amplitude, temperature and free carriers. In section
4.6, we show how we use this framework to construct a nanophotonic reser-
voir. Then, in section 4.7 we explain why current software was not appropriate
for our needs and which considerations were taken into account before starting
the development of this simulator. Finally we conclude in section 4.8.

4.1 Numerical modeling

Analytical methods are useful to understand the underlying physics of an opti-
cal component. Furthermore they help us determine which are the relevant pa-
rameters when designing an optical component. For example, a higher refrac-
tive index usually means a smaller mode volume, or a smaller gap between two
waveguides usually means a stronger coupling coefficient. However, once a de-
sign becomes too complex, it is no longer possible to solve Maxwell’s equations
analytically. The first thing to try in this situation is to approximate the behav-
ior, in order to fall back on analytical methods. Sometimes this is not possible:
the approximations can be too crude leading to wrong results, or some material
properties are based on measured data. In these cases, numerical methods are
an important tool to further design and/or optimize an optical component or
circuit. There are a variety of tools available to simulate the behavior of light,
using different techniques and different levels of approximations of Maxwell’s
equations. Many of these tools are limited to small networks of only a handful
of components.

In order to illustrate several of the commonly used methods we will show
how a light splitter is modeled in practice (see Figure 4.1. The light splitter,
shown schematically in Figure 4.1 (right, bottom), has one port on the left and
two ports on the right. In between there is a very wide waveguide that allows
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Figure 4.1: Illustration of several simulation tools when designing a multi-

mode interferometer (MMI). An eigenmode solver (top left) calculates

the mode profile of a waveguide. This eigenmode is then used as input

for a Finite Difference Time Domain (FDTD) simulation (top right).

The output of this simulation can be sent to a circuit simulation tool.

Also, users might want to perform a part of the simulation using their

own code and link these to other tools.
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multiple modes. Because the different modes interfere with each other, two
nicely separated modes can be captured in the output ports by choosing an ap-
propriate length of the multimode section. This device is called a multimode
interferometer (MMI). The different simulation methods are explained below.

One of the most general ways to solve the Maxwell’s equations numerically
is the Finite Difference Time Domain (FDTD) method (a snapshot of the time
evolution is shown in the top right of Figure 4.1). Here, Maxwell’s equations are
discretized in space and time. The smaller the discretization step, the more ac-
curate the result will be but the longer it will take for the simulation to finish.
The FDTD method is a time-domain method, and the simulations can be per-
formed in 1, 2 or 3 dimensions. Although it can simulate about any geometry,
with virtually no assumptions on the material properties, it is also the method
that is computationally the most demanding. Especially in three dimensions
and for resonant structures (in which light bounces back and forth at material
boundaries), a single simulation can take hours to finish, and takes up a large
amount of computer memory. The software package MEEP is an example of an
FDTD simulation method, and is freely available as open-source [1, 2].

In many design problems the mode profile of a waveguide has to be known.
If we take a cross-section of the waveguide, we can use an eigenmode solver
to calculate the guided modes. A 1D cross-section and mode profile are shown
in Figure 4.1 (top left). This type of numerical method works in the frequency
domain. Because we only calculate a cross-section of the entire device (so we
end up with a 1D or 2D geometry), a calculation over a reasonable frequency
range usually takes a few minutes. Examples of eigenmode solvers are CAMFR
[3, 4] and FimmWave [5].

When we consider the optical component as a black box, we do not dis-
cretize the component into smaller pieces. A passive and linear element, such
as the MMI of Figure 4.1, is then reduced to a scatter matrix S. Later in this chap-
ter, we will see how we can link several optical building blocks together to build
a complex circuit. Also, we will further enrich this building block by allowing
nonlinear, non-passive behavior. With these additions, it becomes possible to
simulate nonlinear circuits, such as a nanophotonic reservoir.

Furthermore, somewhere in between this spectrum of methods are the Time
Domain Traveling Wave (TDTW) [6], the Split Step Methods (SSM) [6], and the
Coupled Mode Theory (CMT, see section 3.2.1).

To summarize, of the listed simulation methods, the biggest difference lies
in the complexity and the level to which they contain physical details. In its
most general form, FDTD is a full-vectorial 3D optical solver. Although FDTD
can cope with very complex geometries, it is computationally very expensive.
On the other side, CMT is an approximate description, but extremely elegant
and fast, only needing a few variables to describe a complex system. This is
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achieved by eliminating all spatial dependencies in the physical problem.

In this software landscape, there are tools to design complex optical circuits
consisting of many components. For example, ASPIC [7] is used for calculat-
ing the steady-state response of optical circuits, and VPI [8] is mainly used to
study the time-domain evolution. PicWAVE uses a time-domain travelling wave
(TDTW) optical model [9], and RSoft Optsim uses SSM [10]. There are also ap-
proaches that use Modified Node Analysis (MNA), such as OptiSPICE [11, 12],
which allows simulation of mixed electronical and optical circuits. All of these
new tools will become indispensable in the future when designing and optimiz-
ing large optical circuits.

In this chapter, we present a different node-based approach. The advantage
of our approach is that both time and frequency domain can be investigated in
the same framework, and that each component can be represented in a natu-
ral way using variables such as the optical field, the temperature and the carrier
density, without needing to be mapped on to voltage or current such as in the
SPICE-related MNA approach. It uses only a small set of variables per compo-
nent, similar to CMT, which means the simulations are extremely fast compared
to other methods such as FDTD, TDTW and SSM, with however the drawback
of losing accuracy. Also, we provide a mechanism to eliminate instantaneous
components from the network, reducing the number of components we need
to simulate in the time domain. Our tool, named CAPHE [13] can therefore
be used to efficiently simulate novel computational systems such as photonic
reservoirs [14]. It is written in C++ for optimal performance, with a Python front-
end for ease of use and interfacing to a large collection of scientific libraries.

4.2 Model

4.2.1 Scatter matrices

In this chapter we treat an optical structure as a black box which exchanges en-
ergy with the outside world through several physical outlets. Figure 4.2 shows
how a structure has different physical outlets, which we will call optical ports (or
ports, in short). These ports can be associated with an optical waveguide mode,
or a free space electromagnetic beam. We assume that each port carries only
one mode. This is not a restriction as different ports may physically coincide to
describe waveguides with multiple modes.

We define ai and bi as the complex amplitude of the ingoing, resp. out-
going normalized electromagnetic mode. If the circuit is linear, we can define
the following relationship between the outputs B = (b0, ...,bN−1) and the inputs
A = (a0, ..., aN−1):
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Figure 4.2: An N-port optical component which is treated as a black box. If

the optical component is linear, the input-output relationship is fully

determined by the scatter matris S.

B = S ·A (4.1)

Where we have defined the scatter matrix S (N xN ). Depending on the actual
material properties and geometry inside the structure, the component can have
two interesting properties:

1. Passive component: A component is denoted passive when it is unable
to generate energy. This means that (we assume the S-matrix is time-
invariant) ||B| | ≤ ||A| |. If we square both sides and use ||A| |2 = AH A, we
get:

AH (
I−SH S

)
A ≥ 0, (4.2)

for all possible values of A. This is equivalent to saying that the matrix
I−SH S is semi-positive definite.

For a lossless component, the equality holds. IN this case, this is equiva-
lent to the condition that S is an unitary matrix, i.e.,

SH S = 1, (4.3)

where SH is the conjugate transpose of S.

When the S-matrix is varying through time, the conditions for being pas-
sive are more complicated. Apart from the condition that the compo-
nent should absorb more energy than it generates, the possible genera-
tion should happen after absorption. For more details we refer to [15].
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2. Reciprocal: If a circuit is made of symmetrical constitutive parameters, i.e.
the permittivity ε=εT and the permeability µ=µT , then the circuit is called
reciprocal. This is almost always the case, except for magnetic materials
in the presence of a magnetic field. It can be proven that for this circuit, S
is a symmetrical matrix,

S = ST , (4.4)

and hence the transmission between port j to port k does not depend on
the propagation direction.

Example: waveguide A waveguide with zero reflection can be represented by
the following S-matrix:

Sw g =
[

0 A(λ)exp(− j 2π
λ Lne f f (λ))

A(λ)exp(− j 2π
λ Lne f f (λ)) 0

]
, (4.5)

where the effective index ne f f (λ) can be calculated using an eigenmode
solver. Here, λ is the wavelength of the light in vacuum, which is related to the
frequency f by λ f = c. The loss in the waveguide is defined by the term A(λ),
and is usually wavelength dependent.

Example: directional coupler We define the directional coupler by the follow-
ing scatter matrix:

SDC =


0 0 τ jκ

0 0 jκ τ

τ jκ 0 0

jκ τ 0 0

 (4.6)

Where τ and κ are real numbers. Normally, the behavior of the directional
coupler is determined by the geometry of the two waveguides and the gap be-
tween the two waveguides. Note that we have made abstraction of the geometry
of the device just like we did with the waveguide: the phenomenological param-
eters τ and κ describe only the bulk behavior of this component. Reasoning on
a circuit based on the τ and κ parameters is easier and more comprehensive
compared to reasoning in terms of the actual geometry and gap between the
waveguides. A relationship between the phenomenological parameters and the
geometric parameters can be revealed by studying the actual physics of the de-
vice, for example by performing an FDTD simulation or by using an eigenmode
solver. A directional coupler is lossless when |τ|2 +|κ|2 = 1.

In the next section we extend this simple and effective description, such that
we can model components that generate optical power (i.e. nonpassive), and
contain nonlinearities.
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4.2.2 Extension for S-matrices

The scatter matrix is a very elegant description of an optical component, how-
ever its functionality is rather limited. Here we extend the optical component
—which from now on we will call a node1— with different state variables and
differential equations for these states. For example, the evolution of tempera-
ture and carrier density can be modeled in this way, and we can also incorporate
the CMT equations we encountered in 3.2.1 to model a photonic crystal cavity.
Furthermore, each node has access to its input history, which allows us to create
delay lines or digital filters. Additionally, a node can contain subnodes, allowing
the creation of hierarchical networks.

States

Buffer

ODE

Non-linear / non-instantaneous

Linear and instantaneous
Scatter matrix

Output

Memoryless

Memory-containing

ML

MC

Figure 4.3: Structure of a node with N ports. A linear and instantaneous node

is described by a scatter matrix S. State variables (e.g. temperature

and free carriers) can be added, accompanied by ordinary differential

equations (ODE). In this case the node becomes non-instantaneous

and can contain nonlinear behavior.

In Figure 4.3 we illustrate how one node is represented in Caphe. A node
consists of N ports. A linear instantaneous transmission between port si n,i and
sout , j is defined through the scatter matrix Si j .

Two optional time-domain descriptions can be added to enrich this compo-
nent (see Figure 4.3, bottom): first, one can add a buffer to store the inputs si n,i

at previous timesteps. This can be used if one wishes to model a delayed wave-

1Not to be confused with a Node in the Oger toolbox. In the Oger toolbox (which depends on the
Modular toolkit for Data Processing, MDP), a mdp.Node represents a block which can be executed
and/or trained, such as the reservoir and the readout layer. In our context, the mdp.Node reservoir
contains a collection of caphe.Nodes.
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guide or a digital filter. Second, we can add internal states to the node. This can
be used to describe for example the different population levels of a laser or the
complex amplitude of a resonator. We use a set of ODE equations to describe
the component in terms of its internal variables and input it receives. There is
no restriction on the form of the equations, so we can also include nonlinear
terms. Because of these two additions, the output sout ,i is now a sum of the lin-
ear part and a term describing the temporal, possibly nonlinear behavior of the
component.

The main novelty of our framework —compared to other optical simulation
tools— is that the S-matrix of components with a fixed linear instantaneous
transmission can be used to significantly speed up time-domain simulations
of networks with both instantaneous and non-instantaneous components. In
other words, as long as a component has no dispersion effects, it can be elimi-
nated from the circuit. This is explained in section 4.3. This is mainly relevant
in very large optical circuits, such as our nanophotonic neural networks, where
many optical splitters would slow down the simulation.

The framework is also suited very well for simulating coupled mode theory
equations, because it natively supports coupling matrices that couple the input
to the states, the states to the output, and the modes to themself (this is also
described in more detail in section 5.4.1, where we calculate the Jacobian of a
system of CMT equations). This allows us to calculate the steady-state trans-
mission of linear CMT equations out-of-the-box.

4.2.3 Carrier modulation

We represent time-domain signals as complex amplitudes s(t ). The actual field
is then the product of the very fast carrier (with frequency ωc ), modulated by a
complex-valued envelope s(t ):

E(t ) = s(t )e jωc t + c.c. (4.7)

Representing the signal by the envelope s(t ) instead of E(t ) is beneficial from a
numerical point of view, because s(t ) varies much slower than E(t ), hence we
can choose a much larger integration step. Obviously, as the bandwidth of the
input signal s(t ) increases, we will need more samples per time unit to accu-
rately simulate the system. If the input consists of K signals sk (t ) on clearly
separated frequency bands ωc,k , k ∈ [0..K −1], then a sum of multiple signals,
each with its own carrier frequency, can be used. In this case, the actual field is
given by:

E(t ) =
K−1∑
k=0

sk (t )e jωc,k t + c.c. (4.8)
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4.2.3.1 Comparison with circuit envelope simulation

Also in high-speed electronics, it can be beneficial to represent a signal as a fast
carrier (with frequency fc ) modulated with a slow-varying envelope (with high-
est frequency fs ), where fs << fc . In case there is no nonlinearity in the circuit
that causes harmonics of the carrier wave to appear, it is relatively easy to cre-
ate a SPICE-compatible equivalent circuit. The advantage is that the timestep
only has to be small enough to capture the bandwidth of the modulation en-
velope ( fs ) [16, 17]. The envelope simulation is thereby much faster than the
full cycle-by-cycle simulation of the original circuit. The way to represent these
time-varying signals is equivalent to the solution proposed above (see equa-
tion (4.7)). The difference is that in electronics, underneath is a SPICE model,
whereas in the photonics case, we use the framework which is proposed in this
chapter. As we already explained in the introduction of this chapter, it is ben-
eficial to represent signals in a natural way: for electronics, using current and
voltage, and for optics, using the optical field. The main reason for this is that
optical fields are non-conservative quantities, and therefore cannot be repre-
sented as voltages and currents [11].

Most of the time, one has to take into account nonlinear effects in electronic
devices, which cause harmonics to be generated at 2 fc , 3 fc and so on. In this
case, a harmonic balance simulation can be used to find the energy distribution
of the fundamental frequency and its harmonics. This technique works itera-
tively, whereby the simulation is split into a linear part, which is solved in the
frequency domain, and a nonlinear part, which is solved in the time-domain.
The simulation is converged when Kirchoff’s circuit laws are obeyed.

The concept of using modulated signals in combination with harmonic
balance simulations, is called the circuit envelope simulation, or the Enve-
lope Transient Harmonic Balance technique (a good overview of the available
methods is given in the introduction part of [18]). The time-evolution can be
performed with large timesteps (linked to fs ), and for each timestep a har-
monic balance simulation is performed to find the power distribution in the
relevant harmonics. Even though at each timestep a harmonic balance simula-
tion is performed, it is still faster than simulating cycle-per-cycle with the much
higher frequency fc .

In conclusion, the principles of separating two different timescales (the fast
carrier and slow envelope) is equivalent in the proposed software framework
and the circuit envelope simulation. However, the proposed framework here
does not yet take into account mixing of different carrier frequencies. One could
think of an optical equivalent of the harmonic balance technique, although it
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would not be used to calculate harmonics of the carrier2, but for example to
calculate the mixing terms of a four-wave mixing process (see for example the
coupled mode equations in [19], and [6]).

4.2.4 Generalized source term

For each component we can now optionally add time-domain equations which
leads in its most general form to an input-output relation of the following form:

sout ,i (t ) =
N−1∑
j=0

Si j si n, j (t )+ sext ,i (a,si n , t ) (4.9)

sout ,i (t ) =sout ,i ,l i n(t ) + sext ,i (a,si n , t ) (4.10)

Here, sext ,i is a generalized source term. E.g. for a continuous wave source,
sext = A, where A is the complex amplitude of the source. For a two-port wave-
guide with delay τ, the simple relation sout ,i (t ) = sext ,i (t ) = B si n,1−i (t −τ), for
i ∈ [0,1], holds. Here, B is the complex value which determines the loss and
phase change of the waveguide. Note that for this waveguide, there is no longer
an instantaneous behavior, i.e. Si j is zero in (4.9)3.

Also note that this description does not take into account waveguide disper-
sion: both the transmission B and the delay τ are fixed and calculated for the
carrier frequencyωc . By using a digital filter, of which the output is stored in the
generalized source term, it is possible to incorporate dispersion effects

As soon as there is a source term present in (4.9), the component is not
instantaneous anymore. We call these nodes memory-containing (MC) nodes
(Figure 4.3, bottom), as opposed to the the memoryless (ML) nodes. Depending
on whether the delays in a waveguide are important for a simulation, one can
model them with delay (which makes it MC), or without delay (as a ML com-
ponent), the latter having the advantage that we can eliminate it from the total
network. This is explained in the next section.

