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Chapter I

INTRODUCTION

The subject of this Ph. D. dissertation is the analysis of the
spectral and modulation properties of DFB laser diodes and the
latters optimalisation for use in optical communication systems.
In this theoretical study, we have tried to establish a compromise
between a rigourous mathematical treatment and a more simple,
physical description, while at the same time we tried to include
all of the features which are characteristic for DFB lasers.

In this introductory chapter, the general frame in which this
study has to be situated is described and an overview of the goals
and the content of the dissertation is given.

I.1 Laser diodes and optical communication systems

A substantial fraction of the present-day research in semi-
conductor lasers is directed towards their application in optical
communication systems [1.1]. In such systems, the original electri-
cal information is converted into an optical signal, which is trans-
mitted along an optical fibre and reconverted in an electrical
signal at the receiver end. Interest in such optical communication
systems is largely stimulated by the low loss and the large band-
width of optical fibres. The reader is referred to ref. [1.2] for a
brief overview on optical fibres.

The expansion of the optical communication field is clearly
illustrated by fig.1.1, where the annual growth rate of U.S. manu-
facturer's shipments of selected telecommunication equipment is
depicted. While the present laser diode production mainly supplies
the needs of existing markets such as optical data recording, laser
printing, audio and video discs or bar code readers, future produc-
tion may show an increasing portion of lasers required by optical
communication needs.
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Laser diodes are the ideal light sources for optical commu-
nication, not in the least as a result of their high external effi-
ciency and easy electronic modulation in comparison with other
laser types. Furthermore, integration of laser diodes with other
electronic components on a single chip seems to be a future po-
tential. However, a full exploitation of laser diodes in optical com-
munication requires a carefull design in function of the applied
communication scheme.
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Fig.1.1: Annual growth rate of U.S. manufacturer's shipments of selected
telecommunication equipment from 1984-1988 (from [1.1])

Optimum performance is achieved by the application of cohe-
rent communication. Both digital and analog systems are consi-
dered at present and the attention focusses on FM- as well as AM-
modulation schemes ([1.3] - [1.6]). In this case, stable, dynamic
single mode lasers are required to make heterodyne detection
possible and to restrict the chromatic and modal dispersion during
propagation in the fibre. In addition, depending on the coding, a low
FM- or AM-noise, a uniform FM- or AM-response and a high linearity
may be required.

Applications of coherent communication can'be found in the
areas of long-haul communication, data networking and subscriber
broadband networks (e.g. cable distribution of high definition tele-
vision).
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1.2 Laser diodes and their characteristics

Each laser diode is basically nothing more than an oscillator,
conceived as an electromagnetic resonator in a cavity filled with
semiconductor material. In its most simple form, as a Fabry-Perot
laser (fig.1.2), it consists of a waveguide, which is limited in the
longitudinal direction by the partly-reflecting semiconductor fa-
cets. The waveguide consists of a thin active layer, sandwiched be-
tween cladding layers with a lower refractive index. A population
inversion in the active layer is achieved by current injection, usu-
ally through a stripe.

This population inversion results in spontaneous and stimu-
lated emission, which compensates for the optical power loss,
through the facets and by absorption in the semiconductor mate-
rial. However, stimulated and spontaneous emission only occur for
wavelengths in the neighbourhood of the bandgap-wavelength. The-
refore and since optical fibres exhibit a minimal attenuation for
wavelengths around 1.55 um and a minimal dispersion for wave-
lengths around 1.3 pm, lasers for optical communication purposes
usually have an InGaAsP active layer (In.g1Ga 39As.84P 16 for A=
1.55 um and In,72Ga 28As gP 4 for A=1.3 um) and InP cladding layers
[1.7); [1.8]:

fransverse STRIPE

| :Iongitudinal

lateral

ACTIVE LAYER

fig.1.2: schematic view of a laser diode
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Real laser structures usually are far more complex than the
structure of fig.1.2 [1.9]. In the lateral/transverse direction, more
than 3 layers are often grown in order to achieve improved electri-
cal, optical and crystallic properties. E.g., current blocking layers
and buffer layers can be introduced to this end. In the longitudinal
direction, the structure can consist of multiple, separately con-
trolled sections with different waveguide structures and some
sections can be provided with a grating in the active or passive
layers. Lasers having a grating are called DFB lasers ('Distributed
Feedback Lasers') or DBR lasers ('Distributed Reflector Lasers'), if
the grating is only present in a passive section (i.e. with a stimu-
lated emission-free active layer). Moreover, the active layer may
be composed of ultra thin layers (or even wires), the so-called
quantum wells (or quantum wires and boxes). Such layers, which
are thinner than the carrier scattering length, exhibit specific pro-
perties due to the additional quantisation (quantum size effect) in
this case [1.10].

The details about the internal structure of a laser diode
should, for use in communication or other systems, be completed
by the lasers external characteristics. It is, in fact, the knowledge
of these characteristics which often allows to select the most
appropriate laser for each specific application. Both the static and
dynamic characteristics are usually relevant in this.

Static characteristics of primary importance are the optical
power-current (P/l) relation and the far-field pattern. The far-
field pattern defines the coupling of the laser light into the trans-
mission system and it is determined by the waveguiding mecha-
nism (e.g. the number of excited waveguide modes) and by the re-
flection at the facets [1.11], [1.12]. The P/l relation on the other
hand defines the efficiency and depends on the temperature and on
the different losses. The requirements of optical communication
systems are not very stringent for what concerns the static P/I-
relation and the far-field pattern. A certain minimum power level
(e.a. 5 mW) should be attainable with a reasonable efficiency, whi-
le the influence of the temperature and the beam width should not
be too high.

A static characteristic of great importance in optical com-
munication applications is the optical spectrum, i.e. the spectral
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distribution of the optical power. Fig.1.3 shows a typical spectrum,
where, in general, several longitudinal and lateral modes can be
present [1.13]. As has been mentioned earlier, optical communica-
tion requires that only one mode is present, even under modulation,
and that no mode hops occur if a variation in temperature or cur-
rent takes place. Only some lasers in which a grating is incorpo-
rated (DFB or DBR lasers) can fulfill this requirement. In practice,
such a laser is called single mode if the side modes are suppressed
by 30 dB or more.

P()
0.5-1 nm
e P
1
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1 / 1 \_l
1st order lateral mode fundamental lateral mode

fig.1.3: typical spectrum of a laser diode

In lasers serving as local oscillator in a heterodyne detection
system, the main mode must further have a tunable wavelength,
since the emission wavelength must be tuned on the wavelength of
the received light signal. Special multi-section DFB lasers or DBR
lasers need to be considered for this application.

Even the spectrum of single mode lasers still has a certain
width, called the linewidth, of 1-100 MHz. This linewidth is deter-
mined by the FM-noise, which has its origin in spontaneous
emission fluctuations and carrier shot noise. It normally decreases
proportional with the inverse power level at low 'to moderate po-
wer levels, whereas at high power levels, it saturates or rebroa-
dens. This is illustrated by the experimental resulis in fig.1.4
[1.14].
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A low linewidth results in a considerably better sensitivity
of the receiver in coherent communication schemes and hence
noticeable effort has been spent on the reduction of the linewidth.
The use of AM-coding also requires a low intensity noise (expres-
sed by the RIN or 'Relative Intensity Noise'). This RIN is caused by
identical sources as the FM-noise and can often be minimised si-
multaneously with the linewidth.
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Fig.1.4: Typical evolution of the linewidth in DFB lasers [1.14]

0: 1.3 um DFB laser
o: 1.55 um DFB laser
A: 1.55 um 'A/4-shifted’ DFB laser

The static operation of laser diodes results in a monochro-
matic light signal without information content. Modulation of the
light signal and thus of the laser diode is necessary for the trans-
mission of information. The dynamic properties of the laser can not
be ignored in this case. One can distinct between large signal and
small signal characteristics, although the former are relevant only
for analog systems, where the (harmonic and non-linear) disortion
must be restricted. The dynamics are largely determined by the
detailed interaction between the carriers and the wave propagation
in the cavity. In addition, thermal effects seem to play an impor-
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tant role at low modulation frequencies (e.g. below 1 MHz), while
the influence of parasitics (resulting from the different junctions
and contacts) or the mounting (e.g. bonding wires) may not be
underestimated at high frequencies (above 1 GHz) [1.15].

The small signal characteristics refer to the FM- and AM-re-
sponse of the laser when a small sinusoidal current is super-posed
on the static bias current. An example of an experimental AM-
response is shown in fig. 1.56. The peak in the GHz-region is caused
by a resonance in the carrier-photon interaction and limits the
maximum modulation frequency. The bandwidth of coherent sys-
tems, which demand a uniform FM- or AM-response, is restricted
by this resonance frequency on one side and by the linewidth on the
low frequency side.
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Fig.1.5: Experimental AM-response of a laser diode [1.16]

It must finally be remarked that the static and dynamic pro-
perties can be heavily deteriotated in the presende of external re-
flections (e.g. originating from the fiber in communication sys-
tems). The feedback sensitivity of a laser diode quantifies the de-
pendence of its characteristics on external reflections and can
therefore be called a characteristic itself. At the present time, ex-
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ternal reflections need to be eliminated by the use of one or more
(expensive) optical isolators.

I.3 Goals and approach of this work

This work reports on the theoretical investigation of the
spectral and (to some extend) the dynamic properties of semicon-
ductor lasers, and of DFB lasers in particular. It explores the me-
chanisms that determine the side mode suppression at low and high
bias level, the noise and the modulation characteristics. Special
attention is paid to finding possible explanations for the linewidth
rebroadening, a phenomenon which was not at all understood at the
time this work started. The tunability and the whole field of tuna-
ble DBR lasers on the other hand are not considered in this work.
We refer to the work of K. David [1.17] for this.

The backbone of our research is formed by the computer mo-
del CLADISS (‘Compound Laser Diode Simulation Software'). The ba-
sic version of this model, which provided a tool for the single mode
analysis of the static and the small signal AC-behaviour, has been
developped by Dr. P. Vankwikelberge [1.18]. In the framework of
this Ph. D. thesis, it has been extended to a multi mode model
which also allows an analysis of the noise behaviour and of the
harmonic distortion during modulation. Especially those porperties
by which DFB and DBR lasers distinct themselves from other lasers
have been emphasised in the model. Some phenomena, which have a
similar effect on Fabry-Perot, DFB and DBR lasers and hence cannot
offer an explanation for the specific properties of DFB and DBR la-
sers have thus been ignored. Variations in the lateral/transverse
direction e.g. have been averaged, while the current injection and
spreading have been approximated in a very simple way. Longitu-
dinal variations in the fields and the carrier density on the other
hand are included in an accurate way, for this effect causes a po-
wer dependence of the mirror loss in lasers with a grating. It was
also found useful, regarding the importance of the spectral laser
characteristics, to implement a detailed wavelength dependence of
the distributed reflections, the gain and the refractive index.

In addition, effort has been spent on giving physically intu-
itive explanations for some of the observed phenomena. An adaption
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of the standard rate equation description of laser diodes was found
to be a useful help in this. To some extend, we also tried to assess
the influence of some effects, not included in the modelling.

I.4 Brief overview of the contents

This thesis is divided into 5 general parts. The second chap-
ter treats the mathematical description of laser diodes and as such
it forms the basis of the consecutive chapters. It shows how the
complexity of an actual laser diode can be reduced to a level sui-
table for easy mathematical description. First, a z-dependent de-
scription (with z being the longitudinal coordinate), consisting of a
set of coupled wave equations and a carrier rate equation, is deri-
ved from Maxwell's equations and the principle of conservation of
charge. This also includes a detailed account of the applied numeri-
cal approximations and iterations. The chapter concludes with a
derivation of a z-independent description, which results in an ex-
tension of the standard rate equation description. This mathema-
tical model, which has not been implemented numerically, is used
throughout the remaining chapter as a help in the qualitative un-
derstanding.

The numerical implementation of the longitudinal mathema-
tical model, resulting in the computer model CLADISS, is given
subsequently in chapter 3. This also includes a detailed account of
the applied numerical approximations and iterations.

The analysis of the DC-behaviour of DFB lasers is then trea-
ted in detail in chapter 4. The discussion is thereby focussed on the
side mode rejection and the design of lasers with a stable, high
side mode suppression. The deterioration of the side mode rejec-
tion due to spatial hole burning at high power levels and the in-
fluence of some parameters in this are investigated, but is also
shown how this spatial hole burning can be reduced by the intro-
duction of a gain grating or by specially designed index-coupled
lasers. , ,

The fifth chapter considers the noise characteristics of laser
diodes. Both the linewidth (or the FM-noise) and the intensity noise
are discussed, although the emphasis is on the discussion of possi-
ble causes for the linewidth rebroadening. Possible causes, such as
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the influence of side modes, the bias dependence of the linewidth
enhancement factor and the bias dependence of the dispersion are
demonstrated. Attention is furthermore also paid to the effect of
external reflections on the linewidth and the RIN.

Finally, the behaviour of laser diodes under modulation is in-
vestigated in the last chapter. Only a brief overview of the small
signal characteristics, the AM- and FM-responses, is given since
this subject has been covered already in the work of Dr. Vankwi-
kelberge (see e.g. [1.18] or [1.19]). The harmonic distortion in the
AM- and FM-responses is the main subject in this chapter. It is
shown how the distortion is determined strongly by the spatial and
spectral hole burning and how it can be minimised.
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Chapter 11

MATHEMATICAL MODELS FOR LONG
WAVELENGTH LASER DIODES

This chapter describes how a practical laser diode, with its
complex structure and its complex physical interactions can be
simulated mathematically and numerically. Two mathematical mo-
dels are presented, with the common feature of both models being
that variations in the lateral and transverse direction, as well as
the electronic transport problem are treated in a most simplified
way. A justification for this simplification, as well as a few limi-
tations of the approach will be given in section Ii.1.

The two mathematical models are presented in the following
sections. The first model takes into account longitudinal and spec-
tral variations and has been implemented numerically on a VAX
computer. This computer model, which is described in chapter 3,
has been used intensely in obtaining the results of chapter 4, 5 and
6 and it is more or less the backbone of this Ph. D. dissertation. The
second model is obtained from the first by further averaging in the
longitudinal direction. This then results in a generalisation of the
standard rate equation description [2.1], which were and still are
often used in deriving simple analytical formulas. In this disser-
tation, we will generalise some formerly derived formulas and use
the formulas rather for the sake of easy understanding.

II.1 From practical device to model
111 Geometry of a laser diode

Fig.2.1.1 shows the schematic cross section of an etched-me-
sa buried heterostructure laser, with its typical dimensions. Many
other geometrical configurations can be found in literature (see
e.g. [2.2], [2.3] and [2.4]), but the lateral/transverse geometry al-
ways seems to have a similar degree of complexity. The active la-
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yer typically has a width w of 2um, a thickness d of 0.1-0.2um and
a length L of 300-1000pm.

p-InGaAsP
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v ] 4

p-InP n-InP

100 um

p-InP

InGaAsP

(ACTIVE) iy X

n-InP
(SUBSTRATE) Y y

300-500 p m

Fig. 2.1.1: schematic cross-section of an etched-mesa buried

heterostructure laser.

The double heterojunction formed by the p-InP layer, by the
InGaAsP layer and by the n-InP layer helps to confine the carriers
in the active InGaAsP layer, where they can recombine (spontane-
ous and stimulated emission) to produce light. The banddiagram of
this heterojunction under zero (a) and forward (b and c) bias is de-
picted in fig.2.1.2. Obviously, an efficient carrier confinement can
only be obtained when the bandgap of the active layer is sufficien-
tly small with respect to the bandgap of the cladding layers.

In practice there will always be some current leakage: over
the heterojunction, but in part also over the p-n-p-n InP layers.
These p-n-p-n layers act as a thyristor [2.2]. At low current levels
(when the thyristor is switched off), the leakage through this path
is negligible. At higher current levels, when the thyristor is turned
on, this leakage may become significant however.
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Fig.2.1.2: Energy-band diagram of the double heterojunction at
(a) zero bias, (b) and (c) forward bias.

The double heterojunction also assures the optical confine-
ment, i.e. it provides the waveguiding mechanism. The confinement
in the transverse direction x is generally of the index-guiding type;
the refractive index of the active layer is larger than the index of
both cladding layers. The guiding in the lateral direction y on the
other hand can be either index- or gain-guiding. Gain guiding occurs
in lasers, such as the ridge waveguide laser (fig.2.1.3), where the
active layer is not restricted in the lateral direction and where on-
ly part of the active layer is pumped. This results in gain (stimula-
ted emission) in the central part of the active layer and loss in the
surrounding parts, which causes the guiding. Lasers for optical
communication purposes are usually strongly index-guided and we
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will therefore restrict ourselves to such lasers in the following.
For more information on gain-guiding we refer to the existing lite-
rature ([2.2], [2.5]).

p-InGaAsP
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':‘. :,:,._-‘-. ‘:'. _-|:.:i:-'-"\" TR ‘____.........‘.....-n--m;:.‘: .‘.‘--'::!:.':: ! InGaASP
s InGaAsP
(ACTIVE)
n-InP
(SUBSTRATE)

Fig. 2.1.3: Schematic cross-section of a ridge waveguide laser.

Fig.2.1.4 shows a typical longitudinal view of a laser diode.
The most general case is considered here. The laser can consist of
several sections in the longitudinal direction, whereby each sec-
tion can be pumped independently and can have a different lateral/
transverse geometry. A grating, causing distributed reflections in
the longitudinal direction, can be present in the cladding layers or
in the active layer. Furthermore, discrete reflections can occur at
the interfaces between two sections or at the front and rear facet.
The reflectivity at the interfaces depends on the discontinuities in
the waveguide geometry between the sections, whereas the reflec-
tivity at the facets is determined by the cleaving and/or the coa-
ting of the facets. It must also be noticed that, in the most general
case, the active layers in different sections may be composed of
different alloys. In the extreme case, one of the sections may even
represent external reflections, originating from e.g. mirrors, len-
ses etc., and be filled with air.
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Fig. 2.1.4: Longitudinal structure of a general laser diode

11.L1.2 The physical pr n ' roximation

A detailed description of a laser diode would require the de-
termination of the carrier density N, the electrical potential V and
the optical field E in each point (x,y,z) of the laser. In addition, one
must bear in mind that the carrier density in one point determines
the stimulated and spontaneous emission, the absorption and the
refractive index in that point and therefore the optical field in all
points of the laser cavity. On the other hand, the carrier density
and the potential in each point are determined by carrier diffusion
and drift in all three dimensions, by stimulated emission and ab-
sorption (which depend on the optical field intensity) and by the
Fermi-level in each layer.

The detailed solution of this complex problem seems a far too
ambitious, if not an unattainable goal. Furthermore, the physical
insight and hence the derivation of easy design rules would not
really benefit from such a complicated model. In the next sections,
we will show how a simplification can be brought about and we'll
introduce approximations for the carrier density dynamics, for the
field propagation and for the interaction between field and car-
riers.

[1.L1.2.1 The rate equation for the carrier density

We assume that all sections are current controlled and that,
due to the leakage, only a fraction n of the injected carriers reach

the active layer, where they distribute uniformly in the lateral and
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transverse direction. No doping is assumed and hence it follows
from the neutrality condition that the hole density equals the elec-
tron density. We can then write down the following rate equation
for the carrier density N(z,t) in the active layer at the longitudinal
position z and at a time t:

ah@b, md. N B 5Py (2.1.1)
ot qd *

The first term on the right hand side of (2.1.1) represents the cur-
rent injection, with J being the current density, g the electron
charge and d the active layer thickness. N/t represents spontaneous
carrier recombination via traps and at surfaces. This recombina-
tion rate is proportional with the carrier density since only one
carrier (besides one trap) is involved in the process. BoN? repre-
sents the bimolecular recombination (or spontaneous emission)
rate and this rate is proportional with N2 since two carriers (an
electron and a hole) are now involved. The CoN3-term stands for
the Auger recombination rate. In this process, the energy released
during an electron-hole recombination is transferred to another
electron (or hole), which is excited to a high energy state and re-
laxes back by losing energy to lattice vibrations. This Auger re-
combination, which is proportional with N3 as a result of the three
carriers involved, is generally the dominant non-radiative process
in long wavelength lasers (as used in optical communication). The
last term in (2.1.1) expresses the stimulated emission, which will
be treated in more detail in section 11.1.2.3.

It must be noticed that carrier diffusion, in the lateral/
transverse direction as well as in the longitudinal direction is ne-
glected here. Ignorance of the longitudinal diffusion is justified by
the fact that the corresponding diffusion length is generally small
with respect to the typical distance on which the carrier density
varies due to the other terms in (2.1.1). It must finally be noticed
that the rate equation (2.1.1) also implies that current leakage
from one section to another is neglected which, principally, is
correct only if all sections are isolated electrically.
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2_Description of th ical fiel

The lateral/transverse cross section forms an optical wave-
guide, of which we assume that it only sustains the lowest order
TE-mode. The small dimensions of the active layer justify this as-
sumption. The forward (+) and backward (-) propagating parts of
the lateral electrical laser field can therefore in each waveguide
section be expanded as:

Eoxy,z,h = Re{¢<x,y> > Rzt el(@mt = Baz)}
m
(2.1.2)

E(x.y.z,t) = F{e{cp(x,y) > Rz, el@mt+ Bgz)}

m

This field expansion relies also on the assumption that the wave-
guiding properties and the eigenmode ¢ of the cross-section are in-
dependent of time t and axial position z.

The waveguiding actually depends on the refractive index in
each layer and hence an axial variation in the refractive index of
any layer can cause a z-dependence of the eigenmode ¢. Such an a-
xial variation exists in the passive layers if a grating is present.
Since most practical lasers only make use of shallow gratings
(gratings at relatively large distance from the active layer and
with small amplitudes), we can neglect the effect on the eigen-
mode. A second axial variation in the refractive index may exist in
the active layer. In this case, the refractive index depends on the
carrier density, which is generally not uniform in the axial direc-
tion due to the non-uniform optical power density. At practical po-
wer levels however, the variations in the active layers refractive
index are of the order of 0.1 % of the average index and they have
no significant influence.

The expansion (1.2.2) finally assumes that the eigenmode is
identical for all longitudinal modes m. On one hand, it is known
that the eigenmode depends on the optical frequency and that the
longitudinal modes m have different optical frequencies om. On the
other hand, it will become clear in the following that these optical
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frequencies are located very closely one to another and as such
they correspond with almost identical eigenmodes.

The complex amplitudes Rmtin (1.2.2) represent the slowly
varying (with time and axial position) parts of the fields. All rapid
variations are included in the exponentials, although the choice of
om and Bg is not uniquely defined. mm and Bg can be considered as a
reference frequency and a reference propagation constant, the
choice of which only must lead to slowly varying amplitudes Rm®.
In what follows, we will always choose om so that it coincides
with the optical frequency of the m-th longitudinal mode when only
static current is injected. For Bg, we choose the Bragg-number By =
nr/A if the section contains a grating of order n. A denotes the pe-
riod of the grating in this case and is, in practical devices, usually
chosen so that By nearly equals the propagation constant of the wa-
veguide. When a section is not provided by a grating, Bg is set equal
to the propagation constant Bm of the lowest order TE-mode of the
unperturbed waveguide (i.e. the waveguide without absorption or
stimulated emission) at the frequency om.

1.1.2 lectron-field interacti

A part of the optical field intensity, propagating inside the
laser cavity, is lost through absorption or through the front and
rear facets. In lasers, this loss is compensated by the stimulated
emission in the active region, which amplifies the intensity during
propagation. The amplification is expressed mathematically by the
gain g, which, in semiconductors, depends on the carrier density
and on the wavelength A (or the frequency w = 2nc/A) of the light:

2
a(li(:v)l ) =g(N,») IEOL)lE (2.1.3)

E(A) represents the field component with wavelength A and propa-
gating in the s direction. From equation (2.1.3), it can be readily
seen how g corresponds with an imaginary refractive index, given
by:

i I (2.1.4)
2 (w/c)
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g can be calculated quantummechanically from the Fermi-
functions of electrons and holes, from the densities of states and
from the transition probability for a transition from conduction to
valence band [2.6]. The same calculation also results in a theore-
tical estimation for the bimolecular recombination coefficient Bg.
From such a calculation, one readily finds that the gain is approxi-
mately linear in the carrier density N and that the gain can be posi-
tive only for wavelengths in the neighbourhood of the bandgap wa-
velength Ag (=1.24pum/Eg, Eg in eV).

The expression (2.1.3) however, is, strictly speaking, no lon-
ger valid when large optical intensities exist in the active layer.
The stimulated emission becomes non-linear in this case and the
gain becomes intensity dependent. The reason is that a strong field,
e.g. at wavelength Lq, causes a strong stimulated emission and a
large electron-hole recombination rate. Since the moment must be
conserved in this recombination, only electrons with a certain
energy level in the conduction band and only holes with a certain
energy level in the valence band will recombine. The large stimula-
ted recombination at these particular energy levels then deforms
the energy distribution of the carriers, as if a hole is burned in the
spectral distribution of the carriers. (The effect is referred to as
'spectral hole burning', after this visual representation.) After a
small, but finite time, the hole is refilled by intraband relaxation,
while the energy of the carriers is redistributed through scatte-
ring, e.g. electron-phonon scattering.