4.3 Towards a circuit

4.3.1 Generalized connection matrix

We use the node from Figure 4.3 as a basic building block to create an optical
circuit. An optical circuit consists of several nodes, of which the ports are linked

2Silicon does not have a second-order nonlinearity due to the symmetry of the crystal. The third-
order nonlinearity is also very weak, so one would need very high powers to generate harmonics.
For telecom wavelengths, the generated harmonics would also be absorbed by the silicon.

3The output of the waveguide is sout , j (t ) = Si j si n,1− j (t )+ Asi n,1− j (t − τ). If we would use a
non-zero S matrix, we would count the same input twice, which is clearly wrong.
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to the ports of other nodes in the circuit as we will explain in this section. An
important matrix in our approach is a matrix which we will call the generalized
connection matrix, which describes how all inputs si n are related to the gen-
eralized source term sext . This is done by eliminating the ML nodes from the
circuit. This is a crucial feature in our approach, and has two direct results. The
first outcome is that we have now calculated the frequency-domain response of
the system for all MC nodes. Second, in the time domain, it reduces the number
of variables needed, hence improving the simulation speed.

To perform the elimination of ML nodes, we split the input/output vector
si n/out (t ) into si n/out ,MC (t ) and si n/out ,ML(t ), for MC and ML nodes. For sim-
plicity we will omit the time dependency in the following equations.

We can describe the way the different components are connected as follows:(
si n,MC

si n,ML

)
= Ctot

(
sout ,MC

sout ,ML

)
=

(
CMC ,MC CMC ,ML

CML,MC CML,ML

)(
sout ,MC

sout ,ML

)
. (4.11)

Here, Ctot ,i j is a binary connection matrix which only contains a 1 if port i is
connected to port j. As a consequence, Ctot is symmetric and contains at most 1
element per row and at most 1 element per column, with zeros on the diagonal.

The behavior of each of the individual nodes can be described by the follow-
ing equations:

sout ,ML =SML,MLsi n,ML (4.12)

sout ,MC =SMC ,MC si n,MC +sext ,MC , (4.13)

in which we define the scatter matrices SML,ML and SMC ,MC . These are block
diagnal matrices, with each block representing the scatter matrix from a ML
resp. MC node. The second term in equation (4.13), sext ,MC , is the generalized
source term described earlier, see also equation (4.9).

Using all the equations above we can derive the input at the active ports,
given only sext ,MC . This is done as follows: replace sout ,ML in equation (4.11)
using (4.12), then solve this system for si n,MC . This gives

si n,MC =(
CMC ,MC+

CMC ,MLSML,ML
(
I−CML,MLSML,ML

)−1 CML,MC

)
sout ,MC

(4.14)

=C sout ,MC (4.15)

We then substitute (4.13) in the equation above. This yields

si n,MC =(
I−CSMC ,MC

)−1 Csext ,MC (4.16)

=Cext toi n sext ,MC (4.17)
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Figure 4.4: Illustration of a microring resonator. It consists of two parts: the

directional coupler and the (bent) waveguide. We also show the two

memory-containing ports, which come from a laser and optical spec-

trum analyzer (OSA). All memoryless nodes are eliminated from the

circuit, so we end up with a small (2x2) generalized connection matrix

S of the circuit.

We have now successfully eliminated the memoryless nodes and end up
with a smaller matrix Cext toi n (the generalized connection matrix) of the net-
work. The notation exttoin is used to illustrate that it transforms the generalized
source term sext to the inputs si n .

Note that the matrix inversion in (4.14) is of a special type: CML,ML only
permutes the elements of SML,ML , and SML,ML is a block diagonal matrix. The
resulting matrix I−CML,MLSML,ML is therefore sparse. However, the resulting
matrix after inversion is not always sparse. This depends on the topology of the
original network and on the individual scatter matrices of the ML nodes.

Example: microring resonator. We demonstrate the process of node elimi-
nation with a simple example. Consider the microring resonator of Figure 4.4,
which is the combination of a directional coupler and a bent waveguide (we
have defined the S matrices of these components in section 4.2.1). The bent
waveguide connects the two top ports of the directional coupler. We have two
MC nodes in the circuit, a laser and an Optical Spectrum Analyzer (OSA). We
can solve this system using the formulas (4.14) and (4.16) as we just explained,
but in this case it is easier and more instructive to solve the system immedi-
ately without creating all intermediary matrices. In the microring resonator,
monochromatic light (having a frequencyωc ) circulates inside the ring, and the
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output is an infinite sum of field contributions with decreasing amplitude, of
the form

sout ,3 = κsi n,0
(
1+a +a2 + ...

)
, (4.18)

where a = Aτexp(− jβL), and β= 2π
λ ne f f (λ). We assume that the loss A is inde-

pendent of the wavelength, which is a reasonable assumption for the bandwidth
that we consider. This infinite sum only exists when |a| < 1, and equals:

sout ,3 = κsi n,0
1

1− Aτexp(− jβL)
, (4.19)

which leads us to the the well-known equation for a microring resonator (where
it is assumed that the directional coupler is lossless, i.e. |τ|2 +|κ|2 = 1):

si n,MC ,1 = sext ,MC ,0
τ− A exp( jβL)

1− Aτexp( jβL)
. (4.20)

Note that if we followed the derivation of equations (4.14) and (4.16), we
obtain the same solution, namely Cext toi n,1,0. The case |a| > 1 will not oc-
cur, because this would mean τ > 1. In the case of a = 1, the determinant of
I−CML,MLSML,ML becomes zero. This will only occur in the pathological case
where τ= 1, which describes a directional coupler without coupling, and when
the ring is at resonance, i.e. βL = 2π. Even then, in practice this is not a problem
as in the case where τ = 1, the undefined fields (associated to ports 1,3,4 and
5) do not appear in the generalized connection matrix. The result in the case
when τ= 1 is unit transmission: si n,MC ,1 = sext ,MC ,0.

If the bandwidth of the input signal is small compared to the bandwidth of
the ring resonator4, it is safe to eliminate the ML nodes before starting the time-
domain simulations. Instead of using 8 ports, we would then only use 2 ports. If
the signal bandwidth is not negligible, first a digital filter has to be constructed
to account for the wavelength dependent Cext toi n .

4.3.2 Integration in time-domain

The final ingredient in our model are the internal states, which are stored in the
total variable vector a(t ). These describe the evolution of some internal vari-
ables, e.g., temperature and free carriers in a laser, as a function of time and
inputs:

da(t )

d t
= f(a,si n , t ) (4.21)

4For a ring with a Q-factor of 4500, the 3 dB bandwidth (if the ring has a resonance around 1550
nm) is 0.34 nm, which corresponds to a signal bandwidth of 42 GHz. The phase change over the 3dB
bandwidth is π/2 radians, which is not negligible.
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In order to perform an integration, we have to evaluate the function f. This is
done as follows: at each timestep we loop over all MC nodes to calculate the gen-
eralized source term sext . Then we can calculate the input to each MC node, si n ,
from equation (4.16). When we know all inputs, we can evaluate the ODE equa-
tions for each node, fk (a,si n , t ) = d ak (t )

d t , and concatenate them to form d a(t )
d t .

This derivative can then be used to drive an integration routine. For exam-
ple, in the case of a forward Euler integration, a fixed timestep ∆t is used, and
the next state is given by:

a(t +∆t ) = a(t )+∆t f(a,si n , t ) (4.22)

Two other integration routines are provided to the user. The first one is the
classical Runge-Kutta method, which is a fourth-order method, meaning that
the error per step is on the order of O(∆t )5, while the total error accumulation is
of the order of O(∆t )4. Compared to the first-order Euler integration it is much
more accurate, but it requires more function evaluations. The last integration
routine is based on Bulirch-Stoer [20]. Here, we combine this algorithm with an
adaptive stepsize method, in which the internal integration step ∆t is modified
during the integration, where the integration step should be as large as possible
while maintaining a given accuracy.

4.4 Optimizations

In this section we discuss how we can speed up the frequency and time domain
calculations. First, we describe how we can significantly improve the scalabil-
ity of the software by using sparse matrices, and we perform a test to check the
speed improvements. Next, we demonstrate how the elimination of linear, pas-
sive nodes, leads to less memory requirements and lower simulation time.

4.4.1 Optimizations in the frequency domain

In equation (4.14) and (4.16) we need to solve a system of equations. For exam-
ple, in equation (4.16) we solve(

I−CSMC ,MC
)

X = C (4.23)

for X. This can be done by first doing a LU factorization, followed by forward
and backward substitution to find X. A similar reasoning is done for the inver-
sion in (4.14). Solving a system is almost always preferred above matrix inver-
sion in terms of speed and stability. Optionally, since these matrices are sparse,
we can use rely on sparse matrix algorithms to solve this system. One software
package, the Clark Kent sparse LU factorization algorithm (KLU), is optimized
for circuit-like matrices, and so it is well suited for our application [21–23].
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To benchmark the speed gain, we consider the use case of an optical filter
called a Coupled Resonator Optical Waveguide (CROW). A CROW is a sequence
of optical rings as shown in Figure 4.5. Each section is made of a directional
coupler (with coupling values κi ) and two waveguides, which then couples to
the next section. Here we will only perform a speed benchmark, in section 4.5.1
we consider a real-world use case.

...

0 1

2 3

0 1
0 1

Figure 4.5: A Coupled Resonator Optical Waveguide (CROW). Each section is

subdivided in a directional coupler and two waveguides. Port num-

bers are shown in the left.

The directional coupler and the waveguide are ML components with four
resp. two ports. This means there are eight ports per CROW section. By plot-
ting the simulation time as a function of the number of ports in the circuit, we
observe how scalable our software framework is for the frequency domain. This
is shown in Figure 4.6, where we compare the time spent by different matrix
strategies as a function of the number of ML ports. As can be seen in the fig-
ure, a large number of CROW sections can easily be handled with the KLU algo-
rithm. This proves the technique is useful for analyzing very complex systems
in steady-state regime.

4.4.2 Improving the simulation speed in the time domain

As already mentioned, if a network contains both ML and MC nodes, one can
eliminate the ML nodes prior to starting the time domain simulation. The
speed of the time domain simulation depends on the size of the generalized
scatter matrix after eliminating the ML nodes. To benchmark the speed im-
provement, we simulate a large network of components. The nanophotonic
reservoirs, which are the subject of this dissertation, are perfectly suited for this
benchmark task. More specifically, we simulate a nanophotonic reservoir con-
sisting of Semiconductor Optical Amplifiers (SOA). Each SOA is connected to its
neirest neighbours, in a structure called a swirl topology [24], see Figure 4.7(a).
To connect the SOAs, we used a combination of splitters and waveguides. The
actual creation of the circuit is considered in-depth in section 4.6.

We compare two systems. In the first system the ML nodes behave as MC
nodes, in the second system we first eliminate all ML nodes. In the first case,
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Figure 4.6: Calculating the frequency response of a passive network. Using

KLU, a sparse matrix solver suited for circuit-like matrices, we can eas-

ily calculate scatter matrices of very large networks.

we need to calculate the light propagation in each splitter and waveguide sepa-
rately, which means the simulation will take longer, and consumes more mem-
ory, as in the second case. This is illustrated in Figure 4.7(b).

The total simulation time is mainly determined by the evaluation of the
ODEs of the individual SOAs and the matrix multiplication from equation (4.16).
There is a clear benefit of eliminating the ML nodes: the simulation speed is ap-
proximately halved as shown in Figure 4.7(a) (top). The calculation time for
evaluating the ODEs is the same for both systems. The memory usage is shown
in the bottom graph of Figure 4.7(a): It is a sum of the memory allocated in
C++ and in Python. The offset is due to initialization overhead in Python. For
all simulations, we used a buffer that stores 500 timesteps. Because we elimi-
nated the ML nodes, the memory requirements are greatly reduced. Since we
use sparse matrices, calculation time and memory requirements scale linearly
as a function of the network size.
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External input

(a) (b)

Figure 4.7: Left: topology used to simulate a complex system with ML and MC

nodes. Each circle represents a SOA. Splitters are not shown. Right:

the simulation time and memory usage increases linearly with the

number of SOAs. Clearly there is an advantage by eliminating the ML

nodes, both in terms of speed and memory usage.

4.5 Examples

The framework presented here is very well suited for calculating the transmis-
sions and reflections in large networks, and to study the dynamics of nonlinear
coupled systems. The first example shows how we design a Coupled Resonator
Optical Waveguide (CROW) with a flat pass band. Although we can simulate
very large networks (see also Figure 4.6), we will demonstrate the tool with a
limited number of rings. Using scientific libraries which are readily available
in Python, we can optimize this circuit very easily. In the second example we
demonstrate the nonlinear dynamics of ring resonators in different topologies,
under the influence of free carriers and temperature effects.

4.5.1 Coupled Resonator Optical Waveguide

Here we consider the Coupled Resonator Optical Waveguide (CROW) network
as we showed in Figure 4.5, with four rings. By adjusting the coupling strengths
κi , i ∈ [1,5], of the coupling sections, we can design optical filters with a desired
shape, such as a flat band filter with a certain wavelength range, as shown in
Figure 4.8.

Here we design a pass-band filter of approximately 1 nm around 1.545 µm.
This resonance wavelength is determined by the roundtrip length of one oscil-
lator, which we will keep fixed. To find a set of κi , we will use an evolutionary
algorithm. Since Caphe has a Python front-end, we have access to all Python
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optimization libraries. In this case, we use the Covariance Matrix Adaptation
Evolution Strategy, (CMA-ES) to optimize the coupling coefficients κi , i ∈ [1,5],
where we assume κ1 = κ5 and κ2 = κ4. For more details about the algorithm, we
refer to [25]. The penalty is determined by the mean square error between the
resulting filter for a certain set of κi and the target filter. Each simulation takes
about 200 milliseconds. After 33 generations with a population size of 14 (which
takes a few minutes on a desktop computer), we get a solution that is very close
to the desired function, see Figure 4.8. The coupling values we used were κ =
[0.285, 0.017, 0.009, 0.017, 0.285].

We stop the optimization routine here because further small improvements
will not necessarily result in better results. This is mainly due to statistical vari-
ations in the geometry of the devices, which have influence on the κ values and
effective indices of the waveguides. These variations are in fact detrimental for
the performance of the filter. This can be seen in Figure 4.8(b), where we sim-
ulate different random process variations5, and it is clear that the shape of the
filter is not optimal.
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(a) Optimizing the filter
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(b) Process variations

Figure 4.8: CROW: Optimizing the κi to match a certain filter (left). With pro-

cess variations, performance deteriorates (right).

We can compensate for the process variations by changing the refractive in-
dex locally using micro-heaters on top of the waveguides. Suppose the ring res-
onances due to process variations can vary over 1 nm [26], then the refractive
index change needed to compensate this variation is approximately 0.0022. Us-
ing dne f f /dT ' 1.86 ·10−4 [27], this is about 11.82◦C. Using micro-heaters on
top of the waveguides, we can achieve this temperature variation in a ring using
less than 1 mW, depending on the exact design of the micro-heaters (see [28, 29],
and references therein). If we assume that the resonance shifts due to process
variations are uniformly distributed, we need approximately 6◦C thermal tun-
ing per ring, which corresponds to about 3 mW.

5In this case, a random variation on the resonance wavelength of 0.5 nm was used.
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4.5.2 Dynamics of three coupled ring resonators in a feedback
loop

High-Q cavities show interesting nonlinear dynamic behavior when excited in
the correct regime. For instance, self-pulsation is experimentally observed in
small, high-Q microrings, besides the expected thermal bistability [30]. This
self-pulsation can be described phenomenologically, in a very accurate way, us-
ing Coupled Mode Theory (CMT) [31]. The microring is represented by four dy-
namical variables: two complex amplitudes representing the energy and phase
of the light travelling in the CW and CCW direction, and two real variables, one
representing the temperature difference between the ring and its environment,
and a second representing the number of free carriers. This system thus inher-
ently contains a lot of different timescales: the temperature time constant (ap-
prox. 100ns - 1µs), the free carier relaxation time (approx. 1-10ns), the coupling
between the ring and the bus waveguide (approx. 10-100ps) and the coupling
between the CW and CCW mode (which can also be faster than nanoseconds).
Given the different timescales and the compact formulation of the basic equa-
tions, our tool is very well suited to simulate this system. In Figure 4.9 we show
how different fixed input powers can trigger the experimentally observed self-
pulsation in an all-pass filter. The exact formulation of the differential equations
governing this system, and the order of magnitude of the appropriate constants
needed to observe the self-pulsation, can be found in [30, 31].
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Figure 4.9: Self-pulsation in a single (all-pass) microring resonator.

However, the real use case of our tool is simulating photonic circuits con-
taining more than one component. We demonstrate this in Figure 4.10 by in-
vestigating a system where we couple three self-pulsating microrings with an
external feedback loop, with zero roundtrip phase at the signal wavelength. Two
3dB splitters connect the system with respectively a source and a detector.

In the systems of Figure 4.9 and Figure 4.10, self-pulsations are present,
which arise from the interplay between the temperture and plasma dispersion
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Figure 4.10: Dynamics of a system with three (all-pass) microring resonators

coupled with a feedback loop (zero roundtrip phase at the signal

wavelength), containing two 3dB-splitters, connecting the loop with

resp. a source and a detector.

effect. The purpose is to investigate the dynamics in a single ring and in coupled
rings, and to see how they could be used as an excitable structure. These rings
could then be used as spiking neurons, in order to create a new type of artificial
neural network. This research is continued by T. Van Vaerenbergh [32, 33].