The non-linearity can be taken into account in gain calcula-
tions based on the density matrix formalism, as was first proposed
by Asada and Suematsu [2.7]. From curve-fitting, applied on the
numerical results obtained with such a gain model, it follows that
the gain can be approximated analytically as:

gA)=[a(d) N=b)] { 1- ze(h,lm) Pm} (2.1.5)

m

in which Py, denotes the power density of the mode m at wave-
length Am. Expressions for the functions a, b and € and a list of the

used material constants are given in appendix Il.A.
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The carriers not only cause gain, but also absorption. One can
distinct between intervalence band absorption, which has its origin
in transitions inside the valence band and is dominant in 1.55um
semiconductors, and free carrier absorption, which is a consequen-
ce of the plasma behaviour of the electron-hole gas. Additional ab-
sorption also occurs in the passive layer, where the photons can be
scattered by e.g. impurities or phonons. We will not take into
account a detailed wavelength and carrier density dependence of
the absorption and just include all absorption in one constant ab-
sorption coefficient aint.

So far, we have described only the stimulated emission and
the absorption (which both correspond with an imaginary part of
the refractive index). The real part of the refractive index, to
which the carrier density also contributes, is of equal importance
for the wave propagation. The carrier-induced refractive index
contributions are connected with the gain and absorption through
the well-known Kramers-Kronig relations [2.8]. From these rela-
tions, it can be concluded that the refractive index An; correspon-
ding with the gain and the absorption is again a linear function of
the carrier density. However, we don't include an optical power
dependence of the refractive index (as was done for the gain). This
approximation is most valid for single mode lasers. Indeed, since
e(M,Am) is symmetric around Am, it follows from the Kramers-
Kronig relations that the influence of an optical field at Am on the
refractive index is asymmetric around Am. Hence, the refractive in-
dex at Am is independent of the intensity of the mode at Am. The
field at Am might nevertheless have some influence on the refrac-
tive index at the wavelength Aq of another mode in the case of mul-
timode lasers. However, such lasers are not studied in detail in
this Ph. D. study; after all, they are of litile interest for optical
communication systems.

An analytical expression for the refractive index of 1.55 pum
InGaAsP material is given again in appendix Il.A.

.L1.2.4 The influence of the temperature

The majority of the optical properties of semiconductors
show a non-ignorable temperature dependence. This is not surpri-
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sing if one recalls that most of these properties depend on the
temperature dependent statistics of the carriers (Fermi-Dirac sta-
tistics) and the photons (Bose-Einstein statistics). The tempera-
ture dependence is, more in particular, found (experimentally and
theoretically) for the gain, the refractive index, the carrier life-
time © and the bimolecular and Auger recombination coefficients
Bo, resp. Co [2.9].

On the other hand, it must be recognised that a laser diode is
a rather inefficient device, in which any production of optical
power is accompanied by heat production. The temperature in the
active layer can therefore easily vary with bias current level.

Nevertheless, in our calculations, we will always (unless if
it is stated otherwise) use a constant active layer temperature,
defined as the room temperature T=300K. Implications of this ap-
proach are e.g. that the calculated variation of the optical power
and of the wavelength with the bias currents will not fit to experi-
mental results. An alternative formulation of this is that our sta-
tic results actually correspond with slowly modulated (e.g. at 1
MHz) currents, for which temperature effects have no longer an im-
pact [2.10]. Finally, it must also be stressed that temperature va-
riations hardly have an influence on the static side mode suppres-
sion, on the power spectrum and the intensity noise spectrum and
(as already mentioned) on the modulation performance.

I1.2 The longitudinal field equations

1.2.1 The coupled wave equations

A rigourous derivation of the coupled wave equations, which
describe the longitudinal wave propagation in a section with a uni-
form waveguide structure, can be found in many textbooks on op-
tics. Contributions from spontaneous emission however are usually
omitted in these derivations and therefore we present an extension
of the theory here. Some steps in the derivation may seem rather
intuitive, in which case we refer to the literature (e.g. [2.11] and
[2.12]) for more details.
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11.2.1

Maxwell's equations provide the basic relations, which the
optical field must satisfy. For semiconductors, they can be expres-
sed as:

oH
VxE=—p 2.21.a
H o ( )
vxH=2 (2.2.1.b)
ot
V.D=0. 2.2.1.c)

with E being the electric field, H the magnetic field and D the
electric induction corresponding with the optical field. pis the
magnetic permeability of the semiconductor (u=po=4r.10-7H/m).
The last equation of (2.2.1) can, for semiconductors such as AlGaAs
and InGaAsP which are isotropic for optical phenomena, be replaced
by:

V.E=0. (2.2.2)

Taking the curl of the first equation of (2.2.1) and substituting D
by:

D=¢,E+P (2.2.3)

Wwith P being the polarisation of the medium, results in the wave
equation:

VPE=peg—+p— (2.2.4)

The polarisation P in this equation consists of three distinctive
parts: the polarisation P of the structure without its grating, the
polarisation Ppert induced by a possible grating and the polari-
sation Pgpont corresponding with the fluctuating spontaneous emis-
sion. The polarisations Po and Ppert can be expressed with the help
of the refractive index for numerical calculations:



I1.13

Py =€ N2(X,Y,2) E= g0 (No(X,Y) + AN(X,Y,2))°E (2.2.5a)
Ppart:Eo ﬂg(x,y,Z) E (2.2.5b)

The perturbation in the refractive index An, represents the influen-
ce of the carrier density on the complex refractive index and inclu-
des contributions such as gain, absorption and carrier induced re-
fractive index. An is assumed to be small.

In theory, the refractive index n can also vary with time,
especially under dynamic circumstances (e.g. current modulation).
This time variation is determined by the time variation of the car-
rier density. The frequency to which the carrier density can re-
spond is limited to about 10 GHz, which implies that the time
variation of the refractive index can be neglected when compared
with the time variation of the optical field (with an optical fre-
quency of the order of 10° GHz.

The wave equation (2.2.4) can now be written as:

’E aE(Ppart*‘Pspcm)

_— (2.2.6)
2 at2

. d
VZE - peg{ na(x,y)+2n,(x,y).AN(X,Y,2)}
at

This equation can be solved theoretically by expanding E in the mo-
des of the waveguide formed by the lateral/transverse cross-sec-
tion. Since only the lowest order TE-mode, corresponding with a
lateral electrical field, can reach the threshold in most laser
diodes (see e.g. [2.13]), we only need to consider the lateral compo-
nent (E = E1y) of the fields and the wave equation becomes scalar:

> 2 o°E 2d°E
VeE-peg{ng+2ng.An}—= F(x,y,z,t)+peonp——2 (2.2.7)
at at

The spontaneous emission term is now, for the sake of a simple
notation, denoted by F. The stochastic nature. of spontaneous
emission implies that F represents a stochastic driving force or a
so-called Langevin function ([2.14], [2.15]) for the wave equation.
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jg1,2 in_for

It can be assumed that the Langevin force has a negligible
spatial and temporal correlation, at least if we denote by F the
spontaneous emission, averaged over a small volume AV and during
a short time At. Indeed, spontaneous emissions can only be corre-
lated if they originate from the same carrier and if that carrier
has not been scattered (and lost its phase information) in the time
between the successive emissions. AV and At are thus determined
by the typical scattering time (~ 10-13s) and the scattering dis-
tance (~ 10°2 pm).

The averaging over AV and At further implies that F can be
approximated as a gaussian process since it is the result of many
processes. F is therefore completely characterised by the first and
second order moments, which can be calculated quantummechani-
cally or semiclassical. A simple, semiclassical calculation has
been reported by Henry [2.16], who derived the moments of F by
requiring the spontaneously emitted light to be in equilibrium with
the semiconductor. The moments are then found to be:

<F(x,y,z,t)>=0
<F(x,y,z,t) F(x',y',2',t') >= 2 Dgp b(t-t") 8(x—x") 8(y-y') 6(z-2")

2 Dep= g nng, (2.2.8)

with g being the gain, n the refractive index,  the optical frequen-
cy and

1

g exp(hm_ eV)
kT

(2:2.9)

nsp=

the so-called inversion factor. eV is the difference between the
Fermi-levels of conduction and valence band. We will further con-
sider ngp as a constant (with a numerical value of 2). Dff is called
the diffusion constant of the stochastic process .
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1.2.1.3 Reduction in the lateral/transverse direction

The (x,y)-dependence in (2.2.7) can be eliminated by substitu-
tion of the field expansions (2.1.2). The eigenmode ¢(x,y) of the lo-

west order TE-mode of the waveguide obeys, for the longitudinal
mode m at the frequency oy, the 2-dimensional Helmholtz equation:

ny¢+w§.noﬂo ﬂz(x,y,z)¢=B§,m¢ (2.2.10)

where, as already mentioned, ¢ is assumed to be identical for all
longitudinal modes m and independent of the longitudinal coordi-
nate z. The complex eigenvalue Be,m on the other hand is treated as
a m- and z-dependent quantity.

¢ and Be,m can, for a given waveguide cross-section, be deter-
mined by various methods such as the finite elements method
[2.17] or the staircase method [2.18]. However, in our case, we pre-
fer to avoid these time-consuming calculations. ¢ is therefore ap-
proximated by ¢g, the (real) eigenmode of the unperturbed wave-
guide, while Bg m is expressed as a function of By, the propagation
constant of the unperturbed waveguide, and An. ¢g and pm obey the
equation:

2

. 2n
Viydo + 0ot NG(X,Y) 0o = Ba 0o = (rng,,] b0 2.2.11)

m

neff is called the effective refractive index and it is considered as
constant in our approximation.
An expression for Bg,m can be derived from the equations

(2.2.10) and (2.2.11) and one finds (see appendix |l.B):
27
Be,m = i {Nett + T Ang+ (1-T) Ang} (2.2.12)

with T being the confinement or power filling factor,

[ o8y dxdy
P act, layer

- (2.2.13)
I 05(x,y) dxdy
(x,y)-plane
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and Ang, resp. Ang the perturbations in the complex refractive in-
dex of the active layer, resp. the cladding layers:

e iy
na:M+An, (2.2.14a)
2 (w/c)
—jog)
ANg = 2.2.14b
cl 2 (w/c) ( )

oac, resp. oc| represents the absorption in the active layer, resp. the

cladding layers.
The complex propagation number Be,m finally becomes:

2 ) . )
Bem= Tz(nefﬁAnrl‘)ﬂO.S CgAm) —j0.5 oy 2.2.15)
with:
Gint = Tetge + (1-T) o (2.2.186)

Substitution of the expansions (2.1.2), which we rewrite as:

E(x,y,2,t) = Ra{ o (X,Y) ng(z,t)ej‘”mt} (2.2.17)

m

and taking into account that gm is a slowly varying function of the
time, gives:

dEQm 2 2n? dgm| |
iy 2N ZEml jont
¢U§4{ 422 + Be,m Im —J®Om 2 dt g=10

2
n *
F'- o2 ), 0f g el®m! (2.2.18)
C' m

It must be noticed here that F' in (2.2.18) is slightly different from
F in (2.2.7). Indeed, F' is the analytical signal derived from F, i.e.

F=F+jG (2.2.19)
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with G being the Hilbert transform of F. From the properties of the
Hilbert transform, it follows for the second order moments:

<oyt B c .y 2 =2 <FiGy. 2D Py, 2 1= (2.2.20a)
<F'(x,y,z,t) F'(x'y',2"t")>=0. (2.2.20b)

Multiplication of the equation (2.2.18) with ¢o and integration over
the x,y-plane eliminates the x,y-dependence:

d? dgm| i
3 L0 8 g2t B efont

- dz2 vg dt
n2 :
f(z,t)-p—':'!z’mﬁ, g, el®mt (2.2.21)
C' nm

vg represents the group velocity and is assumed to be a constant:

2,2
n“ ¢g dxd
©m J.J‘(x,y)—PlanG % y_ Bm

- (2.2.22)

c? IJ oadxdy Vo

(x,y)-plane
f and np eff are given by:

” ng ¢§ dxdy
ng'aff _ = Y(x.y)-plane (2.2.23a)

” 62 dxdy
(x,y)-plana

J.J- F'(XJY:Z'lt) ¢)O dXdy

Ttz 1) soi)cplane (2.2.23b)

”A 05 dxdy
(x,y)-plane

Equation (2.2.20) can be decomposed into equations for each
longitudinal mode separately by integrating over a few periods T,
with T being defined by the mode spacing Awm: T = 2n/Aom. Aom s
typically of the order of 100 GHz, and hence the resulting equations
are only valid for modulation frequencies up to a few times 10 GHz.
The field quantities then denote the average values over a few ti-
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mes 10 psec. The longitudinal equation for each mode m can be
written as:

dzg ﬁm gm 1 aud
Pt P L jomt pe”
Tk + B m Om EJVQ e an dt - v OhOm  (2.2.24)

The correlation function of the resulting Langevin forces can easily
be derived from the correlation function of F'. The Langevin forces
are mutually uncorrelated. This issue is treated furtheron however.