4.6 Constructing a nanophotonic reservoir

To lay the groundwork for later chapters, we explain in this section how to con-
struct a nanophotonic reservoir. First, we explain which constraints we have
on the topology, and propose a mesh-like topology. Then, we show how this is
implemented in our software framework.

4.6.1 Hardware topology

A hardware implementation of a reservoir implies certain restrictions on the
topology. E.g., the chip is planar and waveguide crossings are to be avoided,
which implies regular topologies as opposed to random topologies.

The neurons that make up the nanophotonic reservoir are usually two port
components, such as the SOA, the PhCC and the microring resonator. This
means we will need an optical splitter to distribute the light coming from these
neurons to other neurons. For example, a 3-port splitter can distribute the out-
put of one neuron to two other neurons. If we want the output to be distributed
over three neurons, we need a 4-port splitter. And so on. However, it is not
possible to create a lossless 3-port splitter, and it is not possible to create a loss-
less reciprocal 4-port splitter. Table 4.1 summarizes the options for N=3 to N=6
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N Lossless Reciprocal
3 No /

4 Yes (eq. (4.24)) No

5 Yes [34] Yes

6 Yes [34] Yes

Table 4.1: List of possible splitters with N ports, where the power is equally

distributed over N-1 output ports. For some N, it is not possible to cre-

ate a lossless splitter. Advanced magneto-optic materials can be used

in order to break reciprocity on the SOI platform [35], but make the fab-

rication more complex.

ports. The S-matrix of a nonreciprocal lossless 4-splitter could look like [34]:

Sspl i t ter =
1p
3


0 1 1 −1

1 0 1 1

−1 1 0 1

−1 −1 1 0

 (4.24)

Because of the highly increased design complexity for splitters with more
than three ports, and because they will more likely be susceptible to process
variations, we will use the standard three port splitters which are well tested on
the SOI platform, such as an MMI with one input arm and two output arms (for
example the one shown in Figure 4.1), or a Y-junction. The scatter matrix for a 3
dB splitter (which splits power equally in two arms) is given by:

S =


0 1p

2
1p
2

1p
2

0 0
1p
2

0 0

 (4.25)

Also, the structure needs to be planar and too many optical crossings should
be avoided if possible because these cause loss and cross-talk. Recent improve-
ments in crossing strategies reduce the loss to only 0.17 dB [36] per crossing,
which means the restrictions on the topology are now less stringent.

In this dissertation we use two topologies. A swirl topology (see Figure
4.7(a)) and a waterfall topoplogy (see Figure 4.11 and Figure 4.12). The swirl
topology was proposed by K. Vandoorne [14, 24]. With this planar topology,
special care was taken to mix the signals by adding a significant number of
explicit feedback loops. This is necessary because the SOA is a unidirectional
component, i.e. there is no reflection. On the other hand, photonic crystal cav-
ities do show significant reflections, so even in the waterfall topology, feedback
loops and signal mixing will occur. This is the topology that is used most of the
time in this dissertation.
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Figure 4.11: The proposed topology for the nanophotonic reservoir. Each cir-

cle represents a PhCC, and each splitter represents an MMI or Y-

junction. Due to hardware restrictions, it is difficult to use a ran-

dom topology. Especially the fan-in should be minimized, because

a large fan-in means a higher sensitivity to process variations and

increased design complexity. A regular mesh topology, such as the

waterfall topology shown here, minimizes the fan-in and crossings,

while keeping a good connectivity. A reservoir based on the waterfall

topology has a good performance, can be easily designed and mini-

mizes the amount of fan-in and fan-out.

S/1-S50/50
50/50

Source

Detector

S/1-S

A/B Splitter

(=bias+signal)

Figure 4.12: Illustration of the typical splitting ratios in a fully connected node

in the waterfall topology (a 50/50 splitter is also called a 3dB splitter).

The fan-in and fan-out have been minimized to three. An important

design parameter is the splitting ratio S. It is the fraction of power

that enters the network from the source, and the fraction of power

that goes to the detector.
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4.6.2 Implementation of the network

In order to create this network, we have made several intermediate building
blocks. The most general class is called the ConnMatrixNetwork, and is used
for almost all simulations in the following chapters. Based on a connection ma-
trix C and a set of building blocks BB(k), it creates the actual circuit. During the
process, we heavily rely on hierarchical features of our framework. We will see
later on how flattening the circuit, i.e. removing all hierarchy, can improve the
speed of the simulation.

4.6.2.1 Creating the circuit

The class ConnMatrixNetwork is a complex class with many arguments. We
will only highlight the parameters which are relevant to demonstrate the cre-
ation of the network (the other parameters can be found in the class documen-
tation):

• Building blocks (BB): This is a list of basic building blocks that make
up the circuit (size N ). We have no restriction on the choice of building
blocks. This means we are not bound to one neuron type, so it is possible
to combine different optical building blocks (e.g. combining side-coupled
cavities with inline coupled cavities).

• Connection matrix (C). If C(k, l ) is different from zero, then there is a con-
nection from BB(l ) to BB(k) with strength Ck,l .

Creating the network is done in two steps: first we extend each building
block with splitters, as shown in Figure 4.13(a), which are then called extended
building blocks, BBext . The input and output splitters have a scatter matrix Si n,k

and Sout ,k , respectively. If BB(k) is linked to Mk other elements, then Sout ,k is
a (Mk +1, Mk +1) matrix (1 input on the left, Mk outputs on the right). Also, for
Pk inputs on BB(k), Si n,k is a (Pk + 1,Pk + 1) matrix. The Si n,k matrix has the
following structure:

Si n,k contains only 0/1 values, and port 0 is the input for BB(k). Because the
splitter has 1 values, the actual power splitting should be taken care of by the
C matrix. This is done on purpose, such that we can probe the output of each
building block in a detector without disturbing the system.
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(a) The first step is to extend a building block BB(k) with input/output signal
splitters that have scatter matrices Si n,k / Sout ,k . The number of input and output
ports depend on the connection matrix C.

(b) Connecting the nodes: if C(k, l ) is not zero, then there is a connection from
block l to block k, with strength C(k, l ).

(c) An example network generated with sources/detectors on each element. The
inset shows the used connection matrix and two of the Si n,k matrices.

Figure 4.13: Principle for creating a nanophotonic reservoir using Caphe. The

neurons are encapsulated in building blocks (a), which are then con-

nected to other blocks (b), in order to form a reservoir (c).
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Most topologies in a neural network do not have a symmetrical connection
matrix. This means that, if BB( j ) is connected to BB(k), the signal does not
necessarily propagate from BB(k) to BB( j ). The strength of both connections
can be controlled with C( j ,k) and C(k, j ), respectively. In photonics, however,
a waveguide is by definition reciprocal, and signals can propagate back from
BB(k) to BB( j ). Therefore, connections are bidirectional and we choose Si n,k

to be symmetrical (i.e. we also fill the first column with [0, 1, ..., 1]). For this
reason, it is possible to enable bi-directionality between the nodes. In this case,
the connections between the two building blocks are reciprocal. Also, the first
column of Si n,k is filled except for Si n,k (0,0) (such that the matrix becomes sym-
metrical), which makes the splitter behave reciprocal.

After creating these extended building blocks, we use the information of the
connection matrix to link them to each other, as illustrated in Figure 4.13(b). An
example circuit with four components is illustrated in Figure 4.13(c).

4.6.2.2 Flattening the network

During the creation process we relied heavily on hierarchical structures which
our framework supports naturally. This makes the creation process very flexi-
ble, less error-prone, and more natural, because each hierarchical component
can be directly addressed by its ports without having to know the internal port
numbering. It also allows us to re-use building blocks that are often used, which
makes it much easier to create complex circuits. Also, the visualization of a cir-
cuit is more natural when using hierarchy, because hierarchical building blocks
often represent a certain functionality.

However, hierarchical structures are MC structures by design, even if they
consist solely of ML nodes6. As such, even if they contain ML nodes, which can
be removed during the ML elimination step, the overall process is less efficient.
For reasons of speed, ideally, there should be one large sparse generalized con-
nection matrix S in a top-level node. Also, when there is no hierarchy, the order
in which the ODE equations of the sub-nodes are evaluated does not matter,
which means it can be very easily parallelized. The process of removing all hier-
archy is called flattening.

When flattening a network, we replace each hierarchical node by its sub-
nodes, and re-link these sub-nodes properly to the rest of the circuit, in order to
maintain the same topology. In the flattened network, the original hierarchical
nodes does not exist anymore, instead we have a list of elementary building
blocks (which cannot be further subdivided in other nodes), which can be ML
or MC. In this network, we can first eliminate all ML nodes on order to perform
efficient simulations in the time-domain, as we explained in section 4.4.2.

6This is a software-based limitation of the current architecture and will be resolved in version 2.0.
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4.7 Alternatives

Converting this framework into a software package is a big effort. Before start-
ing this effort we have made a comparison between developing our own pack-
age and using a commercial package such as VPI Photonics [8] or OptiSpice
[10]7. However, there are four big limitations when using these products: first,
it is difficult to create components with a specific behavior, as one is limited to
the available building blocks. As we investigate new components, we regularly
change the Ordinary Differential Equation (ODE) of the components (for exam-
ple to incorporate the influence of temperature or free carriers). Second, the
GUI does not allow us to easily create large networks. It is very cumbersome
to create a network of 100 neurons with a random connection topology, and
change the topology for each run. Third, the software has to be interfaced to a
reservoir toolbox (such as the Matlab Reservoir Toolbox and the Python OGER
toolbox) in an automatic way, and the software should be invoked from within
this framework. Fourth, when optimizing any reservoir, we need to perform a
huge number of simulations (a typical sweep has over 1000 simulations), which
means the software needs to be run in parallel on a simulation grid. Purchasing
100 licenses to allow this was out of the question.

Then there is the important choice of programming language. The different
building blocks can be mapped naturally on different objects, hence we only
considered object-oriented programming languages. We have chosen to use
the C++ programming language in favor of Matlab/Python. One could argue
that Matlab and Python both have very good numerical libraries, but the fact is,
C++ also has very good numerical libraries such as Eigen38 which are very easy
to use, and are comparable in performance9. Two other reasons why we chose
this language were speed and easy interfacing:

1. Speed: Matlab and Python are interpreted languages, which means each
line of code poses an overhead in calculation. A good Matlab/Python pro-
grammer will try to combine -where possible- for loops into vector or ma-
trix operations in order to considerably speed up the calculations. How-
ever, when we combine different optical components, it is no longer pos-
sible to expand all component-specific computations (which is the bot-
tleneck in a time-domain computation) in a vector operation. Hence, we
loose all advantages of using fast matrix and vector operations in those

7During the third year of this PhD, a third package from Lumerical, called Interconnect, was
launched.

8http://eigen.tuxfamily.org/
9Without any other dependency, it already performs extremely well compared to for example the

Intel MKL (Math Kernel Library). Eigen3 can interface to other libraries, such as Intel MKL, when
they are available. Furthermore, Eigen3 can cope very efficiently with sparse matrices, and supports
parallelization for the most common matrix operations.
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languages.

2. Easy interfacing and flexibility: C++ is easily interfaced to other program-
ming languages thanks to the Simplified Wrapper and Interface Genera-
tor (SWIG)10. We have used SWIG in order to naturally map all C++ classes
(optical components and solvers) onto Python classes. The C++ core bun-
dled with the Python wrapper gives us an extreme flexibility and allowed
us to couple the software framework to the reservoir computing toolbox
OGER.

It turned out that with some simple modifications, we were able to extend
the software framework so that it could calculate the frequency response of ar-
bitrary circuits. Given that it would be very useful not only for reservoir com-
puting, but for the nanophotonics community in general, we have had several
refactoring rounds to clean up the code and make it available to non-reservoir
computing users as well.

4.8 Conclusion

In this chapter, we presented a framework that enables modeling of optical cir-
cuits both in the time and in the frequency domain. It is suited for calculating
the steady state characteristics of very large networks, and for modeling highly
nonlinear systems in the time domain after eliminating linear instantaneous
components. By eliminating these components, we reduce the effective size of
the network, and the time-domain simulation becomes faster. The tool is very
general and the internal variables can be expressed naturally depending on the
application domain, which makes it attractive for other dynamical systems such
as financial systems and neural networks. Furthermore, the framework sup-
ports hierarchical structures, which makes the network creation process more
convenient and intuitive.

Although in this dissertation we have used the software framework mainly
for nanophotonic simulations, it is already used frequently for other applica-
tions in photonics, such as in optical filter design. The software framework
Caphe is therefore a very promising tool, as it is very fast, flexible, and can be
combined with other scientific tools which are readily available in Python.
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5
Isolated spoken digit recognition

using photonic crystal cavities

“One. ” Answer: two? (A reservoir)

In this chapter we will train a nanophotonic reservoir to recognize spoken
isolated digits. This task was investigated previously in the doctoral thesis of K.
Vandoorne [1], using a nanophotonic reservoir of Semiconductor Optical Am-
plifiers (SOAs). This was — to the best of our knowledge — the first time a
nanophotonic reservoir computing system was proposed. In this chapter, we
compare the previous results based on an SOA reservoir with our novel archi-
tecture based on Photonic Crystal Cavities (PhCC).

We will identify the relevant parameters and performance trends as a func-
tion of these parameters such as the phases between the resonators, the atten-
uation, the cavity lifetime, the delay between the resonators, the detuning and
the input power. We also theoretically evaluate the influence of fabrication er-
rors, which are currently the bottleneck for certain nanophotonic application
domains.

This chapter is structured as follows: in section 5.1 we give a brief overview
of the isolated digit recognition task. Then, in section 5.2 we summarize the
most important results from K. Vandoorne’s dissertation. Because the behav-
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ior of the SOA and the PhCC is very different, we compare the steady-state and
time-domain characteristics of an SOA to those of a PhCC in section 5.3. In
section 5.5 we then present experiments on the speech task using our novel ar-
chitecture based on PhCC. We see a similar trend in performance as a function
of interconnection delay (i.e., an optimal delay of approximately half the word
duration), as we saw with classical reservoirs based on hyperbolic tangent neu-
rons and the SOA reservoir. We will also show that the different topologies, in-
troduced in 4.6.1, have a small influence. Furthermore, the type of cavity (inline
versus side-coupled) has a big influence on the performance. Finally, there is
a nonlinear region where the cavities are strongly coupled, which degrades the
performance. We conclude in section 5.6.

5.1 Isolated digit recognition: task description

Speech recognition is a relatively complex task, which makes it a relevant
benchmark for determining the overall performance of a reservoir. This type of
task has been discussed in literature many times [2–5]. Also, reservoir comput-
ing has been used successfully on this task [6].

One benchmark task that is often used is the classification of isolated digits.
This task was used in the PhD of Kristof Vandoorne [1], and by D. Verstraeten in
[7]. Here, the words ’zero’ to ’nine’ are spoken by 5 female speakers. Each word
is repeated 10 times. The samples are taken from the TI46 speech corpus [8]. It
has become possible, using reservoir computing, to achieve a Word Error Rate
(WER) close to 0%. This means that it is not possible anymore to clearly identify
the influence of different parameters. For this reason additional babble noise
was added. The source of this babble is 100 people speaking in a canteen, and
the added noise has a Signal to Noise Ratio (SNR) of 3 dB [9].

5.1.1 Pre-processing

Instead of feeding the raw data from the speech task to the reservoir, we will pre-
process the data, much like the human ear does. In his PhD thesis David Ver-
straeten compared different pre-processing methods [10]. He discovered that
the Lyon passive ear model [11, 12] matches very well with the recognition ca-
pabilities of classical reservoir methods, and therefore this model was used in
K. Vandoorne’s and our experiments as well. Basically, the response of the inner
ear and its selectivity to certain frequencies is modeled with a series of notch
filters, followed by Half-Wave Rectifiers (HWR) and Adaptive Gain Controllers
(AGC). The outputs are positive signals indicating the firing rate of the neurons.
As a last pre-processing step, the samples are decimated with a factor 128 to re-
duce the number of samples without much loss of information. The resulting
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(a)

(b)

Figure 5.1: Example time traces for a spoken digit after pre-processing with

the Lyon passive ear model. (a) shows the 77-channel output of the

Lyon passive ear model for one spoken digit, and (b) shows the same

data after multiplying with Wi n , and shifting all signals upwards, so

they become positive for all timesteps. This is the actual input into

the reservoir. In this example, we have normalized the output power

such that the maximum power into a node is P0.
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signal typically has a length of 40-80 samples.
In our case, one audio signal is transformed to 77 channels uchannel s [k],

where k ∈ [0..K ], for a spoken digit with K time samples. An example time trace
is shown in Figure 5.1(a).

These 77 channels are multiplied with an input weight vector Wi n (see sec-
tion 2.3.1) with dimensions (81,77), and weights randomly chosen from the set
{-0.1, 0.1}. The final input to each of the 81 neurons is given by:

unodes [k] = Wi n ·uchannel s [k], (5.1)

This input is then shifted upwards such that all signals are positive, as we want
to use this as input power for the photonic reservoir:

u′
nodes [k] = unodes [k]−mink (unodes ) , (5.2)

An example time trace is shown in Figure 5.1(b).

5.1.2 Winner-takes-all

We train ten distinct linear classifiers (see section 2.3.3), one for each digit. Each
classifier should return +1 whenever its corresponding digit is spoken, and -1
otherwise. Figure 5.2 illustrates the winner-take-all approach: the winning digit
corresponds to the classifier with the strongest positive response.

5.2 Previous work in nanophotonic reservoir com-

puting using SOAs

In this section we briefly review the research that has been performed in the
PhD thesis of Kristof Vandoorne [1]. The main focus of his dissertation was to
demonstrate the use of SOAs in the context of reservoir computing.

However, it is not immediately obvious why such a network of SOAs makes
a good reservoir. The steady-state input-output curve, although similar to the
upper half of the hyperbolic tangent function which is classically used, lacks
the symmetric lower branch because optical power cannot be negative. Also,
the topology is restricted, because the chip is planar, and too many crossings
should be avoided due to cross-talk and losses (this was discussed previously
in 4.6). The increased complexity of combiners and splitters with a high fan-in
resp. fan-out further increase the topology constraints.

On the other hand, advantages are that the SOA has richer internal dynam-
ics as opposed to the static neurons which are used in software. As we alluded
to in the introduction chapter, the fact that an optical signal has a phase and
amplitude, will play an important role in the performance of the reservoir.
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Figure 5.2: After taking the average over time of the output classifiers, we ap-

ply the winner-take-all principle. The winning sample is the one with

the highest positive output. In (a), the highest output corresponds to

spoken digit ’7’, which is correctly recognized. In (b), digit ’5’ is chosen

as wrong answer.



112 CHAPTER 5

We begin by introducing the SOA. We then explain which topology was used,
and highlight the most important results that were achieved.

5.2.1 Semiconductor Optical Amplifiers

Semiconductor Optical Amplifiers (SOAs) can provide a high gain over short dis-
tances and can be electrically pumped. The operation of SOAs is similar to that
of semiconductor lasers. Electrons from the valence band are excited to the
conduction band, either through electrical or optical pumping. An incoming
photon can interact with the excited electron, forcing the electron to release its
energy and to return to the valence band. During the process, a new photon
is emitted with exactly the same frequency, phase and direction. This process
is called stimulated emission. More detail about the process can be found for
example in [13]. SOAs are usually made from III-V compound semiconductors
such as InP/InGaAsP and GaAs/AlGaAs.

5.2.2 Topology

Imagine a series of SOAs that are connected to each other on a single line. In-
formation is always inserted from the left of each SOA, which means that infor-
mation only flows from left to right. Because the SOA has no reflection, there is
no communication from right to left. This is also true for a waterfall topology, as
shown in Figure 4.11: SOA 2 does not influence SOA 1 if it is after SOA 2 (which
means either right or down from SOA 1).

Because a unidirectional topology of non-reflecting components does not
contain network memory1, a swirl topology is used, as shown in Figure 4.7(a).
In this topology, there are a large number of feedback cycles, which improve the
connectivity between the individual SOAs. Because the SOAs amplify the input
signals, an additional attenuation term is used in order to avoid lasing2, or in
other words, to avoid creating a loop somewhere in the circuit with a gain larger
than one. Alternatively, the input current can be reduced to decrease the gain
in the SOA.

1For the PhCC, however, we can afford to use the waterfall topology, because there each cavity
has a certain amount of reflection, which causes it to communicate to cavities on the left of, or above
this cavity.

2With the current framework, laser operation, resulting from resonating cavities (where the cavity
is modeled as an explicit building block), cannot be simulated correctly. This is mainly because for
laser operation, we need multiple modes that operate at different frequencies, i.e. equation 4.8. This
is not yet supported in the current version. This is different from the case where we see the laser as
a single black box component with rate equations: this can be modeled in the current framework
because the rate equations are ordinary differential equations.
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5.2.3 Summary of previous results

The metric that is used to evaluate the performance of the reservoir is the Word
Error Rate (WER), which defines the ratio between wrongly predicted digits ver-
sus the total number of available digits.

The main conclusion is that the SOA reservoir (i.e., with coherent simula-
tions) outperforms the standard (incoherent) hyperbolic tangent reservoir (of
the same size) for the isolated digit recognition task, for optimal parameters.

First, the influence of the delay between the neurons was investigated for
both a classical ESN and the SOA network. As can be seen from Figure 5.3, the
performance is better for an optimal delay that equals approximately half the
duration of a spoken digit (in this case, this is a delay of 30 times the SOA delay).

Also, the effect of using amplitude and phase (called a coherent simulation)
compared to using only the magnitude of the signal (called an incoherent sim-
ulation), is shown in Figure 5.3. The improved performance for a coherent sim-
ulation was explained as follows: the state space of a complex-valued reservoir
contains twice as many variables as that of a real-valued reservoir. Although
the number of observed variables remains unchanged (only the magnitudes are
used for the readout layer), there is internal interaction between magnitudes
and phases (through complex addition of signals). As a result, the additional
richness of transformations in state space is also present in the magnitudes.
Because the internal state-space is richer, the observed signals are more diverse
and therefore more useful to approximate the desired output.

The attenuation between the connections is also relevant: the SOAs amplify
the signal, and it has to be attenuated again in order to prevent lasing and/or
chaotic behavior of the network. This behavior will most likely render the reser-
voir useless. This is equivalent to using a classical hyperbolic tangent discrete-
time reservoir with a spectral radius that is very large (and larger than one).

5.2.4 Simulation framework

All research performed in the PhD of K. Vandoorne was done using the Matlab
toolbox developed at the Department of Electronics and Information Systems
(ELIS) 3. Since then, a new framework was developed, called the OrGanic En-
vironment for Reservoir computing (OGER) [14]. OGER, based on the free pro-
gramming language Python, is an open-source machine learning toolbox based
on the Modular toolkit for Data Processing (MDP) [15]. This framework allows
one to easily run many simulations in parallel, along with a more modular ap-
proach which makes it easier to set up a simulation with fewer lines of code and
better reproducibility.

3http://reslab.elis.ugent.be/rctoolbox
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Figure 5.3: WER for the isolated digit recognition task, for a network of SOA

and a classical hyperbolic tangent network. The SOA network, when

simulated in a coherent regime (i.e., using complex-valued signals),

performs better than a classical, real-valued (incoherent) hyperbolic

tangent network. Clearly, there is an optimal value for the intercon-

nection delay, which turns out to be approximately half of the word

length (picture courtesy of K. Vandoorne).

5.3 Comparison between photonic crystal cavities

and SOAs

In this section we compare the steady-state and dynamical behavior of the SOA
and PhCC. The steady-state equation for the SOA is given by:

Pout = exp(h)Pi n , (5.3)

in which h physically represents the integrated gain over the length of the SOA
at steady-state, for a given input power [16]. Figure 5.4 shows the input-output
relationship of the SOA in steady-state regime.

In section 3.2.1.2, the steady-state behavior of the PhCC was derived from
the CMT equations and is given by:

Pout

Pi n
= 1

1+ (∆−Pout /P0)2 . (5.4)

This equation is valid for an inline coupled cavity. For side-coupled cavi-
ties (where the light has a direct path from input to output, see Figure 3.4), the
steady-state equation is given by [17]:
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Figure 5.4: Input vs output power of an SOA. The input-output characteristic

of this SOA resembles the input-output of a hyperbolic tangent func-

tion (picture courtesy of K. Vandoorne).

Figure 5.5: Input vs output power of the PhCC cavity. Two detunings are

shown: a detuning ∆ = 2, for which bistability is observed, and a de-

tuning∆= 0, which is on resonance. For both cases, an inline coupled

(investigated in detail in chapter 3) and side coupled cavity are shown.
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Figure 5.6: Step response of an SOA. After a warmup period of 1.5 ns, the

source is turned on. The input signal is amplified by the SOA. For this

it uses an amount of excited carriers, which decreases the SOA gain.

When the source is switched off, the gain recovers to its steady-state

value, which depends on the amount of current that is injected in the

device.

Pout

Pi n
= (∆− (Pi n −Pout )/P0)2

1+ (∆− (Pi n −Pout )/P0)2 (5.5)

Figure 5.5 shows the steady-state behavior of both PhCCs. The bistable non-
linearity in the PhCC for large positive detunings is more complex than the sat-
urating nonlinear behavior of the SOA. Also, note the slope Pout /Pi n = hss , at
the origin, of the different components:

• SOA: hss = exp(g0L), where g0 is defined as the small-signal gain of the
SOA, which is directly proportional to I

I0
− 1, where I0 is the current for

reaching transparency. Furthermore, L is the length of the device. For an
input current of 186 mW, hss = 20.85.

• Side cavity: hss = ∆2

1+∆2 . For the simulations performed in this chapter, we
have used detuning ranges from -2 to 2. For a detuning of ∆ = ±2 this
corresponds to 0.8.

• Inline cavity: hss = 1
1+∆2 . For a detuning of∆=±2 this corresponds to 0.2.

Also in the time-domain there are fundamental differences between an SOA
and a PhCC. The step response of the SOA device is shown in Figure 5.6. Here we
first have a warmup period where, by injecting current, the carrier density N in-
creases until a steady-state value is reached. Afterwards, when a pulse arrives at
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Figure 5.7: Step response of a photonic crystal cavity at low input powers

(Pi n = 0.1P0). When excited at resonance (∆ = 0), the inline coupled

cavity (left) reaches a steady-state value close to unit transmission (it

equals unit transmission in the limit Pi n = 0, or when the Kerr non-

linearity is ignored). The side coupled cavity (right) has a steady-state

value close to zero at resonance (and again, equals zero in absence of

the Kerr nonlinearity).

the SOA, the light is amplified, and the carrier density decreases until it reaches
a new steady-state value. This causes a large output signal immediately after the
pulse was launched, which then decreases to a smaller steady-state value.

The photonic crystal cavity, in contrast, is a passive component. In Figure
5.7 we show the step response of an inline photonic crystal cavity. The resonator
accumulates energy when the input is turned on. Depending on the detuning,
different steady-state values are reached, and the observed output differs from
the side-coupled and inline-coupled cavities.

5.4 The Jacobian of a system of photonic crystal cav-

ities

As we saw in chapter 2, the spectral radius is defined as the largest eigenvalue of
the system’s Jacobian at its maximal gain state. This was defined in a discrete-
time context. In the case of the hyperbolic tangent neuron f (x), the function
has a maximal gain of unity for x = 0. This means that in the small-signal limit,
the Jacobian equals the weight matrix Wr es . Sometimes it is instructive to plot
the spectrum of eigenvalues of this weight matrix. A spectral radius smaller than
1 means that all eigenvalues are within the unit circle. A purely linear system is
stable if the spectral radius is strictly smaller than one4.

4Here we used the Bounded-Input, Bounded-Output (BIBO) stability criterion (the impulse re-
sponse of the system is absolutely integrable).
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When analyzing a continuous-time system, the system of equations that is
solved is of the form:

da(t )

d t
= f(a,si n , t ) (5.6)

Here, it is equally instructive to look at the eigenvalues of the Jacobian of
this system, i.e., J(f). If the equations are linear, then the system is stable if all
eigenvalues have a real value smaller than zero, i.e., the eigenvalues are in the
left half of the complex plane.

In the next section, we derive the Jacobian for the PhCC devices. Since they
are modeled using the (temporal) Coupled Mode Theory (CMT) equations (see
section 3.2.1), the final Jacobian becomes very simple and elegant.

5.4.1 Deriving the Jacobian for a CMT system

Although we have defined the CMT equations in the case of a PhCC with one
mode, the CMT equations can be generalized in order to describe an optical res-
onator with p ports and a finite set of modes (m modes) [18, 19]. In this deriva-
tion, we will assume that the system consists of a network of N resonators, with-
out any additional components. As such, the si n , sext and sout vectors have size
N . In the actual simulations, we add sources to excite the system, which means
that the s vectors become larger, and the derivation more complex. When the
system’s Jacobian is calculated from within our software framework (see chapter
4), these sources can be eliminated and the Jacobian can be calculated numer-
ically. The CMT equations for resonator i (in a network with N resonators) are
given by (for simplicity assume each resonator has the same number of ports
and modes):

dai (t )

d t
= Mi ai (t )+KT

i si ,i n +Ni (a, t , ...) (5.7)

Where Mi (mxm) describes the dynamics of the modes and the coupling
between the modes. For example, for the PhCC with a single mode, Mi is a
scalar value: Mi = j (ω−ωr )− 1/τ. Ki (pxm) describes the coupling from the
inputs to the states. The function Ni describes the nonlinear contribution (for
example the Kerr nonlinearity, temperature effects, free carriers and so on).

The output of the resonator is given by:

si ,out (t ) = Si si ,i n(t )+Di a(t ), (5.8)

where Di (pxm) describes the coupling from the states to the output.
The state equation of the full system is given by

da(t )

d t
= Ma(t )+KT si n +N(a, t , ...) (5.9)
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Here, the M matrix is a block diagonal matrix, consisting of the individual
Mi , i ∈ 0..N −1. The K and D matrices are constructed in a similar way. si n is a
concatenation of the individual si ,i n , and similar for sout and the modes a. Here,
si n depends on the other resonators and on the topology of the circuit. We have
derived the expression for the inputs si n(t ) in section 4.3.1. It is given by:

si n(t ) = Cg en sext (t ), (5.10)

where Cg en is the generalized connection matrix as derived in section 4.3.1. So
by multiplying the generalized source term sext (t ) we know the input at each of
the resonators. In this case, the generalized source term is given by:

sext (t ) = D ·a(t ) (5.11)

Combining these expressions yields the ODE equation for the CMT system:

da(t )

d t
= (

M+KT ·CgenD
)

a+N(a, t , ...) (5.12)

In the linear regime (i.e., when using low powers), the Jacobian J is then
given by:

J = (
M+KT ·CgenD

)
(5.13)

5.4.2 Interpretation

A continuous-time system is stable if the eigenvalues of the Jacobian are in the
left half of the complex plane at all times5 (In discrete-time systems, this holds
if all eigenvalues are inside the unit circle). The real part of the rightmost eigen-
value of the Jacobian then gives information about how fast information leaks
away in the reservoir. However, it only tells something about the stability if the
system is linear. During this chapter, we sometimes visualize this spectrum of
eigenvalues as an illustration. In these cases, the corresponding experiments
were performed with very low powers, i.e., the reservoir is quasi linear.

In a nonlinear system, the Jacobian depends on the actual state of the reser-
voir. In order to draw conclusions about the stability (or chaoticity) in this case,
one can use the Lyapunov exponent [10, 20]. It is a measure for the exponential
deviation from a trajectory, which results from an infinitesimal disturbance of
the system state.

5However, it does not mean that the system is necessarily unstable if some of the eigenvalues are
sometimes to the right of the imaginary axis.
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Name Description Default value
width Width of the 2D mesh 9

height Height of the 2D mesh 9

N Number of cavities 81

BF Bias fraction 0.0

(fraction of nodes that receive bias)

φ j Phase reflection of the cavities 0.2π

Pmax Maximum neuron input power 0.05P0

α Attenuation between the connections 0 dB

λ Signal wavelength 1551.83 nm

λr Cavity resonance wavelength 1550 nm ± 0.2 nm

τ Cavity lifetime 0.139 ps / 1.25 ps

∆ Detuning of the cavity (= τ (ω−ωr )) 2 ± 0.217

τd Delay between the resonators [0-6] ps

∆t Speech sampling period 0.1 ps

Table 5.1: Default values used in the photonic crystal cavity (PhCC) reservoir

for the isolated digit recognition task.

5.5 Simulation results

In this section we describe the experiments that were performed for the isolated
digit recognition task using a Photonic Crystal Cavity nanophotonic reservoir.
We will discuss the influence of delay and the cavity lifetime, the effect of ran-
domized phases and fixed phases, the influence of the topology and cavity type,
and the influence of the input scaling6 and detuning, as this influences the non-
linear contribution due to the Kerr nonlinearity.

5.5.1 Default parameters

The default network has 81 resonators, in a 9x9 regular mesh, similar to the SOA
reservoir which we want to compare to. There is no input bias, and we choose a
very low input scaling I S (which corresponds to the linear regime). The detun-
ing of the cavities is ∆=2, a value which, for higher powers, gives rise to nonlin-
ear dynamics. Most of the experiments however are conducted in a regime with
low powers, i.e., Pmax = 0.05P0. For the chosen variation of λr , the detuning
can change by 0.217 (this variation was calculated for a fixed τ). The default pa-
rameters for all simulations performed in this chapter are summarized in Table
5.1.

6For the definition, see section 2.3.1, paragraph about constructing the weight matrices.
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Figure 5.8: WER as a function of the interconnection delay τd , for τ =
1.25ps = 12.5∆t (slow) and τ= 0.139ps = 1.39∆t (fast), and a network

with randomized phases. For the cavities with a small lifetime (small

τ), the WER shows a clear optimum when the delay is approximately

half the duration of a spoken digit. This is in correspondence with pre-

vious results using a reservoir of SOAs, which showed the same type of

optimum. The optimal WER of 5 percent is comparable to the WER of

4.5 percent that is found for the SOA network. The simulations were

performed for a waterfall topology.