1I.2.1.4 Derivation of th led wav ion

The second term on the r.h.s. of (2.2.24) can be transformed by
remarking that, for a grating of period A, n2peffis a periodic func-
tion of z and can be expanded in a Fourier series:

i . 2qn
N2 o= Y,3q80 A 2 (2.2.25)
q:—-o-u

Such a series also exists for a quasi-periodic grating, i.e. a grating

of which the period or the amplitude vary slowly in the longitudi-

nal direction. The corresponding coefficients aq are no longer con-

stant in this case and their phase, resp. amplitude is z-dependent.
Substitution of (2.2.25) in (2.2.24), together with

9z, = Rz, e PeZ 4 R (2,t) elPo? (2.2.26)

results in the equation:

2jpy 2t T g2 52 Ry e

aRn i
ig Z'm _5:Pm %m _ R ip z_
{zxﬁ_g = zjvg —o+ (B BY) }e g

o 2qn
Fn ——(R*e iBgz 4 - olPg? ot " e (2.2.27)

C q—--n-n
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In the derivation of (2.2.27), it has been taken into account that
Rm*is a slowly varying function of z. fp is the time-averaged Lan-
gevin force, given by the integral in (2.2.24). Averaging (2.2.27)
over a few grating periods and noticing that Bg=nn/A results in the

coupled wave equations:

Ry 1 IR, j iBoz.q, JORan
3 i(Be ~—B.) Y = J' t.elPoZdz - R
gy +Vg Y +J(Bc.rn ﬂg) m HAEBQ aam 2]3902 m
(2.2.28)
oRn 1 ORm o Bz, @Ay
m L BYRL = f P ds. E
0z vy ot i(Be,m=Bg) R TR m QBQCE Rm

In the derivation of (2.2.28), it has been taken into account that
Be,m = Bg. In the absence of a grating, the averaging can occur over
a few wavelengths. The a-coefficients vanish in this case. The
coupled wave equations are usually written in the form:

R, 1 oR!

iy = + jABm R =Fh+ e Ry
Z Vg4 ot
(2.2.29)
R, 1 9Ry, - .
Serrogaks Ll et =
92 Vg Y }ﬂmRm m KBFRm

in which the coupling coefficients xrg and xgr, the complex Bragg-
deviation ARy and Fy* and Fy- are defined by:

KFpg=— 5 ! Kgp=— > ABm = Bc,m“Bg (22303)
BgC 2Bg4C

gt t atiBgZy 2.2.30b

m nAEﬁg nA & : )

For a pure index grating, i.e. a periodic variation of the real refrac-
tive index, the Fourier coefficients of the real function n2p,eff0bey
the relation an = a.n” and hence xgr = -kgg’. A gain grating corres-
ponds with an imaginary n2p1eff and xgr = keg’. kBF and kg can, in the
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most general case, be slowly varying functions of z. We will treat
the coupling coefficients in the following as given constants.

The equations (2.2.29) are the standard equations used in the
analysis of laser diodes with or without a grating. Only the mo-
ments of the Langevin forces still need to be determined. These
moments depend on the field normalisation, which will be treated
in section 2.2.

[1.2.1.5 Moments of the new Langevin forces

The Langevin forces Fm* are obtained from the original Lan-
gevin function F' by purely linear transformations. Their first order
moments are therefore zero and the second order moments can ea-
sily be calculated. Starting from the relations (2.2.20) and (2.2.23),
it follows:

dxdy ¢2gn
aﬂ)ahnsp Jl (x.¥) y ¢)\0 g
2

Sge [J' dxdy qﬁ]
(x.y)
Bmahnsp !"IE” l"g

= S(t—t" 8(z-2") (2.2.31)
eoc® [ | dxay gy
x.y)

<f(z,H)f* (2" t')> = 8(t-t) 8(z-2")

The correlation functions of the Langevin forces fy are calculated
as:

<ti(z; t)fr;\(z',t')-“-' = JanT1J‘anTQ€f(Z,T1 )f'(z',a;z),ej[mm’crml To]

(nT)
8NNl P
... UL T 1—2J' dfc1j Aty §(11~10)e/(@m~ O
EUCSJ‘-[ dxdy ¢2 (nT)?InT nT
(x.y)
8wmNgpNerlg

6(z~z')—1-2-6|mj d11j dt, 8(ty-10) (2.2.32)
aocaj( )dxdy 02 (nT) nTJnT
X,y

with 8;m being the Kronecker delta, which is a result of the avera-
ging of the exponential function. The double integration in the last
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expression of (2.2.32) vanishes when t1 and 12 belong to different
time intervals. More exactly, one has:

1 t+nT t+nT 1 |t—t'|
sdes |7 j dt 8(t: =—[1~—), t-t] <nT
(nT)EJ.‘ Yl GRS — JIt=t] <
=0 , [t=t'] >nT  (2.2.33)

This function approaches the Dirac &-function for small nT, which
implies that on our timescale (of the order of 0.1 nsec.) the mo-
ments of f,, can be expressed as:

<f(z, 1) (2" )> =
eocaj dxdy ¢p
()

8(z—2") 8y S(1-1") (2.2.34)

At first sight, it looks remarkable that all fj, which are the compo-
nents of f, have an energy equal to that of f. In reality however, we
have, by approximating the function (2.2.33) by a &-function, redu-
ced the bandwidth of f; with respect to that of f. The time avera-
ging filters the white spectrum. The moments of Fnh* can now be
derived in a similar way from the moments of f,. We finally find:

ORPNgpNeng 8(z—2') S(t-t)
3 2 &
€oC ” dxdy ¢g |Bgl
R 0'e

<Fiz,HFE 2t)> =2 S 8, (2.2.35)

The presence of 8,.. in (2.2.35) indicates that Langevin forces cor-
responding with forward propagating waves are uncorrelated with
the ones corresponding with backward propagating waves. The ave-
raging over a few periods now implies a reduction of the spatial
bandwidth (i.e. the bandwidth of the spatial Fourier transform). The
spatial Fourier transform of F|*is thereby located in a small band
around +Bg. From the relation (2.2.20b), it follows, furthermore that:

<Fi(z,hFm(z',t)> = 0 (2.2.36)
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This section explores the full physical meaning of the coupled
wave equations and discusses alternative forms of the equations.
We first describe a proper choice for the field normalisation. This
is followed by the transformation of the equations (2.2.29) into
longitudinal rate equations. Both steps make the physical interpre-
tation, which is given subsequently, considerably more simple.

[1.2.2.1 _The field normalisation

The normalisation of ¢ will further be chosen so that the ave-
rage optical power in the + or - direction can be expressed as:

Pr= D Ph = X, IR
m m

P= 2. Pr= 2. Rnl® 22:7)
m m

This optical power flux can be calculated by integration of the
Poynting vector [2.19] over the lateral/transverse cross-section:

P,=P'- P =L Re [ | (Ex H"), dxdy
2 (x,y)-plane

1 .
s L 5.
: Re“‘(x,y)_pm( JHO) dxdy (2.2.38)

where Ey is given by (2.1.2) , while Hy can be derived with the help
of :

Ey=o0y) Y, Rhe IPe? + Ry elPo?) elOmt
m

— _j aEY_ [39430 + _-sz » jBZ jUJ t '
H"_uom 3z Ho® g(ﬂme 9% - Rye’te™) el m (2.2.39)
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When calculating the product EyHy", it can be taken into account
that cross products of different mode fields will vanish after ave-
raging over a time of e.g. 10 psec. The power Pz then reduces to:

P, =

2 "
dxd Ral“ - IR 2.2.40
Euom “‘(x . piamltbo(x ,Y)|“dxdy 2 (R 1% = R ( )

Consistency with (2.2.37) thus requires the normalisation:

2l 21oC
” 10(,y)|2dxdy = =222 . 2P0 2.2.41)
(x,y)-plane Bg Neff

The energy density (per unit distance in the longitudinal di-
rection) inside the laser cavity on the other hand can be calculated
as [2.19]:

1
ol j j dxdy (eon2Ey[2 + polHyl?) (2.2.42)
4 JJdixy)
with:

B, 2= 030%,y) D, (IR 1%+ Ryl + 2Re(Rl Ry~ 21Po7))

m

Hd?= E‘ﬁg—(ix{m + R - 2Re(R, Ry e ~2Pe?)) (2.2.43)
Ho® m

where cross products of different mode fields can again been ne-
glected after time-averaging. Substitution of (2.2.43) in (2.2.42)
results in the following expression for u:

1 :
- Y (R4 + R (2.2.44)
9 m

This energy obviously is connected with the photon density
inside the cavity. From (2.2.37) and (2.2.44), it can be concluded

that the number of photons in® in mode m per unit length in the
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longitudinal direction and propagating in the +, - direction is given
by:

+ 2
« _ IRl

- (2.2.45)
L Vghon,

The relation between the field amplitudes and the photon
densities makes a transformation of the coupled wave equations
(2.2.29) into equations for the field amplitudes and phases attrac-
tive for physical interpretation. It will also become clear then how
the Langevin forces are related to photon processes. The normali-
sation discussed here gives rise to new expressions for the second
order moments of these Langevin forces:

<F'(z,HF (2',1)> = hopng Ig(n) 8(2-2) S(t-t') §im 8, _ (2.2.46)
.29 2 itudinal r i
Complex quantities such as Rym*, Fm* are often characterised

by their amplitude and phase for practical interpretations. We the-
refore write:

i

RE (z,t) = rt (2,t) /@m(Z:D) (2.2.47a)
[ =

FE(2,1) = [Fa(z,t)] o/ PF.m(Z:D (2.2.47b)

APz 1) =ABn (2,1) +jAl3m,i(Z:t) (2.2.47¢c)

kg = |x] e)Px (2.2.47d)

where all quantities on the r.h.s. are now real functions.
Substitution of (2.2.47) in (2.2.29) results in the longitudinal
rate equations:
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am 1 0rm £ et . t T =
et ——— = AP, ifm = [Fn|COS(PF, m—Pm) £ [K| rmCOS(P+Pm—pm)

dz  v4 adt
or

1 dry -
T ABp i rh = FE o 2 K] 1 COS(9t G OR) (2.2.48a)
Vg dtf_b
and

dom 1 99q Fal . =
£ — g AR = —SIN(PE =) + K] - SIN(@HOm—0m)

0z V4 ot i Mm
or

d + r:F

L P A= FE o 1K =2 SiN(@t G 05 (2.2.48b)
Vg dtf'b ' ' I'im

where d/dti (=d/0t+vga/dz), resp. d/dip (=0/dt-vgd/oz) designates
the time variation as it is experienced by the forward, resp. the
backward propagating wave packet itself.

Three processes contribute to the time variation of the field
amplitudes and hence to the time variation of the power or of the
photon density: the absorption and the stimulated emission (ex-
pressed by APm,), the spontaneous emission (expressed by F¥m )
and the distributed reflections (caused by a grating and expressed
by |x])

The effect of stimulated emission and absorption is more or
less obvious. The increment of the amplitude (or of the photon den-
sity) is proportional with the amplitude (or with the photon densi-
ty). This can be understood as a logical consequence of the inter-
pretation of stimulated emission, resp. absorption as a "collision”
between a photon and a conduction electron, resp. between a photon
and a valence electron or an impurity. The proportionallity follows
from the fact that only one photon is involved in each "collision".

The Langevin functions on the right hand side of (2.2.48a) re-
present the spontaneously emitted photons that couple into the
mode. The spontaneous emissions add up to the fields rm*, but only
in an incoherent way. The presence of Fi;m causes fluctuations in
the modal photon densities, but it also contributes to the average
photon densities. The latter effect however is not easily seen from
(2.2.48a) and we will therefore treat the spontaneous emission in
more detail in section (2.2.3).
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The last term on the r.h.s. of (2.2.48a) corresponds with re-
flected power of the backward (forward) propagating wave that
couples into the forward (backward) propagating wave. The mecha-
nism becomes quite clear after discretisation of the grating (fig.
2.2.1). The difference in complex effective index of two neighbou-
ring points can be approximated as:

: Az : Az

a_ i o< i3 B s

ANgif = Enn {e EJBQ[H 2 )—e ZJBQ(Z 2 )}
aff

__BgBn ,, o-2iByz (2.2.49)
Ngfi

The reflection and transmission of the fields at the intersection
boundary are then obtained as:

An iBga_ =] -2
_ eff o iBg@-n Az e~ 2IBgZ KppAZ € 2IBgZ (2.2.50a)
Neff(Z) + Ngif(Z2+AZ) 2I’I§ff

t =4/ 1 —|r|2 =1 to first order in Az (2.2.50b)

Fig. 2.2.1: Discretisation of the grating

Expression of the field continuity at the intersection boundary now
readily leads to:
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R*(z+az)e Pa(@t82) _t R¥(z)eBeZ 4 r R-(z+Az)elPa(?+42)

or

RU@+42)-R@ _ . R-@raz) (2.2.51)
Az

One readily finds the contribution of the distributed reflections as
it appears in equations (2.2.29) when Az is infinitely small.