The sampling period of the speech signal was set to∆t=0.1 ps. The reservoir
can be simulated internally with a smaller timestep, to ensure the simulations
are accurate and stable (typically this simulation step is a fraction of the cavity
lifetime, e.g., τ/10). Also, in this chapter we have mainly used the Runge-Kutta 4
integration method, which is more accurate than the Euler method (see section
4.3.2).

Each simulation was performed ten times, each time with a different ran-
dom initialized input matrix Wi n . The plots show the average over the 10 runs,
while the error bars show the sampled standard deviation.

5.5.2 Influence of the cavity lifetime

An important finding of the research performed by K. Vandoorne is that the in-
terconnection delay, i.e., the delay between the individual neurons, plays a cru-
cial role for the performance of the isolated digit recognition task. This was
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summarized in Figure 5.3. Figure 5.8 shows that this is also the case for the in-
line photonic crystal cavity if the cavity lifetime τ is chosen small compared to
the speech signal sampling period ∆t .

We can explain this as follows. The green dashed curve in Figure 5.8 is for
the case of a long cavity lifetime compared to the sampling period: τ= 1.25ps =
12.5∆t . This means that the energy decays to 1/e of its original value in about
approximately 12 time steps. In this case, there seems to be sufficient memory
in the nodes themselves, and the influence of interconnection delay (i.e. in-
terconnection memory) is less pronounced. The second experiment used cav-
ities with a small cavity lifetime (τ = 1.39∆t )7. In this case, the neurons have
almost no memory, and all the memory in the system has to come from the in-
terconnections. Now there is a clear optimal delay around 3 ps, i.e. 30 samples.
This corresponds to approximately half the duration of a typical speech sample,
which range between 45 and 90 samples). This optimal delay is in good agree-
ment with previous results using an SOA reservoir, where the individual SOAs
do not possess leak rate (they were used in a pseudo-static regime), but rather
amplify the input in a nonlinear way. There, also an optimum around 30 sam-
ples was found. Also, the trend for longer τ more closely resembles the results
for leaky hyperbolic tangent networks [1]. The WER of 4.8% for a delay of about
3 ps is the best performance that is reached in this chapter.

5.5.3 Fixed phase versus random phase

In Figure 5.8 which we discussed earlier, the phases of the interconnections be-
tween the resonators were uniformly drawn from the range [0,2π] (which we
will call randomized phases from now on). Here, we investigate what happens
when the phase reflections, φ (as defined in section 3.2.1), are identical for all
resonators (which we will call fixed phases). In Figure 5.9, the thin lines repre-
sent different fixed phases φ and the thick line represents the previous experi-
ment with random phases.

As can be seen from the figure for fixed phases, the performance of the reser-
voir is greatly influenced by the chosen phase between the resonators. This ef-
fect is more pronounced when the cavities are slower (i.e., when they have a
larger cavity lifetime τ), as can be seen in Figure 5.9. This can be explained as
follows: there is more interaction between cavities when they have a large cavity
lifetime. Depending on the phase difference between the cavities, the dynamics
can be different, leading to different behavior (Figure 5.9, bottom). On the other
hand, for fast cavities, there is less interaction between the cavities, hence it is
less susceptible to the actual topology (Figure 5.9, top).

7In this case, the internal integration timestep in Caphe was chosen smaller to ensure stability of
the simulation.
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Figure 5.9: WER for fixed phases, again in the case for τ = 0.139ps = 1.39∆t

(fast, top) and τ= 1.25ps = 12.5∆t (slow, bottom). The thick lines are

the result for random phases (the same as in Figure 5.8), the thin lines

are the results for different fixed phases (i.e. 0,0.1π,0.2π...). As can be

seen from the figure, the influence of the phase on slow resonators is

larger, and covers a wider band. For some phases, the performance for

small delays is comparable to the optimal performance for a delay of

approximately 3 ps.
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Figure 5.10: The eigenvalue spectrum of the Jacobian for a network of in-

line coupled resonators, for fixed phases (left), and random phases

(right). For fixed phases, depending on the actual phase reflection

of the cavities, the spectrum can be completely different. The reser-

voir performance depends heavily on the actual phase that is used.

The WER that are mentioned correspond to the slow cavities, for

τd = 2.5ps. The spectrum for the random phases on the right is

shown as an illustration.
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Figure 5.11: WER as a function of the interconnection delay τd , for τ =
1.25ps = 12.5∆t . For the waterfall topology, the rightmost eigenval-

ues of the Jacobian is closer to the origin than in the case of the same

topology with an attenuation of 3 dB, or the swirl topology. As a re-

sult, because the eigenvalues are very close to the origin, the reser-

voir is less responsive to the inputs and the performance is less good

for the waterfall topology without attenuation.

For random phases, there is an additional richness in the reservoir because
the interactions are different between different cavities. For that reason, the
overall performance is better.

As an illustration we show the eigenvalue spectrum for three different values
of φ in Figure 5.10. It is clear that the behavior can be very different depending
on the actual phases that were used.

5.5.4 Influence of the topology

Figure 5.11 shows that the performance is better for the swirl topology for all
values of the delay. This mainly has to do with the fact that the performance
also depends on the rightmost eigenvalue of the Jacobian, which greatly de-
termines how strong the system responds to the input. This is similar to the
well-known assumption that a reservoir should be at the “edge of stability“ in
order to perform well. Depending on the task, the actual dynamic region where
the reservoir performs best can be different. It is important to note that the ini-
tial connection weights for the swirl topology are chosen different (i.e., smaller
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in amplitude) than those of the waterfall topology. Because of this, the initial
rightmost value of the Jacobian for the swirl topology is more to the left than for
the waterfall topology for the same value of the attenuation α. If we look at the
eigenvalue spectrum in Figure 5.12, one can see that the smallest eigenvalue is
close to the imaginary axis for the waterfall topology. In this case, the water-
fall topology is less responsive to the inputs and the word error rate increases.
Using some attenuation (α) (which initially shifts the eigenvalues to the left),
makes the reservoir more responsive. This is also shown in Figure 5.11 for α=3
dB.

5.5.5 Influence of the cavity type

In this section we investigate whether the cavity type (i.e., inline versus side-
coupled cavities) has a large influence. The scatter matrix of the two types of
cavities is different, hence it will have a large influence on the generalized con-
nection matrix of the system Cext toi n . Instead of again sweeping the delay, we
now sweep the attenuation α, because it also influences Cext toi n . We also con-
duct our experiments both for the swirl and waterfall topology. Figure 5.13 sum-
marizes the results. In this experiment, the detuning ∆ = 0, and there is no in-
terconnection delay τd . The phase was chosen fixed and τ=0.695 ps (which is a
value in between the slow and fast cavity which we studied previously).

There is a clear difference in performance for the side-coupled cavity (which
has a bad WER overall) and the inline cavity. This can be explained as follows:
for the given detuning ∆ = 0, the side-coupled cavity has a steady-state trans-
mission of zero. This means the side-coupled cavity tries to forget the infor-
mation that it was given as input. Although not shown on the figure, this ef-
fect becomes worse when the cavity lifetime is smaller, because in this case the
steady-state value is reached sooner. In the limit where the lifetime is much
smaller than the signal sampling period (and becomes zero), the output of the
neurons is zero, hence the reservoir is unable to process information.

In [21] and in previous work by K. Vandoorne, it was shown that the actual
topology is not so relevant for the performance of a reservoir. Figure 5.13 con-
firms that the difference between a waterfall and swirl topology, for this specific
task, is largely irrelevant, especially for higher values of the attenuation. How-
ever, it must be noted that the rightmost eigenvalue of the Jacobian is different
for both topologies (in case of the swirl topology, it is slightly more negative be-
cause the splitters introduce more loss), and this causes the lower performance
of the waterfall topology for 0 dB attenuation in the connections. This is verified
by looking at the eigenvalue spectrum of the Jacobian (which we defined in sec-
tion 5.4.1), in Figure 5.12, and this is the same effect as we discussed in section
5.5.4.
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Figure 5.12: The eigenvalue spectrum of a system with random phases and

∆ = 0. Increasing the attenuation will shift the rightmost eigenvalue

towards the left. When the attenuation is very large, all eigenvalues

will end up at (−1/τ,0). The waterfall with no attenuation has a rather

high ’spectral radius’. For the isolated digit recognition task however,

this value should not be too high. This explains why the waterfall

topology without attenuation, as shown in Figure 5.8, has a lower

performance.
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Figure 5.13: Word Error Rate (WER) as a function of the attenuation, for

side-coupled and inline cavities, for different topologies. The side-

coupled cavities perform less than the inline coupled cavities, be-

cause their transmission at steady-state is equal to zero (see Figure

5.7). As can be seen from the figure, the topology (swirl vs water-

fall) does not influence the performance much, except for low values

of the attenuation. The phase was chosen fixed, τ=0.694835 ps, ∆=0

and τd =0 ps.



ISOLATED SPOKEN DIGIT RECOGNITION USING PHOTONIC CRYSTAL CAVITIES 129

WER

Figure 5.14: WER as a function of the the detuning and input power of the

reservoir. For large detunings, the dynamics of the cavity are not so

dependent on the power (this is because the resonance shape of the

cavity resonance skews towards negative detuning as shown in Fig-

ure 5.15). For positive detunings (∆>1), the nonlinearity in the sys-

tem increases with higher powers, which decreases the performance

of the reservoir. Note that the very good performance for low power

and ∆ = 2 is highly dependent on the actual phase that was chosen

between the cavities. In this case, it corresponds to the lowest curve

of Figure 5.9.

It is interesting to note that, for both the inline cavity and side cavity, there
is no loss mechanism in the cavity itself. In reality, because the photonic crystal
cavity is a three-dimensional structure, light will scatter out-of-plane and there
will always be some loss. This can be quantified by measuring the transmis-
sion loss. From the measurements performed in section 3.3.3, we have found
a best-case transmission loss of 2.3 dB. This loss can be translated, to a good
degree of accuracy, to the attenuation parameter which we discussed here. In
other words, from Figure 5.13, the restrictions on the transmission losses are less
stringent for the performance of the reservoir. This is in contrast to other ap-
plication domains in nanophotonics, where typically one pursues cavities with
very large Q-factors and low losses.

5.5.6 Influence of detuning and input power

Figure 5.14 shows the performance as a function of the detuning ∆ = (ω−ωr )τ
and the maximal power that each neuron receives. If neuron i receives an input
signal with power Pi (t ), then Pmax = maxi ,t (Pi (t )) is the highest power that
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Figure 5.15: The transmission as a function of wavelength for different input

powers. For higher input powers, bistability is observed.

ever arrives at a neuron. This is calculated over all neurons, over all samples of
in the dataset. Then the power is normalized w.r.t. the characteristic nonlinear
power P0 (which defines the strength of the Kerr nonlinearity). This maximum
power can be controlled by changing the input scaling of the reservoir (i.e., the
factor with which we multiply the input weights Wi n of the reservoir).

These parameters are strongly connected, because nonlinearities occur at
high powers for certain detunings. The detuning ∆ determines the degree of
off-resonance (a small value of the detuning means close to resonance). As we
saw in chapter 3, there are regions where the system starts self-pulsating, and
there are regions where the system becomes chaotic. This was investigated for
a small system of two coupled cavities, and also for three coupled cavities in
our paper [22]. The amount of nonlinearity in the reservoir increases for posi-
tive detunings with a large magnitude (i.e., ∆>1). This is because for high input
powers, the Lorentzian shape of the resonance skews towards larger detunings,
as shown in Figure 5.15. This means that at some point for high input powers a
bistability occurs, which radically changes the type of nonlinearities in the sys-
tem. In our experiments we observed that using positive detunings around∆=2,
can cause the system to behave in a much more nonlinear fashion (the system
becomes chaotic or starts self-pulsing for fixed input). As the speech recogni-
tion task is mostly a linear task, the performance is worse for these detunings
with high input powers, as was shown in Figure 5.14. In the next chapter we will
investigate the total information processing capacity of this system, which will
show that under these circumstances, the total processing capacity (which also
includes the nonlinear part of the capacity) will decrease.
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5.5.7 Influence of fabrication errors

In this last experiment we check the influence on the performance of random
variations in the lifetime τ, and in the resonance frequencyλr . The actual values
of the parameters are perturbed by a value drawn from the normal distribution
with unit standard deviation, i.e., τ is perturbed with τr and N (0,1), and ωr is
perturbed by ωr and N (0,1).

For the silicon on insulator platform, a resonance variation of 0.5 nm is com-
mon for ring resonators, and we have measured a variation of 5 nm for the pho-
tonic crystal cavities (see section 3.3.3). Fortunately, as can be seen from Figure
5.16, the influence of the resonance frequency is small. However, this is not al-
ways the case. In the next chapter, we will see that the influence of these wave-
length variations will be larger for the performance on a signal generation task.

The influence of the variability of the cavity lifetime τ is more detrimental,
as can be seen in Figure 5.17. In these simulations, a lower cut-off value of 0.3
ps was used, i.e. the fastest cavity had a lifetime τ = 0.3 ps. As can be seen,
the maximum randomness that is allowed for still having a good performance
is proportional to the cavity lifetime itself. In other words: for slower cavities,
more randomness is allowed. To give an idea for the photonic crystal cavities
which we measured in section 3.3: we found Q-factors of approximately 500
(which, for λ = 1.55µm corresponds to τ=0.82ps8) and 20000 (τ=32.9ps), with
an average of τ=10.76 ps and a standard sampling deviation of 11.29 ps. This
means we first need to decrease the variability on the quality factors of the res-
onators before being able to successfully train this type of reservoir.

5.6 Conclusions

In this chapter, we have investigated a novel reservoir architecture based on
photonic crystal cavities by training the reservoir to recognize isolated digits
(the isolated digit recognition task). The research in this chapter is based on the
experience and previous work in [23], where the isolated digit recognition task
was tested for a reservoir of semiconductor optical amplifiers.

We have performed a series of experiments to discover trends in the very
large parameter space, and have found a performance that is similar to [23],
which is state-of-the-art, and which is better than the performance of a classical
hyperbolic tangent reservoir for the same task. We have found that the exact
topology is of less importance (swirl vs waterfall), as was shown previously (
[21], [1]). The interconnection delay is an important parameter, and leads to
an optimal performance when it is half the duration of a spoken digit. This is
similar to the results in [23]. For cavities with a large leak rate (i.e., slower), the

8According to τ= 2Q
ω .
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Figure 5.16: WER as a function of the variation ωr and in the resonance fre-

quency. The variations in ω do not have a significant effect. The in-

terconnection delay τd =0 ps.

Figure 5.17: WER as a function of the variation τr and in the lifetime of the

cavity, for different mean cavity lifetimes. When increasing the mean

cavity lifetime, we can afford a larger randomness in the cavity life-

time. The interconnection delay τd =0 ps.
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performance as a function of this delay is less pronounced, and the reservoir is
more sensitive to phase variations.

In our experiments, side-coupled cavities lead to worse performance than
inline cavities. This mainly has to do with the fact that side-coupled cavities
have a steady-state low-signal gain of zero. In other words, they try to annihilate
the information.

Although this chapter used components with a Kerr type nonlinearity, the
results can probably be extended to other nonlinearities which are common for
the SOI platform, such as temperature effects and the plasma dispersion effect.

Finally, we have investigated the influence of random process variations on
the performance of the reservoir. Because optical components built on the sil-
icon photonics platform are usually very sensitive to small fabrication errors, it
is often very difficult to design a device or component with good performance.
Fortunately, a reservoir is very robust (compared to other nanophotonic appli-
cations) to variations in the topology, and, in our case, to the resonance fre-
quencies and the leak rates of the cavities.

References

[1] Kristof Vandoorne. Photonic Reservoir Computing with a Network of Cou-
pled Semiconductor Optical Amplifiers. PhD thesis, Ghent University, 2011-
2012.

[2] A. J. Robinson, G. D. Cook, D. P. W. Ellis, E. Fosler-Lussier, S. J. Renals,
and D. A. G. Williams. Connectionist speech recognition of Broadcast News.
Speech Communication, 37(1-2):27–45, 2002.

[3] A. J. Robinson. An Application of Recurrent Nets to Phone Probability Esti-
mation. IEEE Transactions on Neural Networks, 5(2):298–305, 1994.

[4] A. I. García-Moral, R. Solera-Ureña, C. Peláez-Moreno, and F. Díaz
de María. Data Balancing for Efficient Training of Hybrid ANN/HMM Auto-
matic Speech Recognition Systems. IEEE Transactions on Audio, Speech &
Language Processing, 19(3):468–481, 2011.

[5] A. I. García-Moral, R. Solera-Ureña, C. Peláez-Moreno, and F. Díaz
de María. Hybrid Models for Automatic Speech Recognition: A Comparison
of Classical ANN and Kernel Based Methods. In Proceedings of Advances
in Nonlinear Speech Processing (NOLISP), Lecture Notes in Computer Sci-
ence, pages 152–160, 2007.



134 CHAPTER 5

[6] M. D. Skowronski and J. G. Harris. Automatic speech recognition using a
predictive echo state network classifier. Neural Networks, 20(3):414–423,
2007.

[7] D. Verstraeten, B. Schrauwen, and D. Stroobandt. Isolated word recognition
using a liquid state machine. In Proceedings of the 13th European Sympo-
sium on Artificial Neural Networks (ESANN), pages 435–440, 2005.

[8] G. R. Doddington and T. B. Schalk. Computers - Speech Recognition - Turn-
ing Theory to Practice. IEEE Spectrum, 18(9):26–32, 1981.

[9] A. Varga and H. J. M. Steeneken. Assessment for automatic speech recog-
nition: II. NOISEX-92: A database and an experiment to study the effect
of additive noise on speech recognition systems. Speech Communication,
12(3):247–251, 1993.

[10] D. Verstraeten. Reservoir Computing: Computation with Dynamical Sys-
tems. Phd, Ghent University, 2009.

[11] R. Lyon. A computational model of filtering, detection, and compression
in the cochlea. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), volume 7, pages 1282–
1285, Paris, France, May 1982.

[12] M. Slaney. Lyon’s Cochlear Model. Apple Computer Technical Report #13,
1988. http://www.slaney.org/malcolm/pubs.html.

[13] Fundamentals of Photonics. John Wiley and Sons, Inc., New York, USA,
1991.

[14] David Verstraeten, Benjamin Schrauwen, Sander Dieleman, Philemon
Brakel, Pieter Buteneers, and Dejan Pecevski. Oger: Modular Learning
Architectures For Large-Scale Sequential Processing. Journal of Machine
Learning Research (submitted), 2011.

[15] Tiziano Zito, Niko Wilbert, Laurenz Wiskott, and Pietro Berkes. Modular
toolkit for Data Processing (MDP): a Python data processing framework.
Frontiers in Neuroinformatics, 2(00008), 2009.

[16] G.P. Agrawal and N.A. Olsson. Self-Phase Modulation and Spectral Broad-
ening of Optical Pulses in Semiconductor-Laser Amplifiers. IEEE Journal of
Quantum Electronics, 25:2297–2306.

[17] Mehmet Fatih Yanik, Shanhui Fan, and Marin Soljacic. High-contrast all-
optical bistable switching in photonic crystal microcavities. Applied Physics
Letters, 83(14):2739 –2741, oct 2003.

http://www.slaney.org/malcolm/pubs.html


ISOLATED SPOKEN DIGIT RECOGNITION USING PHOTONIC CRYSTAL CAVITIES 135

[18] S. Fan, W. Suh, and JD Joannopoulos. Temporal coupled-mode theory for
the Fano resonance in optical resonators. JOSA A, 20(3):569–572, 2003.

[19] W. Suh, Z. Wang, and S. Fan. Temporal coupled-mode theory and the pres-
ence of non-orthogonal modes in lossless multimode cavities. Quantum
Electronics, IEEE Journal of, 40(10):1511–1518, 2004.

[20] Kathleen T Alligood, Tim D Sauer, and James A Yorke. Chaos: an introduc-
tion to dynamical systems. Springer, 1996.

[21] Lars Busing, Benjamin Schrauwen, and Robert Legenstein. Connectiv-
ity, dynamics, and memory in reservoir computing with binary and analog
neurons. Neural Computation, 22:1272–311, 2010.

[22] Bjorn Maes, Martin Fiers, and Peter Bienstman. Self-pulsing and chaos in
series of coupled nonlinear micro-cavities. Physical Review B11, 7911(111),
200911.

[23] Kristof Vandoorne, Joni Dambre, David Verstraeten, Benjamin Schrauwen,
and Peter Bienstman. Parallel reservoir computing using optical amplifiers.
IEEE Transactions On Neural Networks, 22(9):1469–1481, 2011.





6
Generating periodic patterns

A periodic pattern can be as easy as sin(x). But it can also be extremely
complex, such as with robot locomotion. Imagine a walking human-like robot,
which has to control over a hundred actuators, where the actuators represent a
simplified set of the human muscles. What kind of algorithm can you think of
to steer these inputs in such a way that it will make the robot walk? We could
record the motion of a human and use that as input for the actuators. But then
suppose one perturbs the robot. How will it restore its balance? Although, at first
sight, the problem of generating complex motions seems very difficult to solve,
it actually becomes very easy to solve by using novel on-line learning methods
such as the FORCE learning method.

The FORCE learning method which was first introduced by D. Sussillo in
2009 [1], and is explained in section 2.3.4.1. This learning method, apart from
the fact that that it is useful in many applications (such as robot locomotion
[2–4], cognitive processing [5] and predicting chaotic attractors of dynamical
systems [6]), is also very interesting from a theoretical point of view. It shows us
how initially chaotic systems with complex feedback mechanisms can be sta-
bilized. In all of the applications mentioned in [1], a leaky hyperbolic tangent
reservoir was used. We would like to harness the power of photonics to bring
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the performance of these systems to a new level. Furthermore, there are other,
more photonic-oriented applications that could benefit from this approach. For
example, generating optical patterns that can be used for data communication,
optical memory, and optical switching are all possible applications where the
FORCE rule could be impactful. Furthermore it is interesting to see how this
theory applies to chaotic systems based on coupled resonators.

In contrast to previous work, we evaluate the proposed physical reservoir in
continuous-time, i.e., without the external clock determined by the sampling
period. Since periodic signals are inherently continuous, we can now fully eval-
uate the potential of continuous-time reservoirs.

In this chapter we will use a task that is often found in literature: the Multi-
ple Superimposed Oscillator (MSO) problem [7]. Here, the reservoir is used to
predict the evolution of a superposition of two or more sinusoidal waves with
different and harmonically unrelated frequencies.

The goal of this chapter is to assess, using simulations, the use of the FORCE
learning technique in an optical system and to find appropriate design param-
eters.

This chapter is structured as follows: we begin by describing the task (sec-
tion 6.1) and by explaining how we measure the performance (the construction
of the reservoir was discussed in section 4.6). In several intermediate steps we
increase the complexity from a discrete-time hyperbolic tangent reservoir to a
continuous-time complex-valued photonic crystal cavity reservoir. As a first in-
termediate step and very different to previous approaches, we will simulate a
reservoir in continuous-time (i.e., with no internal clock) using a continuous-
time task, which is done in section 6.3.

The second big difference between classical reservoir computing and nano-
photonic reservoir computing is that the signals and states are complex-valued
in the latter case. We have already pointed out that the fact that this doubles
the dimensionality of the state space is beneficial for the performance on the
speech task. We investigate the influence of complex-valued signals for the
present task in section 6.4.

In section 6.5 we show the results of simulations for the optical reservoir us-
ing photonic crystal cavities. We discuss which parameters are relevant in build-
ing this reservoir, such as the topology, the phase difference between two res-
onators, the number of nodes that are biased and the delay between the nodes.
A set of parameters is provided for which an optical reservoir performs partic-
ularly well on the MSO task and even outperforms the classical hyperbolic tan-
gent reservoir. Finally, in section 6.6, we link our results to the total information
processing capacity of the photonic crystal cavity reservoir for the most relevant
parameters, in which the same trends are observed, i.e., the memory capacity is
higher in the same regions where the MSO task performs well.
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In section 6.7 we describe additional experimental challenges, such as the
feedback loop, the readout layer and the weight recalculation, and we conclude
in section 6.9.

Similar to the previous chapter, all simulations were performed using a com-
bination of OGER (the OrGanic Environment for Reservoir computing [8]) and
Caphe, the framework which we introduced in Chapter 4.

6.1 Task description

A nanophotonic reservoir is inherently a continuous-time system. Hence, it is
appropriate to choose a continuous-time task as already mentioned. We will
use the MSO task [7], a pattern generation task defined in continuous time.
This academic task has previously been used to benchmark the performance
of reservoirs, using several learning methods. However, the reservoir until now
was always a discrete-time system, and the MSO signal was sampled at fixed
timesteps.

In the MSO task, the system has to generate a superposition of sine waves
with harmonically unrelated frequencies:

s(t ) = sin(ω1t )+ sin(ω2t ) (6.1)

The pulsation of the signals are: ω1 = 0.2/s and ω2 = 0.311/s, and the target sig-
nal is sampled with timestep ∆t , i.e., s[k] = s(k∆t ), k ∈N. The period of the first
signal is T1 = 2π/ω1 ' 31.42 s, for the second signal this is T2 = 2π/ω2 ' 20.20 s.
For a classical discrete-time reservoir, ∆t = 1 s. The period of the superimposed
signal is very long, which increases the challenge of learning the signal.

FORCE learning is typically used in a training and evaluation setup consist-
ing of the following steps (also depicted in Figure 6.1):

1. Warmup (15T1): the initial state x[0] is chosen zero. The input during
the warmup is noise, sampled from a standard normal distribution with
amplitude 1.

2. Training (400T1): the output weights are adjusted using the proposed RLS
rule [1], as we have explained in section 2.3.4.

3. Free-run (2000T1): the output weights are unmodified. If the training con-
verges, the RC system with feedback can now autonomously generate the
desired function s[k].

In this chapter we will approximate the continuous-time reservoir by choos-
ing a very small simulation time step ∆t , or by using an adaptive stepsize algo-
rithm. In the latter case, a predefined accuracy has to be maintained in order
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Figure 6.1: Simplified illustration of the learning sequence. T1 is the time pe-

riod of the slowest varying frequency. During warmup, the input of

the reservoir is noise, sampled from a uniform distribution. During

training, the output weights Wout are adjusted such that the output

(black solid line) follows the target signal (gray dashed line). The out-

put weights are unmodified during freerun. The output can have a

slightly different frequency than the target. The last samples ytest [k]

are scrolled over a window of the freerun output, each time calculating

the NRMSE. The optimal value of the NRMSE is used as performance

for this learning sequence.

to advance through time. The time step is controlled by estimating how close
the signal with integration step∆t is to the theoretical limit where∆t converges
to zero, and maintaining this value below the required accuracy. The error esti-
mate depends on the used integration method [9].

6.2 Performance measure

The reservoir performance is evaluated through the root mean square error
(NRMSE) between the output and the target function at the sampled times k∆t .
In signal generation tasks, an important aspect of performance is the stability of
the generated output over longer periods of time. Therefore, after the training
phase, the reservoir runs for some time (2315T1) before calculating the perfor-
mance. Also, for periodic signals, a small phase shift between the actual and the
desired output is usually acceptable, but it strongly affects the NRMSE. We use
the approach of [10], where we calculate the NRMSE for windows of the output
signal ytest [k] = y[2315T1 +k],k ∈ [0,100T1], and sliding these windows over a
sufficiently long section (1000T1) of the free-run stage. Selecting the minimal
value accross all window positions effectively evaluates the shape of the desired
output, largely cancelling out the impact of any phase shifts. This is illustrated
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Name Description Default value
N Number of neurons 200

SR Spectral radius (see eq. (2.6)) 1.5

f Input scaling, which determines 1.0

the strength of the feedback

α Learning rate (smaller value 0.01

means faster learning)

τ0 Dominant time constant [2, 7] s

of the neuron

Table 6.1: Default values used in the leaky hyperbolic tangent reservoir.

in Figure 6.1. Although computationally intensive, this calculation can be sped
up using a convolution. More details about the calculation can be found in
appendix A.

Table 6.1 shows the default parameters that are used throughout this chapter
for the leaky hyperbolic tangent reservoir. Any deviations from these parame-
ters will be explicitly mentioned. We use a spectral radius of 1.5, which means
the reservoir is initially chaotic1. We simulate the continuous-time hyperbolic
tangent reservoir using the Bulirsch-Stoer integration method with variable
stepsize∆t ′, and using a relative accuracy of 10−8. Learning is still performed at
discrete timesteps of ∆t = 1 s.

6.3 From discrete time to continuous time

In this section we investigate the effect of the transition from a discrete-time to
a continuous-time reservoir.

In literature, the MSO task is usually solved using a discrete-time reservoir.
Here, the target signal is sampled using a sampling step ∆t = 1 s. This means
that 1 second corresponds to one step of the reservoir.

We can now also interpret this system as a continuous-time system, which is
sampled every second. The feedback loop is also simulated in continuous time.

First we explain how we can view the neuron update equation of a tradi-
tional ESN reservoir as the result of applying Euler integration on ordinary dif-
ferential equations (ODEs). Recall that the traditional ESN reservoir has the fol-
lowing update equation (see section 2.3.1):

1In his paper, D. Sussillo explains that they initially start from a chaotic reservoir [1]. We found
that similar performance is also reached for nanophotonic systems that are not initially chaotic. Of
course, the spectral radius should not be too low, otherwise the dynamical system does not explore
the state space efficiently during training, leading to a lower performance.
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x[k +1] = (1−η)x[k]+ηf(Wi n u[k]+Wr es x[k]), (6.2)

To more closely resemble the ODE form, we now substitute η by ∆t
τ0

, where
τ0 is the dominant time constant of the neuron. Here, we assume ∆t = 1 s. To
simplify the notation, we omit the explicit argument of f, instead we write f(v(t)):

x(t +∆t ) = (1−∆t
1

τ0
)x(t )+∆t

1

τ0
f(v(t )).

Restructuring and taking the limit for∆t → 0 yields the equivalent continuous-
time leaky hyperbolic tangent ODE equations:

dx(t )

d t
=− 1

τ0
(x(t )− f(v(t ))) (6.3)

Note that v(t ) also needs to be adapted to explicitly include the interconnection
delays in the network. In a discrete-time RC system there is inherently a delay of
1 s between the neurons. To most closely resemble this classical case, all delays
are chosen equal to the original discrete time step of ∆t = 1 s, i.e.:

v(t ) = Wi n u(t )+Wr es x(t −∆t )).

In a more general setting, a delay on the input connections can also be included.

For most experiments that we perform in this chapter with hyperbolic tan-
gent reservoirs, we sweep τ0, the time constant of the neuron. A smaller τ0 cor-
responds to a faster neuron. The average NRMSE values are summarized in
Figure 6.2, which shows that moving to continuous time yields a decrease of the
NRMSE over the full parameter range. This improvement is partly bandwidth-
related: certain frequencies cannot be captured in discrete time whereas in our
case we effectively simulate a continuous-time system (this is done either by
choosing a sufficiently fine timestep or by using an adaptive integration step).

For both reservoir types, we can identify an optimal value of the neuron time
constant. For the discrete-time reservoir, we find an optimal NRMSE of 0.127
for τ0 = 4.0, with a sample standard deviation of 0.111. For the continuous-time
reservoir, the best NRMSE equals (0.066 ± 0.054), for τ0 = 3.0 s.

In Figure 6.2(b) we show the same experiment in continuous time, and add
the experiment where the interconnection delay and feedback delay are equal
to zero. For this continuous-time reservoir, the best NRMSE equals (0.050 ±
0.022), which occurs at the lower limit of the interval considered (i.e. τ0 = 2.0 s).
Because there is no delay in the feedback loop, the system responds faster to the
changes that are made in the connections, which in general is beneficial for the
performance. A zero delay is of course not physical, but such a strategy could
be used to improve the performance of simulation-only reservoirs.
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These results show that, for the signal generation task, a continuous-time
hardware reservoir can perform better than a discrete-time reservoir, or equiv-
alently: the same performance can be reached with fewer neurons, which is an
advantage when implementing a hardware reservoir computer.

6.4 From real-valued to complex-valued reservoirs

One of the advantages of using photonics for a hardware reservoir is the fact
that when using coherent light sources, the optical signals are complex-valued,
i.e. they have an amplitude and phase. In order to understand how this gives an
advantage, we now extend the discrete-time leaky hyperbolic tangent reservoir
with complex-valued states and compare this with the original real-valued
reservoir. Note that in the previous chapter we have immediately used a
complex-valued nanophotonic reservoir, based on our photonic crystal cav-
ities, and not a complex-valued reservoir based on leaky hyperbolic tangent
neurons. In this section, we explicitly compare a real-valued and a complex-
valued reservoir for the same neuron type. The input weights are also complex-
valued. The readout layer splits the states x(t ) into a real and imaginary part,
before multiplying them with Wout .

Because the signals are now complex-valued, we need to define a new non-
linearity for the neuron. It is tempting to replace the hyperbolic tangent func-
tion by f (z) = t anh(z), z ∈ C. However, this function has discontinuities at
f ( j (2k + 1)π/2), k ∈ Z which are generally not wanted. We want to guarantee
continuity and keep the tanh(x) behavior with an image that is bound to [−1,1].
We can do so by preserving the phase of the signal and applying tanh on the
absolute value of the signal:

f (z) = e− j∠(z)t anh(|z|), (6.4)

where ∠(z) is the angle of z.

Figure 6.3. shows the performance of the complex-valued reservoir. Because
the state space of a complex-valued reservoir contains twice as many variables
as that of a real-valued reservoir, the performance has improved. Also, the per-
formance of the MSO task for the complex-valued reservoir is similar to the
performance of a real-valued reservoir with twice as many nodes. This is also
shown in Figure 6.3. Recall that for the discrete-time case, the optimal NRMSE
value was 0.127 ± 0.111. For ∆t = 1.0 s, the optimal value is found for τ0 = 4.5 s.
For the same network, but with complex-valued states, the optimal value is
found for τ0 = 3 s, and the corresponding NRMSE equals 0.0546 ± 0.0238. We
also compare this to a real-valued network of with twice the number of neu-
rons, also shown in Figure 6.3. The performance is similar: the best NRMSE of
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Figure 6.2: Normalized Root Mean Square Error (NRMSE) for different τ0 for

the MSO task described in section 6.1. The error bars show the sample

standard deviation over 40 simulations (N RMSE ±σN RMSE ), and the

dominant time constant of the neurons (τ0) is swept. Top: the perfor-

mance of the continuous-time reservoir (dotted green) is better than

that of the classical reservoir (red). Bottom: Without delay between

the neurons or in the feedback loop, the reservoir can respond faster

to changes in the output, leading to a better performance.
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Figure 6.3: The NRMSE for three reservoirs as a function of the leak rate: stan-

dard leaky hyperbolic tangent reservoir with 200 neurons (red, base-

line), the same reservoir with complex-valued states (green, dashed)

and a standard reservoir with 400 neurons. Clearly, the complex-

valued reservoir performs better than the standard reservoir. For most

leak rates, the performance is similar to the system with 400 neurons.