The reflected backward (forward) propagating fields are not
necessarily in phase with the forward (backward) propagating
fields. The phase mismatch, expressed by o¢x+¢--¢* in (2.2.48), re-
sults in an imperfect energy (photon) transfer from the reflected
waves. It is included in the coupling term in (2.2.48a) through the
cosine factor.

The interference effect also affects the phases of forward
and backward propagating waves, as can be seen from equations
(2.2.48b). The influence of the interference obviously depends on
the relative strength of reflected and transmitted waves, e.g. a
weak reflected wave r-will only have a small impact (expressed
by r/rt) on the phase of the resulting field rt+ r.

Other contributions to the phase variation have the origin in
spontaneous emission and the Bragg deviation. The first contribu-
tion is related to the character of the spontaneously emitted pho-
tons, which are not coherent but which interfere with the laser
photons. The random phase of the spontaneously emitted photons
results in random fluctuations in the phases of the laser fields.
The phase variation due to the Bragg deviation accounts for the
discrepancy between actual wave vector and the as reference wave
vector chosen Bragg vector. It is the result of our choice for the
field representation (2.1.2) and has only a physical meaning when a
grating is present, i.e. when k is non-zero. The Bragg deviation de-
termines the phase mismatch in this case and hence the efficiency
of the distributed feedback.

1.2.2.3 The spontaneous emission

Before discussing the new Langevin functions, we first
remark that equation (2.2.46) can also be written as:
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<Fiz,t Fi'(z' t) >= f% S 8(z-2") 8(t-1") 8y 8, (2.2.52)
9

with Sm =I'gnspvg being the rate of spontaneous emission that
couples into the mode m, as it can be derived from the famous
Einstein relations [2.6]. Sy is a fraction of the total spontaneous
emission rate BgN2Vg, (see 11.1.2.1), and it can be expressed alter-
natively as [2.20]:

FAs ¥
Sm= ﬂspBONEVa , Bsp = > o S (2.2.53)
47 neHCVEA?\.

with AX being the mode spacing, i.e. the wavelength difference
between longitudinal modes.

By taking the statistical average of equations (2.2.48a), it
can be shown that, if F¥ m has zero mean, the spontaneous emis-
sion doesn't affect the field amplitudes. On the other hand however,
there is a contribution from the spontaneous emission to the ave-
rage power (or photon number) in the mode. This can be proven by
integration of (2.2.29), in which the time dependence can be remo-
ved by Fourier transformation. After integration, we find for the
fields:

oo
t _1_ j.Q.t 1_ - : b T i '
Bz = zn.L.dQe {am-[ sin[a,(z-2")] Gy (2',Q)dz (2.2.54)
2 1/72

with: am(ﬂ)=[ [vng Aﬁm] - |‘<|2}

g

* o —iot] oF; 1 oFy
Gi(z,Q :j dt e“lm{—"‘— Fi—jABy,FL — ——D1
m(Bd= ] 9z rerm JABmFm vg ot

Multiplication of the first equation of (2.2.29) with R+, adding
the complex conjugate of the resulting expression and taking the
statistical average of the expression, results in:
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E)ﬁ(r:’n)ezr +_1_. E){(r:,l,)g::-

~2ABm i<(Fi)®> = 2|K| <Fo M cos(@+om—pi>
0z vg ot '

+ <R (z,h) Fh(z,b> + <R (z,1) i (z,1)> (2.2.55)

Replacing Rm* by the expression (2.2.54) in the last two terms of
(2.2.55) and taking into account the &(z-z')-function in (2.2.46)

shows that Ryt in (2.2.55) can be replaced by:

R (2.) = [t

C ot z oF % (2" 1
dQ eJ‘Q(t"t ) {-J—J. sin[am(bz’)]L(z—l}dz'
2nd 4

< B dz'

. ; L aZ
sz_nJ dt'| de eJQ(t—t)J dz Fr (2 Doos(an(z—2)]  (2.2.56)

And hence:
<Rz, HF (z,t)> =

1 : ' j.g).(t"'"t') I ot
E;j dz ”dt Idﬂe <F(z' t"F7 (z,1)> cos[a(z z)]}
1 . jQ(t-1') e
- 211:-[ dz {jdt jdne <Fh @ F (Z.t)>}
z
=j dz' <F!(z,HF (2, H> (2.2.57)

The last term, for which the integrand is only non-zero at the
integration boundary, cannot be calculated unambiguously. Howe-
ver, the problem can be overcome by using a more exact function
(2.2.33 in the time as well as in the axial variable) for the correla-
tion. This gives:

<R (z,) Fhz > + <Rh(z,h) i (z,H)> =

nA

2hom, ‘A ( z—z‘) hom hop,
S J' ol g olgh e 0T Bl O 2.258
v.T "JenanaA & m m ( )

g

The value of T in this formula is defined by the bandwidth of the
Langevin function and hence by the modal spacing (Af = vg/2L). We
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have chosen the value n=1 in (2.2.32) and (2.2.33) to include the
complete spectral content of the mode; a higher value for n would
imply a filtering of this spectrum.

Equation (2.2.55) can be transformed into an equation for the
average photon density per unit longitudinal distance propagating
in the £ direction:

S 2 |x|
Iy m
- EA[Smlivg <lp== E + 'hmm

df.:i?n::r

= <fthcos(@et ¢ —¢H)> (2.2.59)
i

A similar equation also holds for <in->. Equation (2.2.59) indicates
that the spontaneous emission rate (Sm/L per unit distance in the
longitudinal direction) is divided equally between the forward and
backward propagating waves (or more generally that the sponta-
neously emitted photons have a uniformly in space distributed pro-
pagation direction). It also implies that the field amplitudes inclu-
de contributions from the Langevin forces.
The equation for im* can now be written as:

di; 5 9 = o o
= — — 2AB mVgim= ii 2|k|Vgaf i tnim COS(@yt Om— Pm) + Fm(z,)
f.b
SRy REFE - <REF + ROFE
with: FE,=mrm RnFin < Pin Fn + Finfin > (2.2.60)

hog,

The new Langevin functions F;, now have a zero mean. Their second
order moments can easily be calculated from the property that <x4>
= 3 <x2>2 for a gaussian variable x with zero average. The calcula-
tion of the second order moments involves such a fourth order mo-
ment due to the stochastic part of Rpt (2.2.56). Nonetheless, under
the assumption that the energy of this stochastic part is relatively
small when compared with the energy of the coherent part, one can
neglect this fourth order moment and one then readily finds:

‘i L L {rﬁ"}a ' 1
<FmEzhHFiz't') >=2 - S, 8(z-2") S(1—t") & B, _

Vghom

=2 S <it>8(z-2") 8(1-1") 8y 8, - (2.2.61)
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It must be noticed that the last expression for the autocorrelation
holds for all modes (below or above threshold), despite the fact
that our assumption in general only holds for the modes above
threshold and not for very weak side modes (below threshold). The
proof for this follows from a more exact quantummechanical cal-
culation [2.21].

The Langevin functions for the phase equations can be charac-
terized in a similar way. Multiplying e.g. the first equation of
(2.2.29) with Rm*" and subtracting the complex conjugate of the
resulting equation, gives:

+ T . + &

£ L S B = I 2 sin(pct o wrn)—g{ F—'“~5”—“:} (2.2.62)

. I Rm R

Again, fourth (and higher) order moments will appear in the corre-
lation of Fy,m, as can be seen by expanding the stochastic part of
Rm in a Taylor series. However, the assumption of a small energy of
this stochastic part again allows us to neglect the higher order
moments and one finds:

S, ho
<Fe m@ HF5 (2',1) >= ——= §(2-2) 8(t-1') §im 8,
2Vg < m:-‘?

S
8 el §(Z-2") S(1=1") Bjq B (2.2.63)
2(\!9)2{@}

A more intuitive theory of the spontaneous emission contri-
butions can be established from fig.2.2.2, where it is shown how a
spontaneous emission alters the intensity and the phase of the
fields in a discontinuous way. Notice also that, since we are dea-
ling with discrete particle processes, im* must be interpreted as
the number of photons in one unit of longitudinal distance (i.e. a
number in stead of a density). From this figure, it is easily seen
that the change in photon number Aim* and in phase Agm*, due to a
spontaneous emission in the (+)-direction at (z,t), can be expressed
as:
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Ait, =142 4fiT, c0OSH; (2.2.64a)

ok sing,
Pm=
Vin

The first term on the r.h.s. of (2.2.64a) obviously leads to the stea-
dy-state contribution Sy/2L in (2.2.60), where as the second terms
on the r.h.s. of (2.2.64a) and on the r.h.s. of (2.2.64b) are equivalent
with the Langevin functions Fjn and Fe m. Since all spontaneous e-
missions occur at random times tjand at random places zj(located
in the unity interval under consideration), we can write:

(2.2.64b)

Fim(@h =24/l Zcoslﬁ(i.j)] 8(t-t) 8(z-z)) (2.2.65a)
]

y

Y sinl6i,p] 8(t-t) 8(z-2) (2.2.65b)

Fo m(Z.) =
‘4

with the angles 6(i,j) being randomly distributed.

IMAGINARY PART OF Ra

REAL PART OF R},

Fig. 2.2.2: Phasor representation of the fields

Therefore, the first order moments are zero, while the second
order moments can be written as:
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R m(Z OF (2 1) = 4T, D_cos?[0(1,)I(t-1)3(t~1)8(2-2)8(2'~2))
i

=4 il a(tmt')S(z—z')Z cosg[e(i,j)]S(t-—ti)B(z—zj) (2.2.66a)
i
R P %—S(Pt')ﬁ(z—z')zsin2[9(i,j)]8(t~ti)5(zr-zj) (2.2.66b)
m ||J

These equations can be averaged by replacing cos? and sin2 by their
average value (1/2). Furthermore, it must be recalled that all quan-
tities already have been averaged over a time T (= 1/Af, with Af
the mode spacing). The unity interval under consideration has pro-
pagated over a distance vgT=2L in that time and it has been the lo-
cation of ST spontaneous emissions. We can therefore write, with
dti=O(T):

2 8(t—t|) S(Z—Zj) = Smjdti,f B(tf = ti,f); tf =t{ - Vg2
B
" (2.2.67)

which, when substituted in (2.2.66), immediately leads to the re-
sults given in (2.2.61) and (2.2.63).

We conclude this section by presenting an alternative form
for the amplitude rate equations. To this end, we define new ampli-
tudes by the relation:

vghmmiﬁ, = rfﬁra-:2 +2 < (I, - -::rfn:r)={rim:=~2+ 2 <risAry,  (2.2.68)

in which Ar is now due to the noise and is assumed to be small.
Substitution of this definition into the equation (2.2.60) and line-
arisation in Ar then results in 2 equations, one for the average am-
plitude and one for the fluctuation. It turns out that the resulting
equations are identical to those obtained from averaging (for <r>)
or linearisation (for Ar) of: -

gk ho,S Fho
A T m,iTn = —— * [K|FHCOS(@+ Gm— Om) + MM (2.2.69)
ngtf,b Im <I'm>
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II.2.3 The rate equation for the carrier density

A simplified rate equation for the carrier density in the
active layer has already been given in section 111.2.1. We are now in
a position to express the stimulated emission term in equation
(2.1.1) as a function of the field amplitudes and the carrier density.
Indeed, from (2.2.13), (2.2.42) and (2.2.44), it follows that the ave-
rage photon density of mode m in the active layer is given by
I'um/homwd. The stimulated emission rate is then easily found by
multiplying this average photon density with the gain gm (assumed
to be uniform in the active layer). The total stimulated emission
rate is obtained by summing over the longitudinal modes and one
finds the carrier rate equation:

2 3 T N9Om o2 4.2
3t ad T - & - 227
3t gd T 0o wd% iy e i (2:2.70)

with the gain g being given by (with Am = 2rc/om):

9(Am) = [akm) N=bAm)] { = Z e(Am,A) (T2 + ()7 } (2:2.71)
|

In the carrier rate equation, we have treated the carrier den-
sity as a continuous quantity, while the recombination and creation
(e.g. interband absorption) rates have been approximated as conti-
nuous processes. However, in reality, the carrier density is quanti-
sed with a unit equal to the inverse active layer volume and the re-
combination and creation processes occur in a discrete way. This
discrete character can be accounted for by adding a Langevin force
to (2.2.70).