0.0514 ± 0.0233 is found for τ0 = 4 s. We can conclude that, for this task, the per-
formance of a coherent (i.e., complex-valued) reservoir approximates that of a
real-valued reservoir with twice the number of neurons.

6.4.1 Continuous and complex-valued

In this section we investigate the effect of using both a continuous time and
complex-valued reservoir, which combines both effects which appeared to be
beneficial for the performance of the reservoir. In Figure 6.4, we show the re-
sults of the previous sections, and add the experiment with a complex-valued,
continuous-time reservoir (the error bars are removed for clarity). As can be
seen from the figure, the improvement due to using complex variables is dom-
inant, whereas the additional improvement due to continuous time is not sig-
nificant. Only in the region with small τ0, the performance is slightly better.
The best performance occurs at the lower limit of the interval considered, and
equals 0.051 ± 0.024.
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Figure 6.4: Comparison of discrete time and continuous time reservoirs, both

for with real-valued and for complex-valued neurons. The perfor-

mance gain when using both using complex-valued states and a

continuous-time reservoir is not significant compared to complex-

valued neurons in a discrete-time reservoir or real-valued neurons in

a continuous-time reservoir.
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Name Description Default value
width Width of the 2D mesh 20

height Height of the 2D mesh 10

N Number of cavities 200

BF Bias fraction 0.1

(fraction of nodes that receive bias)

Pbi as Bias power 1.30P0

φ j Phase reflection of the cavities 0.2π

FB The strength of the feedback 1.0

λ Input wavelength 1551.83 nm

λr Cavity resonance wavelength 1550 nm ± 0.2 nm

τ Cavity lifetime 1.39 ps

∆ Detuning of the cavity (= τ (ωr −ω)) 2

f1 Target signal frequency 0.3/τ' 216G H z

α Learning rate (smaller: faster) 0.01

τd Delay between the resonators 0 ps

Table 6.2: Default values used in the photonic crystal cavity reservoir.

6.5 The full Photonic Crystal Cavity reservoir

In this section we discuss the results of the MSO task using the full Photonic
Crystal Cavity (PhCC) reservoir, i.e., operating in the complex regime in con-
tinuous time, and with the dynamical behavior of the photonic crystal cavities.
The reservoir parameters are summarized in Table 6.2. The target signal is again
given by the sum of two sines:

s(t ) = sin(2π f1t )+ sin(2π f2t ) (6.5)

Here, f1 = 0.3/τ' 216G H z in order to fully exploit the internal dynamics of the
nodes. We then set f2 = 0.311/0.2 f1, so the ratio of frequencies of the original
task is preserved.

We will discuss the influence of several important design parameters for the
photonic crystal cavity reservoir, such as the phase between the resonators, the
delay in the waveguides connecting the cavities, the splitting ratio S (see Figure
4.12) and the network size. In many cases it is instructive to use the same pa-
rameters in a small system of two coupled cavities, as we did in chapter 3. This
will allow us to understand the results more intuitively.
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6.5.1 Phase reflection of the resonator

The phase reflection φ j strongly influences the dynamics of the optical res-
onator. The total phase difference between two connected resonators equals
φi /2+φ j /2+φi , j , whereφi , j is the additional phase propagation, caused by the
splitters and waveguides connecting the two resonators. We will keep φi , j fixed
and only modify the φi of the cavities.

For a dynamical system, a linear stability analysis reveals whether the un-
driven system is stable or not. This is done by examining the eigenvalues of the
Jacobian of the system. If all eigenvalues have a negative real part, the system is
stable, as we have seen in the previous chapter. In some cases an unstable fixed
point implies chaos or self-pulsation. To distinguish between both, one can cal-
culate the maximal Lyapunov exponent of the system. If the maximal Lyapunov
exponent is larger than zero, the system is chaotic. For a stable periodic solu-
tion, the maximal Lyapunov exponent is zero.

This is elaborated in detail in [11]. For example, a series of two resonators
will self-pulsate when φ j ' 0.2π, Pi n ' P0 and ∆ = 2. For larger circuits with
arbitrary topology, it becomes very cumbersome to evaluate the Jacobian and
calculate the largest Lyapunov exponent. Numerical simulations of an optical
reservoir, with parameters used from Table 6.2, show that the reservoir is indeed
in a region where self-pulsation occurs. We chose φ = 0.2π (the same phase as
we chose in chapter 3) and feed an input power Pbi as = 1.3P0 to a fraction (BF in
Table 6.2) of the cavities. When this fraction is sufficiently large (>10%), enough
power arrives in the cavities and self-pulsation occurs. Under these conditions,
the training and/or free-run are disturbed severely and most of the time, train-
ing does not converge.

This indicates that preferentially, there should be no self-pulsation or strong
synchronized interaction between the cavities. To understand this behavior
more quantitatively, we change the phase reflection to φ j = 0.2π+φr ε, where
ε∼ N (0,1) is sampled from a Gaussian random variable with zero mean and 1
variance. Physically, this can be done by changing the length of the interconnec-
tion between the different cavities. φr is thus the amount of phase randomness
that we add to the resonators. When increasing this value, we move out of the
self-pulsing regime for the case of two cavities, which is an indication that the
interaction between the cavities is less synchronized. Indeed, also for the full
reservoir the performance improves. This can be seen in Figure 6.5, where we
sweepφr between 0-2. We have also performed the simulation for different frac-
tions BF of the nodes receiving bias input. The more cavities that receive bias,
the more the reservoir dynamics are disturbed by strong interactions between
the resonators. As a consequence, the training is more difficult, which leads to
a decreased performance, or even the inability to reproduce the target signals.
With no bias and randomized phases, an NRMSE of 0.030±0.021 is found. This
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Figure 6.5: The error (NRMSE) after training an optical network of photonic

crystal cavities for the MSO task. The phase between the resonators

is described by φ j = 0.2π+φr ε, ε ∼ N (0,1). This is done for differ-

ent fractions of cavities receiving bias. The more cavities that receive

bias, the more the reservoir dynamics are disturbed by strong inter-

actions between the resonators (e.g. self-pulsation), which causes the

network to be unable to generate the signal autonomously. Increasing

the randomness in the phase reduces the amount of self-pulsation.

is the best value which we found for this chapter, and better than the classical
hyperbolic tangent reservoir.

On the silicon photonics platform [12], the phase errors produced by prop-
agation over a photonic wire are very small. Over a few 100 µm, the phase error
for two identically designed waveguides is less than 0.1π [13], and the technol-
ogy is improving steadily. By changing the length or width of the waveguide, we
can change this relative phase.

6.5.2 Delays

Although the phase and the delay of a waveguide with length L both scale lin-
early with L, it is more convenient to investigate the effects separately. This is
justified by the fact that one only needs 0.5 µm length to rotate the phase by 1π,
while one needs at least 50 µm of waveguide length to see a significant delay (of
approximately 0.1 ps). Again, we first look at the dynamics of a sequence of two
coupled cavities. The response for different delays for this system is shown in
Figure 6.6. Here, the delay is very important for the condition for self-pulsation
and the shape of the output signal. For φ = 0.2π, Pi n = 1.30P0 and δ = −2, and
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Figure 6.6: Dynamics for a sequence of two coupled resonators (shown in

the inset). With increasing delay, the dynamics change from self-

pulsation to chaos. A delay of 0.1 ps corresponds to approx. 10 µm

on-chip.

for a delay larger than 2.5 ps (which corresponds to approximately 310 µm on-
chip), the self-pulsation is lost and the output becomes chaotic. The influence
of the delay for the MSO task is summarized in Figure 6.7. Where the resonators
were initially locked in a self-pulsing regime (which caused learning to fail), in-
creasing the delay now improves the ability to learn. We only simulate up to
1.0 ps as the trend doesn’t change anymore after this delay. If the system was
initially capable of learning (e.g. when the phases were randomized), increas-
ing the delay has almost no influence on the performance of the reservoir. For
0.8 ps and a bias fraction of 10% the NRMSE is 0.024 ± 0.028.

6.5.3 Splitters

For all simulations until now, the splitting ratio S (see Figure 4.12 and Figure
6.8) was neglected, and we measured the power of the cavities without disturb-
ing the system. Also, the input was fed to the cavities without introducing extra
loss. In practice however, when feeding power to a cavity, this has the drawback
that power also leaks away through the same port. For example, a splitting ratio
of 10/90 (S = 0.10) means that 10% of the source power reaches the cavity, but it
also means that 10 % of the cavity power leaks away through this channel. 90%
of the power circulates to other cavities. To be able to draw meaningful com-
parisons between different values of S, the input signal amplitude and feedback
strength have been scaled by 1/

p
S. The splitting ratio should be kept small to

ensure that enough power circulates in the reservoir. This of course means that
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Figure 6.7: Error (NRMSE) of the photonic reservoir for the MSO task. As

shown in Figure 6.5, training fails in certain conditions when the

phases are fixed and equal to 0.2π. By increasing the delay (100 ps

delay is approximately 12.5 µm on-chip), the self-pulsation in a series

of two cavities is lost (see Figure 6.6). The conclusion that the training

works better when self-pulsing is not present is also valid here.

Figure 6.8: Illustration of the splitting ratio S. Additional splitters are needed

in order to send the signal from the source into the photonic crystal

cavity, and from the cavity to the detector.
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Figure 6.9: Dynamics of a series of two coupled resonators for increasing at-

tenuation of the waveguide (αW G) between the cavities. αW G is the

one-way power attenuation. For αW G = 0.2, the self-pulsation is lost.

higher input powers are required.

Again, studying the dynamics of a system of two coupled resonators gives
insight about the behavior of the reservoir. In this case, we increase the attenu-
ation of the waveguide between the two resonators, which has the same effect as
splitting some of the power in the full reservoir. For example, when the splitting
ratio S of Figure 4.12 equals 0.1, this is equal to 1−0.92=19% power attenuation
in the waveguide (two splitters added between the two resonators). For this at-
tenuation, the interaction between two cavities reduces considerably. In Figure
6.9 one can clearly see that the self-pulsation is lost when the attenuation be-
comes bigger.

The influence of the splitter ratio on the training is shown in Figure 6.10.
When initially the training fails because the bias fraction is large, causing strong
unwanted interactions between the cavities (for example self-pulsation), in-
creasing the splitting ratio will decrease these strong interactions between the
neurons which improves the results. In the other case, where the bias fraction
is low (and initially the training converges), there is no significant influence of
this splitting ratio on the training (although the error increases slightly for larger
S). In our experiments, the bias input powers and the feedback strength were
scaled by a factor of 1/

p
S. A larger S means that less external power needs to be

added (bias) or amplified (feedback connection).
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Figure 6.10: Influence of the splitter ratio S (see Figure 4.12 and Figure 6.8).

By increasing the splitting ratio, the interaction between two neigh-

boring cavities is decreased. This is advantageous for learning, be-

cause the strong self-pulsation which disrupts training disappear

(see also Figure 6.9). Parameters: phases random, Pbi as =1.3P0/
p

S,

F B = 1.0/
p

S.

6.5.4 Restricting the readout to the power only

In all previous results, we have read out the real and imaginary part of the neu-
rons separately. This means that the readout has twice as many inputs as the
number of neurons in the reservoir. We can also explicitly read out the squared
magnitude of the signals that arrive at the readout layer. This corresponds to
a more realistic scenario in case we have to convert the signal to the electrical
domain for reading out the states2, using for example an integrated photodiode.

In Figure 6.11, we show the performance of the reservoir as a function of
the fraction of neurons that receive bias input (Pbi as = 1.3P0) for both cases.
When the neurons receive no bias, the reservoir is closer to the linear regime.
In this case, when we read out the power of the neurons (magnitude squared),
the performance is very bad. This is due to the fact that the frequency of a pe-
riodic signal is doubled by the squared readout. Suppose the system has to
learn a signal proportional to sin(ω1t ). In the readout layer, because of the
squaring, there are only higher-order frequency terms available (2sin2(ω1t ) =
(1−cos(2ω1t )), while the system should be trained to reproduce the original

2Ideally however, we would like the system to be all-optical. In this case, we would have a com-
plex readout with N variables and a complex-valued target signal, a situation which has not been
studied in this work.
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Figure 6.11: Comparison of reading out the the real and imaginary part (as we

have done in previous experiments), or reading out the power of the

reservoir.

signal sin(ω1t ). When a bias term is added, the original frequency terms are still
present ((a + sin(ω1t ))2 = a2 + 2a sin(ω1t )+ si n2(ω1t )), allowing the system to
be trained efficiently.

As can be seen in Figure 6.11, adding bias improves the performance up to a
certain point. As we saw previously in Figure 6.5, increasing the bias too much
will drive them again into a regime with too much nonlinearity, where the reser-
voir cannot perform properly.

6.5.5 Resonance frequency changes due to fabrication imper-
fections

Variations caused by fabrication imperfections cause the resonance frequencies
of optical resonators to be different from one device to the other. This shift can
be up to 1 nm [12] for ring resonators3. For our simulations, we used a variation
on the resonance of 0.2 nm (see Table 6.2). Above 0.3 nm, some of the simula-
tions do not converge, and above 0.4 nm, no reservoir succeeds at reproducing
the MSO signal. As the technology improves, this resonance shift due to fabrica-
tion errors is becoming increasingly smaller. Conceptually, one can compensate

3Ring resonators are used more often than photonic crystal cavities, and a lot of effort is being
done to reduce their variability. In our measurements from section 3.3, we found a variation of 5 nm
for photonic crystal cavities, but these are not for identical cavities that are closely together, but for
identical cavities on different dies. We have not measured identical cavities that are closely together.
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the individual resonances either by trimming the individual devices [14] or ad-
justing the temperature of each device with heaters [15, 16]. But also alternative
designs can relax the requirements on the variability of the system. For example,
a smaller cavity lifetime means that the resonance is less pronounced, making
it less susceptible to process variations, but requiring higher input powers to
achieve nonlinear behavior.

6.5.6 Network size

For the final MSO experiment, we measure the performance of the network as
a function of the network size. The actual fabricated layout could have a rect-
angular or square shape. For that reason, we perform the experiments for two
slightly different topologies: a square mesh and a rectangular mesh. From Fig-
ure 6.12 we can conclude that for the chosen target signal s(t) (see equation 6.5),
using more than 70 resonators does not further improve the performance4. Fur-
thermore, the difference between a rectangular and square topology is negligi-
ble for this task.

Due to the increased performance of the continuous time, complex-valued
photonic reservoir compared to the classical hyperbolic tangent reservoir, typi-
cally less neurons will be needed to obtain the same performance.

6.6 Information processing capacity

In [17], the (linear) memory capacity of reservoirs was introduced. It quantifies
a reservoir’s capacity to reproduce past input samples in a task-independent
way. For many tasks, a larger linear memory capacity will result in better per-
formance of the reservoir. In [18], this concept was generalized to the total in-
formation processing capacity. This measure quantifies the total capacity of a
dynamical system to compute transformations, both linear and nonlinear, of its
input history. This total capacity is bounded by the number of observed state
variables. In the case of our photonic reservoir, when using the N powers as
readout, this equals the number of resonators in the system. This maximal ca-
pacity is effectively reached for dynamical systems with fading memory, i.e., that
are asymptotically stable during their entire driven operation. Although the ex-
perimental quantification of the total capacity can be a bit tedious, reasonable
approximations of the total capacity can often be achieved within an accept-
able computation time. In practice, the useable capacity decreases rapidly in
the presence of noise if the responses of the reservoir states to the input are very

4In classical reservoir computing, the network size is usually around 1000 neurons. As this is
clearly not realistic for a first hardware implementation, we initially compared the hyperbolic tan-
gent and nanophotonic reservoir for 200 neurons.
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Figure 6.12: Influence of the network size on the performance. We have simu-

lated two variations on the mesh topology, once with a square topol-

ogy and once with a rectangular topology. Clearly the influence of

this slight topology change is neglegible. It also shows that, for this

specific task, 70 resonators are sufficient, and there is no perfor-

mance gain by using more resonators.

similar. In order to perform well as a reservoir, a dynamical system should first
achieve close to its maximal capacity, i.e., be stable and have sufficient variabil-
ity in its responses to the input signals.