M08 B Rep i L Odianie, Gest o bl (6 8.78)
wd — hon,

h

For the same reasons as those given in section 11.2.1.2, we can
assume that Fn(z,t) and Fn(z',t') are gaussian and uncorrelated for
t-t'| > 10-13s and |z-2'| > 10-2um. Again, FN has zero average.
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A part of FN has its origin in the spontaneous emission and is
thus related to the Langevin functions which we encountered in the
previous section. However, spontaneous emissions induce opposite
changes in photon number and in carrier number (one spontaneous
emission increases the photon number by one, but it decreases the
carrier number by one). We can therefore write:

wd Fy@,=wd Fg@h- 4 Fm(z,0) + Fimz, b} (2.2.73)

m

The multiplication with wd is necessary to obtain the number of
carriers per unit length in the longitudinal direction, a quantity si-
milar to im. It can also be noticed here that Fjm can as well be in-
terpreted as shot noise associated with the stimulated emission
and the interband absorption (see e.g. [2.22] and [2.23]).

wdFs represents the shot noise related to the spontaneous
carrier recombination. This shot noise is not correlated with the
shot noise in the stimulated emission and absorption (independent
processes) and its second order moment can be derived from the
standard formula for shot noise. One finds:

<Fg(z,t) Fg(z',t') >= fﬁ ( ;—tl\-l + BQNE + CON3 ] d(t-t") 6(z-2") (2.2.74)

Obviously, Fg is not correlated with one of the Langevin functions
appearing in the field phase equations. FN consists entirely of shot
noise, which never has a direct influence on the field phases.

11.2.4 Boundar nditi

The coupled wave equations and the carrier rate equation are
valid only in a section with a uniform waveguide structure. In the
case of lasers, consisting of different sections with different wa-
veguiding properties, we can use the coupled wave and the carrier
rate equations in each section separately. The fields and the car-
rier density in two different sections A and B are thereby connec-
ted by the boundary conditions at the sections' interface (z=zaB).
The boundary conditions express the continuity of the tangential
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components of the electric and magnetic optical fields and of the
carrier density.

The continuity of the carrier density however can not be ta-
ken into account unless carrier diffusion is included. The diffusion
length in the longitudinal direction on the other hand is so small
that it allows large carrier density variations over a small distan-
ce. We can therefore, by denoting by N the average carrier density
over a certain distance (e.g. a few um), translate the boundary con-
dition so that discontinuities in the average carrier density are
permitted.

The boundary conditions for the electromagnetic fields can be
expressed as usual in terms of a reflection (pj) and a transmission
(tj) coefficient. The boundary conditions impose the following re-
lations between the fields in two neighbouring sections A and B:

(E;‘] =1_[ ? _piJ[EmJ (2.2.75)

En/g ti\-pj 1 J\En/4

with:

(Efya=lim Rt otiBoZ (2.2.76a)
2-32in

Efg= lim RE etiPoz (2.2.76b)
2523

The reflection and transmission coefficient are determined by the
difference in lateral/transverse mode or in effective refractive
index between the different sections. The sum of their squared mo-
duli equals one. In the following, we will treat them as given con-
stants.

The relations (2.2.75) also apply at the output facets, i.e. the
boundary between the semiconductor and the air. One of the fields
((Em*)A for z=0 and (Em-)B for z=L, L: laser length) vanishes in this
case and the boundary conditions reduce to: '

Em(2=0) = p; En(2=0) ; Ep(z=L) = pp Ep(z=L) (2.2.77)
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with pfp being the field reflection coefficient at the left (right)
facet.

It is convenient in DFB laser theory to use complex field re-
flectivities. The phase of the reflectivity can then account for the
random variations in the phase of the grating at z=0 and z=L. This
phase of the grating, which cannot be controlled with the current
technological means and which practically varies from chip to chip
(fig.2.2.3), could also be included in the coupling coefficient and by
considering small random variations in the laser length. However,
one usually assumes a constant phase at z=0 (phase zero in our
case) and a constant laser length.

N\

Fig. 2.2.3: Variation in the phase of the grating at the facets
for different lasers of the same wafer,

\VAV4
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It must also be noticed that, for structures where different
sections have different grating periods, the phase of each grating
is defined at z=0 even if the grating doesn't start at z=0.

I1.3 z-independent rate equations for single section lasers

The rate equations, which describe the time evolution of the
total number of carriers in the laser cavity, of the total number of
photons in each mode and of the optical frequency of each mode,
provide a very simple mathematical model for laser diodes [2.23].
In their usual form, these equations are valid only for single sec-
tion lasers, although, in recent years, they have also been extended
to other lasers such as external cavity lasers [2.24], [2.25]. The
usefulness of the rate equations mainly lies in their easy manipu-
lation, by which analytical approximations for the power spectrum
and the RIN or the AC-response can be derived.



11.38

In the subsequent sections, we will derive the rate equations
from the longitudinal field equations, compare these equations
with the standard rate equations that can be found in literature and
discuss some differences or extensions in more detail. We thereby
restrict ourselves to single section lasers. We'll first derive the
standard rate equations and discuss some solutions which still are
often quoted (even nowadays) when experimental results need to be
explained. Next, attention is paid to some modifications due to e.qg.
longitudinal spatial hole burning or dispersion. This should allow
us to evaluate our own specific approach, based on numerical solu-
tion of the longitudinal equations, in the next chapters.

11.3.1 ndard r ion

The standard rate equations can be derived only under the as-
sumption of a longitudinally uniform carrier density, which, prac-
tically, only occurs when all longitudinal modes possess either a
uniform or a negligible power density. The carrier density can thus
be written as:

N(z)= Ng, with Ngybeing aconstant (2:8:1)

We also introduce the total number of photons Iy carried by the
mode m and write:

h
o+ (T = 2 Iy (1 41 (2)
L
with L fn(z)dz =0 for all m (2.3.2)

The rate equation for the uniform carrier density is now readily
obtained by averaging the equation (2.2.72) in the longitudinal
direction. The gain appearing in this equation is given in detail in
appendix Il.A. Since the carrier density dependence of the linear
gain and of the gain suppression is almost identical, we will assu-
me the following expression here:
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Im= [ a(m) No - b(mm)]{ I e N iy } (2.3.3)
]
We then find:
Ny nJ (N 1
"éTO = 2.5 = (.%2 + BoNj + CDN,?) = V—az G(No,om) Im + Fr o) (2.3.4)
m

The modal gain G defined therein can be written as:

G(Ng,wm) = [ A(wy) Ng— B(wg) ] { 4= Z Emsls }
s
with A(wq) = ra(om)vg, B(w,) = Fb(mm)vg

hw.v L
AN By = eg—r L [ 14 1[ jo i (2)f(2)dz ] (2.3.5)

while FN,o denotes the spatial average of Fn(z,t).

An equation for the photon number Iy can be derived from the
equation (2.2.29) and a similar equation for im-. Adding the two
equations and integrating the resulting equation over the laser
length gives, after substitution of ABm,i (from 2.2.15):

dl
_d_T = [ G(No,0m) = &intVg 1l + S + Fy, (D)

+Vg{im(L) = (L)} + vg{in(0) - i (0)} (2.3.6)

The last two terms on the r.h.s. of (2.3.6) are easily interpreted as
the photons that leave the cavity through the right, resp. the left
facet. This facet loss is proportional with Iyp, at least for a uni-
form carrier density, and it can be expressed symbolically as vyfaclm.
The photon rate equation then reduces to the standard form:

Al .
'&T = [ G(No,om) =1 lm + Sy + Fl,m(t)
With ¥ = Yjac + QintVg (2.3.7)

It can be remarked that the equations (2.3.4) and (2.3.7) are identi-
cal for both Fabry-Perot and DFB lasers. Only the facet loss will be
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different for both lasers. Moreover, the loss generally depends on
the mode number m in DFB lasers [2.26], i.e. ¥ must be replaced by
ym. Due to the dependence of G on the carrier density and on the
photon numbers, the system remains highly non-linear.

An equation for the mode frequencies can be derived in a si-
milar way from the equations (2.2.48b). Summation of the equa-
tions for ¢* and ¢ and averaging over the longitudinal direction re-
sults in:

C?t{ELV J ((Pm *: (Pm)dz} i (neff & FAnr(NU))

OmL) = (L) +2B4L  om(0) — () 1
_ Pm ;L gt B 2Lm +Et¢fb+F‘°'m(t) (2.3.8)

The phase o¢fp appearing in this equation is due to the distributed
reflections (it vanishes for Fabry-Perot lasers) and is given by:

Op = [x|L L-[ {_‘ ¥ —JEm((Px*‘ Pm— (Prn)dz 2.3.8)

rnrm

The first two terms on the r.h.s. of (2.3.8) are determined by the
phases of the field reflection coefficients pf and pp and they can be

considered as constants. By including all reflection phases (i.e. al-
so the phase from the distributed reflections) into one phase ¢R,

we can again write a common equation for both Fabry-Perot and
DFB lasers:

d

d t[ELV .[ (9m + ‘Pm)dz} + — (N + TAN(No))

= E[ OR+ Fo,m(®) (2.3.10)

This last equation can, in general, only be solved in the low-fre-
quency case (i.e. d/dt = 0) and for Fabry-Perot lasers (for which ¢R
is a constant). Furtheron, we will see that also a few special DFB
lasers with a constant (or zero) ¢r exist, i.e. lasers for which the
sin-function in (2.3.9) vanishes for all longitudinal positions. Equa-
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tion (2.3.10) is then usually replaced by its small signal approxi-
mation:

Aoy __on 3(AN) o 3GMNoow |

ANO""‘F = N0+F

Vg & dNg o 2vg 9N b
an;
W oN
with: a:-z?ma—g" 2.3.11)
N,

o is called the linewidth enhancement or antiguiding factor [2.27],
[2.28]. Its introduction follows more or less in a natural way from
the fact that both the refractive index and the gain depend linearly
on the carrier density. a is usually considered as a wavelength de-
pendent constant. It must further be noticed that the use of the
group velocity vg on the Lh.s. of the frequency equation is a conse-
quence of the frequency dependence of the refractive index.

The equation (2.3.11) also is often used for DFB lasers and in
non-static cases, although, in principle, one needs to solve the se-
parate phase equations (2.2.48b) in these cases. We'll discuss the
validity of this approximation furtheron. Furthermore, it must be
remarked that the refractive index doesn't depend on the power
levels, as does the gain (gain suppression). For this reason, a
should be considered as a bias dependent quantity.

The Langevin functions appearing in the equations (2.3.4),
(2.3.7) and (2.3.11) are given by:

L
Fun® = | (Fim(z.0 + Fim(z.b1d2
1 L
Fom®=or L [F,m(@,1) + Fo m(z,01d2

L
1 1 1
FN'D(J[) = EJ.() Fs(Z,t)dZ = V—a % F|.m(t) = FS,O(t) = '\—/; % l':|'m(t) (2.3:12)

As linear combinations of functions with zero average, they all ha-
ve a zero average. Since the z-dependent Langevin functions are
uncorrelated in space, the second order moments can easily be cal-



I1.42

culated by integration of the original second order moments. Of
course, the uniform carrier density also implies a uniform sponta-
neous emission rate. One readily finds that all new Langevin func-
tions are mutually uncorrelated and that they have second order
moments given by:

<F) () Fyn(t) =2 Sl 8 8(1-1)

S L
< Fq,'m(t) Fq-.,n(t') = A J; [1_ + _l)dz Bmpn 0 (1=t")

8L2v; O\itn i
; 2 (No 2 3 ,
<Fs,0(t) Fs,o(t) i i — +BoNg + CoNg | 8(t-t') (2.3.13)

a

The second order moments of the phase Langevin functions are the-
reby often calculated under the assumption that the power densi-
ties of both the forward and backward propagating waves are uni-
form and equal to In/2L (as is the case in a Fabry-Perot laser with
high facet reflectivities). This results in:

S
2 Figim() Fyntth 5= 2’“ 8mn O(1-1") (2.3.14)
.?vglm

IL3.2 S S&E uti

Simple, but basic formula for the static side mode suppres-
sion, the power spectrum and the linewidth, the RIN and the AC-
response can be obtained from analytical solution of the rate equa-
tions. Except for the calculation of the side mode suppression, one
thereby applies a small signal approximation and considers the
loss ym as a constant.

Here, we give an overview of these well-known formulas for
future reference.

1321 T & did I ;

The side mode suppression in a laser where only one mode (m)
has reached the threshold can be calculated from the equations
(2.3.4). Assuming the laser to be driven far above its threshold cur-
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rent (where the main mode m starts lasing), one has G(No, om) = ym
(i.e. the gain compensates the loss) and the side mode suppression
(for the side mode s) can be expressed as:

I — G(Ng,
SMSR = WL M Im = Agth __P_....._..
lg Sq YmNspNn,
P :average power density in the cavity

Agy: difference in threshold gain between main and side mode

(2.3.15)

We also assumed that the gain (and hence the spontaneous emis-
sion) depends only weakly on the mode frequency wm.

By using typical values in (2.3.15), e.g. nsp =2 , ym = 100 cm-!
and an average intracavity power of 2 mW (which, for cleaved fa-
cets, corresponds with 1 mW output power), we find that a static
side mode suppression of 30 dB requires a normalized threshold
gain difference AgihL of + 0.1. The threshold gain difference in DFB
lasers depends in general on the specific longitudinal structure and
even on the bias level. Its value, calculated at threshold, then can
only give an indication of the single mode behaviour.

The side mode suppression as a function of the threshold gain
difference AgihL depends for DFB lasers again strongly on the spe-
cific structure. The influence of the normalized coupling coeffi-
cient xL e.g. can be illustrated by noticing that higher coupling
coefficients result in a smaller loss as well as in a higher value of
the average intracavity power for a given output power. A given va-
lue of the threshold gain difference at a given output power will
therefore lead to a higher suppression ratio for high xlL-values than
it does for low xL-values.

11.3.2.2 The IM- and FM-response

The IM- and FM-response can be obtained after linearisation
of (2.3.4) and (2.3.7). We restrict ourselves here to truly single mo-
de lasers with a side mode suppression of 30 dB or more. Side mo-
des have no impact on the AC-response of the main mode in this
case [2.29]. By introducing the expansions:
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J =Jo + Re {AJe/h)
oy = I o + Re {Al,elMY
No = Noo + Re {AN4e/) 2.3.16)

we find the small signal equations:

s
(JQ + I—m +Emm(ANg=B)ln o ]Alm =A ANy (1 =Emmim,0) Im,0

m,0
; 1 Im, o nAd
Q) 4 e A i (] = | ANg= — —
[J g + v, (1= &mm m,D)] 0 od
Al
(ANO—E’) (1 = E&mmlm,o) 'v—'
a
with %:lﬁz BoNo+ 3 CoN2 (2.3.17)
I

These equations can easily be solved for Alp (which gives the IM-
response) and ANg (which through (2.3.11) gives the FM-response).
They can easily be extended for the multi mode case. From (2.3.17),
it follows that the spontaneous emission will only be important at

low bias levels. One finds the formulas (in which we have left the
mode indices behind and neglected &l o with respect to 1):

Alg %
Al = 5 9 1 | | (2.3.18a)
. . 0 0
{jﬂ + -I-; + E_,lo(ANO—B)}{JQ + m + Av—a} + AE(ANU‘"B)
g A [jn " TS., " QIQ(ANDHB)) %
K - 0 — d | (2.3.18b)
; j 0 0
{JQ + o + QIO(ANO—B)HJQ ot Av—a} + A-\-,;-(ANQ—B)

It must be noticed that the actual IM-response further depends on
the relation between output power and photon number |. Equation
(2.3.18a) however gives the exact modulation frequency dependence
of the IM-response.
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The modulation frequency dependence in the denominator of
(2.3.18) gives rise to a resonance phenomenon, better known as the
relaxation oscillation. This resonance is also subject to a damping,
mainly caused by spontaneous emission and gain suppression. The
resonance frequency f;and the damping © of the relaxation oscilla-

tion are given by [2.30]

AID'Y

|
@nf)? = A \79- (AN,-B) =

+Evl, (2.3.19)

The resonance frequency and the damping are seen to increase with
increasing bias level lp and with increasing differential gain A. A
considerable contribution to the damping is given by the gain sup-
pression & and (at very low power levels) by the spontaneous emis-
sion. Typical values for the resonance frequency are of the order of
magnitude of a few GHz.

The relaxation oscillations describe the resonant exchange of
energy between photons and carriers (electrons) via the processes
of stimulated emission and absorption. The oscillation can be de-
scribed by assuming that a surplus of electrons with respect to the
equilibrium exists. The gain exceeds the loss in this case and the
stimulated emission creates more and more photons, resulting in
an increasing stimulated emission rate. This in turn depletes the
carriers inside the cavity, so that eventually the gain can no longer
overcome the loss. At this point, the number of photons decreases
again, the stimulated emission rate decreases and the carrier den-
sity increases again above its equilibrium value, where a new cycle
starts. This picture also shows why spontaneous emission and car-
rier recombination (which make that not all carriers and photons
participate to the stimulated recombination) or gain suppression
(which restricts the increase of stimulated recombination for in-
creasing photon numbers) cause a damping of the ‘oscillation.

From (2.3.18), it also follows that the static (i.e. at modula-
tion frequencies of 1 MHz) IM-response, which is an indication for
the internal efficiency, is proportional with the inverse threshold
gain. The static FM-response on the other hand, is, at practical po-
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wer levels, mainly proportional with the linewidth enhancement
factor and the gain suppression coefficient .

11.3.2.3. The power spectrum, the linewidth and the intensity noise

The spectra of the FM-noise and of the intensity noise are
derived in a similar way as the AC-response. The Langevin
functions (or better their Fourier components at frequency Q) now
act as driving source in stead of a sinusoidal current. It turns out
that, at practical bias levels, the 3 dB width of the power spec-
trum (the linewidth) only depends on the low frequency value of the
FM-noise and therefore one can neglect the dynamics in solving the
rate equations. We'll also ignore the steady-state spontaneous
emission here (we assume a relatively high bias level) and we
consider a single mode laser. The static fluctuations in frequency
and in intensity are then given by:

F F
EVaFg— EVaFs—
ANg = - m9 :>/\mm=§A 5 m'0+ng¢,lm
a a
— +A —+A
E’Trd 2:"iurcl
Al oFg+—2
' Trd
Al = 3 (2.3.20)
Imo(ANg—B) | — + =
m,0(ANg )[Va Trd)

Substitution of typical values for A (104um3/s), Va (100pm3), &
(10-7) and t¢d (10-9s) in (2.3.20) shows that Fs can be neglected for
not too high a power level and that EVa/trd can be neglected with
respect to A. The expressions (2.3.20) are valid for frequencies up
to + 1GHz and on a time scale of a few nanoseconds, one then finds
(when leaving the mode index m behind):

<Aw(t) Ao(t)> = 3 (1 + a?) §(t-1)
21y

sSv2
<Alt) Al(t)> =2 (t-t') (2.3.21)
A%(AN,-B)2t3 1,
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The spectral density of the FM-noise and of the RIN can now be cal-
culated straightforward [2.31] :

S ,o(f) = L dt <Aw(t) Aw0)> o271t - -2?—0 (1 + 02

S . ((f gy
a5 L (2.3.22)

12 AXANg-BY %13

RIN =

The values predicted by (2.3.22) will, in reality, only be found at
frequencies which are sufficiently below 1 GHz. In some cases, one
is also interested in the spectra at higher frequencies and a more
detailed calculation, taking into account the dynamics, is then re-
quired.

The power spectrum however can often be calculated in an
accurate way by assuming a white spectrum for the FM-noise, with
a spectral density given by (2.3.22). The RIN is also neglected the-
reby and one expresses the single mode field, emitted through one
of the facets [2.22], as:

t
Et)=Re {Eq()} = Re { Eqe ‘j[“’ot +_[ A‘”“')dt')} (2.3.23)

with Eg and wg being constants. The power spectrum, defined as the
spectral density of the field is given by:

oo ;
Se(f) = f dt <E,(t)E,(0)> 01271

1
e 1 ' ' H
= |ED|2_[ dt ceJLA“’“ Jar, gl2n(i-folt (2.3.24)

At this point, it must be noticed that, due to the gaussian charac-
ter of the Langevin forces, Aw and its integral can also be treated
as gaussian variables (for which < eix > = exp(-O.qu2>) ). In addi-
tion, it follows that:
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2
1 t t
-~ s
-c:UlDAm(t )dt] >=Ldt1j'0dt2{m(t1)Am(ta)}: o A+0d) |t (2.3.25)

(2.3.24) then reduces to:

E.[2
Seh)= [Eol e with Av= -§~— (1+ aa) (2.3.26)
2n AVJE 4rlg

(f~fo)® + (h.?_

The power spectrum has a Lorentzian lineform with a 3 dB width of
Av. The expression for Av given in (2.3.26) is better known as
Henry's formula. It predicts that the linewidth Av decreases

proportionally with the inverse power level.

11.3.3 Extensions of the rate equations

No matter how useful they may be, the standard rate equa-
tions stand for a very simplified description of laser diodes and, in
recent years, various modifications have been proposed. Such work
has been stimulated a lot by the, at the time, unexplainable beha-
viour of the linewidth at high power levels, where rebroadening or
saturation occurs.

Here, we'll mainly discuss the effect of longitudinal spatial
hole burning (i.e. the non-uniform carrier density) and of dispersion
(i.e. the wavelength dependence of gain and loss) on the rate equa-
tions. Both effects will only be described for a few well-chosen
lasers, since giving a general description of these effects seems to
be too ambitious. We nevertheless believe that these examples pro-
vide sufficient evidence for further discussion in the chapters 5
and 6, which deal with the detailed noise and AC-behaviour of laser
diodes.

11.3.3.1 Longitudinal spatial hole burning.

We show how spatial hole burning results in a power depen-
dence of the gain, of the mirror loss and of the feedback phase. We
now assume that only one mode is present and leave the mode index
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m behind. For the sake of simplicity, we also neglect the gain sup-
pression and the Langevin functions. Again, we use the expansion
(2.3.2) for the optical power density and write:

f L
(Y24 ()2 = ﬂl_vﬂ | (1+1) with jo fdz =0 2.3.27)

Substitution of this expansion in the carrier rate equation (2.2.72)
immediately shows that the carrier density will be non-uniform as
well and we can approximate it to the first order as:

N(z,1) = Ng(t) + N4 (1) f(z) (2.3.28)

Since Nq has its origin in the non-uniformity of the optical power,
it can be assumed to be much smaller than Ng (at least at low or
moderate power levels).

The carrier rate equation

Substitution of (2.3.27) and (2.3.28) in the carrier rate equa-
tion now allows to determine both Ng and Ny. One finds the equa-
tions:

3) _ (ANg-B)

oN N
o _nd (_G+BON§+CO
Va

ot qd“ T

AN1 i LE
- L 2.3.2
i | Lfof dz (2.3.29a)

Ny Ny ANy (ANB).

(2.3.29b)

ot Ud V, V,

From (2.3.29b), it can be seen that the dynamics of N1 are governed
by a time constant T4, given by:

-1
T, :(—-+M) (2.3.30)
Trd Va

This implies that the amplitude of N1 decreases rapidly for fre-
quencies higher than 1/Tq. By inserting typical values in (2.3.30),
it follows that the spatial hole burning has a cut-off frequency in
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the neighbourhood of 1 GHz. This cut-off frequency also increases
with increasing bias level.

Furtheron, we'll only consider frequencies below this cut-off
frequency. Solution of (2.3.29b) and substitution of Ny in (2.3.29a)
then gives:

No nJ [No 2 3] (ANy-B)
0 M [ 20 B N2+ G |- 1ot )l
A 1 Lg
with: aspm=——-j 2dz @.3.31)
tq+Al LY
a‘rd

Spatial hole burning thus results in a gain suppression just as
spectral hole burning does. However, the suppression coefficient
now decreases with increasing bias level as can be seen from
(2.3.31). The gain suppression obviously depends on the non-unifor-
mity of the power, but also on the carrier lifetime and on the dif-
ferential gain. Again, we emphasize here that the obtained results
are valid only at low to moderate power levels.

The photon rate equation

It is easily verified that the existence of Njp results in an
identical suppression of the gain in the photon rate equation. Be-
low, we will show that, in addition, a suppression of the mirror
loss exists. Only a few representative examples and the static case
(i.e. frequencies relatively far below the resonance frequency of
the relaxation oscillation) will be discussed.

- a F-P laser with facet reflectivities Ry (z=0) and Rz (z=L)

Integration of the coupled wave equations, taking into ac-
count the non-uniform carrier density and neglecting the spontane-
ous emission, now gives for the forward and backward propagating
power:
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Y
P*(z)= (r")? = P*(0) exp J‘G (rg- ocam)dz']

[z
P~ (2)=(r")% = P7(0) exp —JD g - aim)dz'} (2.3.32)

Combination of these formulas with the boundary conditions at z=0
and z=L gives the threshold condition for a Fabry-Perot laser:

v 1
ANg-B-owWg=—2In 2.3.33
0 %intVg oL (FHRE) ( )

It follows that, in spite of the gain suppression, there is still a
clamping of the carrier density to the threshold value (determined
by (2.3.33)). This can only be explained by assuming a similar po-
wer dependence of the total loss. This power dependence is entire-
ly due to a power dependence of the mirror loss. The power depen-
dence of the mirror loss actually implies a non-linear relation be-
tween output power and photon number, which is to be considered
whenever the IM-response or the RIN is studied. It must be noticed
though that, due to its cut-off frequency of about 1 GHz, spatial
hole burning has no influence on the damping of the relaxation
oscillation.