We will now apply this knowledge to a small reservoir5 of 25 photonic crys-
tal cavities, and consider two important parameters: the input scaling and the
phase randomness. The amount of nonlinearity is determined by the power in-
side a cavity (and hence by the input scaling), so this will have a large influence
on the dynamics of the network. Also the phase randomness in the phase re-
flection φr will greatly influence the performance (as we saw in Figure 6.5). The
other reservoir parameters are fixed, and are taken from Table 6.2. In this exper-
iment we have used the magnitude of the output of the neurons instead of using
the real and imaginary parts separately. As can be seen from Figure 6.13, the to-
tal information processing capacity (with a maximum of 25) drops dramatically
when the input scaling increases and there are no random phases. This again
corresponds to the self-pulsation regime which we encountered in the previous
sections. This means that for typical RC tasks, the performance will be better
when not in a self-pulsing regime.

5Note that for this experiment, as opposed to the other experiments in this chapter, we do not
include the feedback loop as shown in Figure 2.7. For this experiment we use a normal reservoir as
shown in Figure 2.5.



GENERATING PERIODIC PATTERNS 157

0

5

10

15

20

25

0.001
0.1
0.3

Input scaling

0

Figure 6.13: Total information processing capacity of a 5x5 photonic crystal

cavity network. The region with low phase randomness and high in-

put powers correspond with self-pulsation regions. These regions are

better avoided in order to increase the total capacity, and hence the

performance of the system. This conclusion is in line with previous

experiments.

6.7 Hardware challenges

When moving to a future hardware implementation, there are two extra chal-
lenges to be solved: the feedback loop and the readout. Conceptually, it is very
easy to make the feedback loop all-optical: the output weights can be modified
externally, for example by using a Mach Zehnder Interferometer (MZI) and ap-
plying a voltage in one of the arms. This causes constructive/destructive inter-
ference, which allows us to modify the readout weight. An amplifier is needed to
amplify the output before feeding it back to the input. This can be implemented
by designing an SOA in the feedback loop. For example, the amplifier from [19]
can be used, which is demonstrated on the same silicon photonics platform.

Another challenge is reading out the states and recalculating the weights in
a way that is fast enough: the outputs have to be read out, fed to a computer to
calculate the weight adjustment, and then the output weights have to be mod-
ulated. Other learning techniques can simplify the calculations, such as a more
simple delta-type rule in which we do not need to calculate a P matrix (also
shown in [1]), or by using Hebbian learning [20], where the exact error signal is
not explicitly needed.

For this theoretical study, which builds upon the results of [11, 21], free car-
rier effects (∼ ns) and temperature effects (∼ 0.100 µs) have not been taken into
account. However, the CMT equations and steady-state curves for these type of
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dynamical effects are very similar, which means that it should not be difficult to
find good working regimes for the reservoir in case the other effects are taken
into account.

Depending on the specific design parameters and the material system, some
of the effects will be more important than other effects: due to the nonlinear two
photon absorption, the free carrier effects in Silicon on Insulator at λ= 1.55µm
are not negligible. Also, due to the high powers inside the cavities, the temper-
ature will have a significant effect, albeit on a slow timescale compared to the
fast Kerr effect. Moving to different material systems or different wavelengths
can change these conditions.

6.8 Choosing phenomenological parameters instead

of physical parameters

In all research we have performed in this and the previous chapter, the main
focus has been on investigating the influence of phenomenological parameters
on the reservoir rather than using physical parameters. For example, we chose
to sweep the phase of a waveguide rather than sweeping the physical length
and/or the effective index of the waveguide. Or, we define a phase reflection
φ j rather than taking into account the actual dimensions of the photonic crys-
tal resonator. In our simulation results, we also fully decoupled the phase and
delay, even though the two depend on each other. This does not really impose
a restriction in reality, as for a small length difference, we can cover all phases
[0,2π], while the time delay does not change significantly. With a length differ-
ence of λ/ne f f (' 400nm) we can cover all phases, while this corresponds to a
negligible delay of λ/ne f f /c (' 1.3 f s).

This allows us to decouple the analysis of the nanophotonic reservoir from
the actual physical layout, and allows us to generalize many of the results.

Later, once a good set of phenomenological parameters are found, a physi-
cal geometry can be derived based on experimental results.

6.9 Conclusion

In this chapter we have studied different reservoir architectures for the genera-
tion of periodic patterns. The output weights are trained using an online tech-
nique called FORCE (see section 2.3.4.1). The benchmark task we used is the
standard MSO task, and the performance is measured by the normalized root
mean square error (NRMSE). Table 6.3 summarizes the result of all simulations
performed in this paper.
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Reservoir Time States comments NRMSE
Hyperbolic DT real 0.127 ± 0.111

tangent CT real 0.066 ± 0.054

CT complex No delays 0.050 ± 0.022

DT complex 0.0546 ± 0.029

DT real Double size (N=400) 0.0514 ± 0.0233

CT complex 0.051 ± 0.024

Photonic crystal CT complex Randomized phase, 0.030 ± 0.021

cavities no bias fraction

CT complex Randomized phase, 0.024 ± 0.028

10% nodes biased,

0.8 ps delay

Table 6.3: Summary of the Normalized Root Mean Square Errors (NRMSE)

calculated in this chapter for the different architectures. DT = discrete

time, CT = continuous time. Tanh: classical hyperbolic tangent neu-

rons, PhCC: photonic crystal cavity.

Unlike standard reservoir computing, where a discrete-time system is used,
we use advanced integration routines to simulate a reservoir in continuous
time, and find that the reservoir performs better for the MSO task, which is
inherently a continuous-time task. Also, using a complex-valued reservoir im-
proves the general performance because of the increased state space.

We presented a hardware implementation for reservoir computing using
photonic crystal cavities. These resonators exhibit bistability because of the
Kerr nonlinearity, and they are modeled using Coupled Mode Theory (CMT),
as we have shown in section 3.2.1.

There are several important design parameters such as the topology, the
phase difference between the cavities and the delay between the cavities. We
show that it is important not to drive the cavities in a self-pulsating regime, be-
cause strong interaction between neighboring resonators disturbs the training
process and decreases the final performance. After optimizing the parameters
of the optical reservoir, we find that it outperforms the classical hyperbolic tan-
gent reservoir: the average NRMSE is 0.024 compared to an average NRMSE
of 0.127 for the hyperbolic tangent reservoir. It also outperforms the complex-
valued continuous time hyperbolic tangent systems, which shows that the dy-
namics of the cavity can be an extra factor which improves the performance.
This conceptual study shows that nanophotonic structures such as the pho-
tonic crystal cavities are a good candidate for generating periodic patterns in
the optical domain. There are however some challenges to overcome to cre-
ate an all-optical hardware implementation: the readout needs to be computed
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fast enough, many data signals need to be provided on-chip, the variation on the
resonances frequencies of the photonic crystal cavities should be small enough,
and the feedback signal needs to be strong enough.
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7
Conclusions and perspectives

In this chapter we summarize the work that has been done in this dissertation.
We look at the future perspectives for the novel research field of nanophotonic
Reservoir Computing (RC). We explain the steps that are needed in order to cre-
ate a first experimental prototype, based on Photonic Crystal Cavities (PhCC).
Then we explain the research steps that can be taken based on the results of this
dissertation.

7.1 Summary

This dissertation has focused on two different aspects of nanophotonic reser-
voir computing. The first focus was on the modeling platform. We have de-
signed a framework for efficient simulations of large nonlinear optical circuits
(see chapter 4). It was originally developed for the application of nanophotonic
reservoir computing, but it is now used in many other domains of nanophoton-
ics as well. With the software framework that was developed during this dis-
sertation, any integrated nanophotonic chip can be efficiently modeled at the
circuit level1, both in the time and in the frequency domain.

1This is opposed to other physical simulators that operate on individual or a few components,
such as Finite Difference Time Domain, Eigenmode solvers, Eigenmode Expansion tools, Beam
Propagation Methods and so on.
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Second, we have investigated a novel nanophotonic reservoir computing ar-
chitecture based on Photonic Crystal Cavities (PhCC). First, we have done theo-
retical study on these resonators (chapter 3), and proved, by comparing them to
2D FDTD simulations, that these cavities can be modeled with good accuracy
using the (Temporal) Coupled Mode Theory (T)CMT. The self-pulsation that oc-
curs in a series of two cavities with the nonlinear Kerr effect, is very similar for
both modeling approaches. This means that, within reasonable assumptions
(such as a small input signal bandwidth compared to the 3 dB bandwidth of the
resonance), we can simulate large networks using these CMT equations without
much loss of accuracy. A CMT simulation, however, takes only a few millisec-
onds, compared to a 10-hour FDTD simulation for the same system.

Based on these models, we have shown theoretically that passive nanopho-
tonic reservoirs based on passive resonators are useful systems of computation.
To prove this we have performed experiments using two different tasks.

In chapter 5 we have solved a speech recognition task. We have compared
the PhCC architecture with an architecture based on Semiconductor Optical
Amplifiers (SOAs) that was recently proposed by K. Vandoorne [1], and found
that the performance is similar to the SOA reservoir (with a word error rate of
5%), which is better than solving the task using a state-of-the-art classical hy-
perbolic tangent reservoir. The advantage, as opposed to the SOA reservoir, is
that we do not need to amplify the signal on-chip, so these reservoirs are less
power consuming. This regime depends on many parameters, such as the de-
tuning (the degree of off-resonance), the input power (compared to the charac-
teristic nonlinear power), the resonance wavelength, cavity lifetime, the phase
difference between the individual resonators, the loss in the connections and
the delay between the individual resonators. The main conclusion is that cav-
ities with slow dynamics compared to the fastest input time scale, are more
phase sensitive than fast cavities, but less sensitive to the interconnection de-
lay. Fast cavities on the other hand, reach an optimal performance when the
interconnection delay is approximately equal to half the word duration of a typ-
ical speech sample. This is in correspondence with previous work by K. Van-
doorne [1]. The interesting dynamics which we encountered in chapter 3, such
as the self-pulsation and chaos, are unwanted. For this reason, the input power
should be low compared to the nonlinear characteristic power P0 of the reser-
voir.

In chapter 6, we have shown that we can train the same system in order
to generate periodic patterns. The performance of the reservoir is better than
the performance of a classical hyperbolic tangent reservoir: the normalized
root mean square error between the target signal and the generated signal is
0.030 ± 0.021, compared to 0.127 ± 0.111 for the case of a discrete-time real-
valued reservoir in the same setup. Again, there was a huge parameter space
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that had to be investigated. The main conclusion was that reducing the interac-
tion between the cavities improved the results. This occurs when the regions of
self-pulsation and chaos are avoided, i.e., when choosing a minimal delay be-
tween the cavities, adding random phases, or adding some attenuation to the
connections. The total information processing capacity of this system shows
the same trend: for high powers and negative detunings, the total information
processing capacity of the system decreases rapidly.

7.2 Perspectives and future work

Nanophotonic RC is still in its infancy. Although it promises to be faster and
more power efficient than classical RC, a lot of research on different subdomains
still remains to be performed.

7.2.1 Alternative training methods

The most important work that still has to be performed is an extensive study
and evaluation of the different training methods for FORCE learning. Until now,
we have used the RLS rule which converges fast, but involves complex matrix
manipulations, which have to be fed to a PC and have to be computed during
training. As we explained in the previous chapter, other learning techniques
can simplify the calculations, such as a more simple delta-type rule, or Heb-
bian learning [2], where the exact error signal is not explicitly needed. If these
methods are successful, an experimental setup will be easier to realize.

7.2.2 New benchmark tasks and applications

In chapter 6 we have trained a nanophotonic reservoir to generate periodic pat-
terns, following the learning methods that were introduced in [3]. We have ob-
served very similar properties for the nanophotonic reservoir in terms of sta-
bility and convergence as for the networks that were used in the original pa-
per (leaky hyperbolic tangent reservoirs). This suggests that the nanophotonic
reservoir will also perform well on other, more complex tasks (such as those pre-
sented in [3]) which are relevant to photonics. The first one is an N-bit optical
memory which can remember its state through time. In [3], a 4-bit memory is
made with 8 inputs, which correspond to ON/OFF for the 4 different bits. Each
output is then trained to represent one bit of the optical memory. The second
application is a pattern generator controlled by static input. This can be seen
as a signal encoder which can generate different patterns depending on several
(analog or discrete) inputs. This signal is then put on a channel, which intro-
duces noise, loss and nonlinearities which degrade the signal. A decoder could
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be trained to compensate for the channel distortion (channel inversion), and at
the same time decode the signal back to several output streams.

7.2.3 Improved modeling

Until now, we have simulated all reservoirs using a fixed carrier frequency, and
we have assumed that the signal bandwidth is small compared to the charac-
teristic wavelength-dependency of the components. For example, in ring res-
onators, the main influence arises from the sharp transmission peak, which
also causes a sharp transition in phase. For small Q-factors of about 600 (which
were typically used in this dissertation), the 3 dB bandwidth is over 300 GHz,
and we can safely neglect it for slow signals. However, when using higher Q-
factors, and faster input signals, this effect becomes important to investigate.
In order to do this, one has to improve the used models. This can be done
by adding the dispersion effects of the different components to the used mod-
els. We continue working on a carrier frequency, but instead of having a fixed
scatter matrix, the response of each node is now also dependent on previous
timesteps. The impulse response, which we get from inverse Fourier transform-
ing the scatter matrix S(p1, p2,ω) for the frequency range we are interested in,
can be convolved with the input signals. Here we have used the carrier fre-
quency to center S(p1, p2,ω) around the origin before actually performing the
inverse Fourier transform. In this way, we can effectively take into account
wavelength-dependent effects. This will however have a large influence on the
simulation time, because for each timestep, for each component, a convolution
of the input signal has to be calculated. It might be useful to parallelize this op-
eration, either by using multiple CPU cores or using GPGPU (a graphical card).

7.2.4 Measurements and experimental setup

In section 3.3 we have demonstrated that it is possible to create 1D wire pho-
tonic crystal cavities with Q-factors that are sufficient for nanophotonic reser-
voir computing. However, in order to create a full interconnected network, there
are still some steps to perform:

• Designing two identical devices that are close together to check the influ-
ence of process non-uniformity. We have to investigate what are the main
influences for resonance shifts. The target is to get these shifts below ap-
proximately 0.4 nm (see chapter 6), depending on the Q-factor of the cav-
ities (low Q-factor means less tolerance, but less nonlinear dynamics and
faster signals).

• Designing for the standard 200 nm wafers, and see if the same perfor-
mance can be achieved (Q-factor, insertion loss, process uniformity).
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• Characterizing the temperature-coefficient by doing experiments with
different input powers and adding the temperature coefficient to the
CMT model from section 3.2.1.

• Optimizing the insertion loss such that the signals can propagate further
through the network.

For the experimental setup, we can use a fiber array to insert multiple sig-
nals on-chip. However, this fiber array is limited in the number of channels (8).
Especially for the speech recognition task, where 77 input channels are used,
this is a problem. There are other tasks, where in principle only a few inputs are
needed, such as the signal generation task. Here, the main problem is how to
read out the states of the reservoir in order to perform the training. Using the
relatively simple Hebbian learning rule it is possible to use only one global er-
ror signal to train the reservoir, but because they have to be scaled by the actual
neuron state, the issue still remains on how to read them out in order to modify
the weights.

The weight modifications can be done using optical modulators. For ex-
ample, using a Mach-Zehnder Interferometer or ring resonator modulator. The
electrical signal modifies the refractive index of the material (in case of the MZI,
this is only modified in one of the arms), which causes a change in transmission.
This has been done previously, but only for a few electrical contacts. Moving to-
wards 50-100 of these electrical contacts will be very challenging.
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A
Derivation of the efficient

computation of the NRMSE

The calculation of the performance of the MSO task for chapter 6 is done by cal-
culating the NRMSE for different positions of the test signal. This is computa-
tionally very intensive, but can be optimized by rewriting the equations until we
have a convolution (and then calculating the convolution once, which is faster).
First we define the NRMSE:

NRMSE =

√√√√√√√√
1
K

K∑
k=1

(z[k]− s[k])2

1
K−1

K∑
k=1

(s[k]− s̄)2

(A.1)

To find the convolution, we start by rewriting the MSE:

MSE [n] = < (ztest [k]− s[k +n])2 >k

MSE [n] = < ztest [k]2 >k −2 < ztest [k]s[k +n] >k +
< s[k +n]2 >k

MSE [n] = A−2B [n]+C [n]

In which A is the energy of the output signal and C [n] is the energy of the tar-
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get signal over a window [n,n +100T1]. As the target signal is periodic and this
window is large enough, we assume C [n] is constant and only needs to be cal-
culated once. B [n] can further be written as

B [n] = 1

K

K∑
k=0

ztest [k]s[k +n]

B [n] = 1

K

0∑
k=−K

ztest [−k]s[n −k]

B [n] = 1

K

0∑
k=−K

z ′
test [k]s[n −k]

B [n] = 1

K
(z ′

test ∗ s)[n] (A.2)

Where z ′
test [k] = ztest [−k]. This convolution can be calculated efficiently.

The NRMSE is now calculated from the MSE: N RMSE [n] = p
MSE(n)/var (s),

where var (s) is the variance of s[k]. Finally, we slide the test signal over the
interval n ∈ [415T1,1415T1] and select the minimal value for the NRMSE. ztest

is the output signal when the system is in freerun for a long time. This means
that if the system is not stable in long-term, the NRMSE will return a very large
value. Hence, we both test for stability and quality of the output signal through
the NRMSE.
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