The relation between output power and photon number can be
calculated approximately by using (2.3.32) [2.32]. One finds:

(1-Ry) | {(ANy-B) (1 ‘gspati) - aint!gl

(1-,/?1'1R_2)(1+\/2:;J

(1_R2) l {(AND_B) q _E.\spall) £ O‘Inlvg}

Fig. 2.3.1 gives the numerical values of Espat for symmetric, 300 um
long Fabry Perot lasers as a function of the facet reflectivity R=R
=R2. The photon number has been replaced by the average intracavi-
ty power and hence Egpat is expressed in W-1. Furthermore, an inter-

VgliT(0) - i*(0)] =

(2.3.34)

voli'(L)—i7(L)] =
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nal loss of 50 cm-1 has been assumed. Comparison of the gain sup-
pression coefficients with the gain suppression resulting from
spectral hole burning allows to conclude that spatial hole burning
has only a minor influence in ordinary F-P lasers (e.g. with cleaved
facets R1=R2=0.32).

100 4
GAIN SUPPRESSIDN ¢ W ™% )

10

=)

"
Pt

01

001

0001

00001 | T T T ] T T T 1 T T T T T
FACET REFLECTIVITY

Fig.2.3.1: gain suppression (Espat) in 300 pm long, symmetric
F-P lasers vs. facet reflectivity.

- AR-coated A/4-shifted DFB lasers

A/4-shifted DFB lasers are lasers where the grating has a
phase discontinuity of = in the centre (z=L/2). Such lasers emit at
the Bragg-wavelength, i.e. AB,=0 and possess an optical power den-
sity that is symmetric with respect to z=L/2 (see '[2.32]).

By introducing the expansion:

AN
ABi=ABjo + AByf , with A|3,1=QT1 (2.3.35)
9
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,one can derive the following wave equation for r+ and r- from the
amplitude equations:

of

e ot
0z

)r* (2.3.36)
az°

= ( ABZ + K2CoS2 (0t —0") + 2AB AR f £ ABjy

For most lasers emitting at the Bragg-wavelength, the sum of pha-
ses in (2.3.36) is either 0 or n. Hence the derivative of the cosine
function vanishes and, to first order, variations in the phase caused
by spatial hole burning must not be included. |

The equation (2.3.36) can be solved by decomposing the fields
r+ and r-, corresponding with the non-uniform carrier density, as:

F=ry(1+F) (2.3.37)

with ro* being the fields corresponding with ABio. Solution of
(2.3.36) again shows how a power dependence of the mirror loss
arises. More details about this solution are given in appendix Il.C.
One now has:

Vgl
Vgi (0) = vgi'(L) = ——{1~Ecpara | }
j dz g,(2)
0
with: {r§@)}° + {ro(2)}? = 9,(2) {r5(0)}? (2.3.38)

Espat,2 is different from Egpat and is given by:

L z
(ANg-B) A J'D dz f(2) J'D dz' g_(2)

aspat,E = L
Vg (Va'r;.t} +Al) .[0 dz g.(2)

with: {r§(2)}° - {r5(2)}° = 9.(2) {r5(0)}° (2.3.39)

Fig. 2.3.2 gives numerical values of the gain and loss suppression
for 300 um long A/4-shifted lasers as a function of the normalized
coupling coefficient. An internal loss of 50 cm-! has again been
assumed. It can be seen that the values generally are much larger
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than they are for Fabry Perot lasers. It should also be noticed that
the loss suppression can now be either positive or negative. In ge-
neral, the loss increases, resp. decreases with increasing power
level for low, resp. high xL-values.

- other DFB lasers

A similar power dependence of the loss can be expected for
other DFB lasers. In the most general case however, one must also
consider a bias dependence of the phases when calculating the loss.
This bias dependence then also influences the feedback phase ¢fp.
The value of Espat,2 can then no longer be expressed in a simple way,
nor is it guarantied that Espat,2 decreases with bias level.

It must further be emphasized that the previous treatment of
spatial hole burning is restricted to relatively small power levels
and that no side modes have been included. Nevertheless, it must be
obvious that, in general, one must consider both the gain, the loss
and the feedback phase as quantities which depend on the power in
the different modes.
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Fig.2.3.2: gain and loss suppression in 300 pm long, A/4-shifted

lasers vs. normalized coupling constant.
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11.3.3.2 Dispersion _in_gain_and |

The linearisation of the photon rate equation, as given in
(2.3.17), is based on the assumption of a constant mode loss yn.

This is indeed the case for a Fabry-Perot laser, where:
v
Y= = ln[1— ) (2.3.40)

However, the loss in lasers with a grating (such as DFB and DBR la-
sers) strongly depends on the wavelength or the optical frequency.
As a consequence, this dispersion should be accounted for when li-
nearising the rate equations, i.e. the loss ought to be linearised in
the small signal frequency deviation Awm. The wavelength depen-
dence of the gain function g implies that a similar linearisation of
G(No, om) in Awm and (because of the spectral hole burning) in Aws
(s#m) must be considered.

The dispersion in the gain can easily be calculated from the
functions given in appendix IlLA. The dispersion in the loss on the
other hand can be derived from solution of the coupled wave equa-
tions and determination of the gain required to obtain amplitude
resonance. The amplitude resonance can be determined by dividing
the laser in 2 equal parts at z=L/2, calculating the reflectivities
from both the left and right sides and requiring their product to
have an amplitude of one.

Fig. 2.3.3. shows the calculated facet loss yfac.L/vg as a func-
tion of the normalized real Bragg deviation AB/L for a perfectly
AR-coated DFB laser with xL=1.5 and at very low power levels (i.e.
for a uniform carrier density). The dispersion is seen from the
sharp minimum in the loss. For a typical 1.55 um laser (where the
Bragg wavelength is located near 1.5 pm, with a length of 300um
and a refractive index of approximately 3), this minimum has a
width of the order of magnitude of a few nanometers. The width of
the gain curve on the other hand is typically a few tens of nano-
meters and hence the dispersion in the gain can often by neglected
with respect to the dispersion in the loss.

It must be remarked that in DFB lasers, one also has a disper-
sion in the feedback phase ¢fp. This dispersion is not easily calcu-
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lated however. Furthermore due to the spatial hole burning (and the
associated non-uniform refractive index or the non-uniform Bragg
deviation), the dispersion in DFB lasers more generally also de-
pends on the bias level (as does the loss itself). More attention to
the bias dependence of the dispersion will be given in chapter 5.

(.
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Fig.2.3.3: facet loss vs. Bragg deviation for an AR-coated DFB laser
with kL.=1.5.

11.3.3. her important f r

The previous effects were treated in more detail because of
their special importance in DFB lasers. There are however still
other effects, which are not included in our theory , but that also
result in an extra non-linearity. Among these effects are the late-
ral carrier diffusion and spatial hole burning (see e.g. [2.33]) and
the formation of a grating as a result of the cavity standing waves
(see e.g. [2.34]) by far the most important. i
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Appendix_II.A: Analytical functions for gain _and refractive index

We have implemented the density matrix based model for
gain, absorption and refractive index [2.7], [2.35] on the computer,
which allowed us to calculate the linear gain, the gain suppression,
the intervalence band absorption and the associated real refractive
index as a function of carrier density, photon energy and tempera-
ture. Analytical functions were then easily extracted from the data
by the application of the ACM program for curve-fitting: 'NL2SOL'".
(for more information on this, we refer to [2.37]).

Below, we will only give the gain and the real refractive in-
dex at room temperature (T=300K) and for 1.55 um InGaAsP. For
other materials, for the influence of the temperature and for a de-
scription of the intervalence band absorption, we refer to [2.36].

As was already mentioned in 11.1.2.3, it follows that the gain
can be approximated by:

I
WaNg¢i

LrE P s tra P} 2.A.1)

g =g PN - D gONA A

m

With the definition E = ho = 1.24 eV/A (in um),one finds for g(1) an
expression of the form:

g =a() N-b(1) = C1(E-C)% N~ C4(E-Cs)® @A2)

where for 1.55um InGaAsP, the constants C;j have the value:

Cq = .4684235 106 um? Cq4 = 102.8845 um-1
Co = .7477408 Cs = .6236856
Ca = .774253 Ce = 4.172654

The gain suppression can be fitted to a function of the form:

=i Dg{D4(Em—D5)2+ De(Eq-Ds)+ 11 (2.A.3)

The constants Dj have, for 1.55um InGaAsP, the value:
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Dy = 1.30418 10-11 pm4/W Do = -1.56402 107 um/W

D3 = .60106 10-2 D4 = -1550.
D5 = 0.8 Dg = -18.6

The carrier induced refractive index (associated with the
gain and the absorption) is linear in the carrier density as well and

can be approximated as:
An(E)=F{N+F,+F3 T B Fsu(1+Fgu)}, u=E-F, (2.A.4)

with the constants having, for 1.55um InGaAsP, the value:

Fy=-0.169 10-7 um3 Fp = -0.2076 10-2

F3 = 14.203 Fq4 = .8013
Fs= 86 Fg = -49.33
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Appendi B: Proof of (2.2 2.2.22

Formula (2.2.22) can be derived straightforward from equa-
tion (2.2.10), in which ¢ can be approximated by ¢o, and where the
frequency dependence of both ¢o and n2?is neglected. Multiplication
of equation (2.2.10) with ¢o (which is a real function) and integra-
tion over the lateral/transverse cross-section gives:

2 .”(x s pianed"dy [ %ny% + O LoEN 205 ]
ﬁc,m: 2l
_H dxdy 3
(x,y)-plane

Application of the definition of the group velocity and taking into
account that ¢o and n? are regarded as frequency-independent then

readily leads to:

(2.B.1)

dxdy n%¢2
_1_ ~ dBc,m _ WO J-Lx,y)—plana y %o
v

2.B.2)
g dom &%, ” dxdy 05
(X,y)-plane

Formula (2.2.12) can be proven by multiplying equation
(2.2.10) with ¢g, multiplying equation (2.2.11) with ¢, subtracting

the resulting equations and integrating over the lateral/transverse
cross-section. One then finds:

2 2
P J I, oxavieoviye - 6¥00) +

dxdy ¢o¢
y)

L &

(x,
mgwuoﬁo dxdy (nz—ﬁg) dod

B EY) (2.B.3)
y)dXdY hod

o

(x,

L

The first term on the r.h.s. of (2.B.3) can be shown to vanish by ap-
plying one of Green's theorems on it. A further simplification is al-
so obtained by approximating ¢ by ¢¢ in the integration and by assu-
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ming that n and ng, and Be,m and Bm are only different by a small
amount. (2.B.3) then becomes:

5 I dxdy ng (n - ng) 3
(X.Y)

WO

(2.B.4)
B[] axdy o
(x.y)

ﬁc,m o Bmz

in which Bm can be replaced by its definition (2.2.11). Approxima-
tion of n and ng as constants in each layer i (e.g. i = active or clad-
ding layers) results in:

2 Noj
Be,m = ﬁ { Netf + Z (Nj=Noj) [ij ¥ }
i

Neft
JJ' dxdy 5
layer i

” dxdy ¢
(x,y)-plane

Equation (2.B.5) reduces to (2.2.12) when we consider only small
variations in the unperturbed refractive index ngj, s0 that (noi/neff)
can be approximated by one, and when only two layers (active and
cladding) are included.

(2.B.5)

with: Tj=
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Appendix_|l. lution_of i
Substitution of:
rf(z) = rg(2) (1 + Fi(2) (2:0.1)

into the equation:

o%rt of
» T { Aﬁ,0+1c2cos (Pt — )+2A[3,0 Aﬁ,1f+A[3,1 a2 }r 2.C.2)
z

gives the following equation for F#:

§—+AB” { = dZ'f I'o I'o COS(Q+p —0 ):]

(o)

5 X [ it x(z)] 2.C.3)
(re)”

It can be noticed that for A/4-shifted (or similar) lasers, the inte-
grand appearing in yx is asymmetric around z=L/2 (due to the asym-
metric cosine function) and hence that y is symmetric. For the in-
tegration of this equation, one can choose the boundary conditions
such that r(0) = rp~(0) and r*(L) = ro*(L). This results in the solu-
tion:

Fr= AB”“ f(z') dz' —_[Ldz . x(z)]

Faw afij Jf(z)dz sz (@) (2.C.4)
0 {r@)y

The symmetric nature of A/4-shifted-like lasers implies that r+(z)
= r'(L-z) and hence F+*(z) = F-(L-z). Calculation of the intracavity
power then gives:
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z
("2 + (M2 = ()2 + (r0)? + 2ABi {(rp)° - (rp)°} J.U fdz’

+4 AB”K{(rD) j dz +(r ) _[ dz'—%— } (2.C.5)

0 (rp)°

The photon number | is obtained by integration of (2.C.5) and is gi-
ven by:

L L z
havgl = [ dz ((r8)? + (r9)*) - 288y | 2 | oz (5 - 10)%)

L
+4ABi1KJOdZ X(Z)|:'(—)—J. dz' (rg) —'(——)'—J. dz' (l' ) ] (206)
r r

The 2nd and 3rd term on the r.h.s. of (2.C.6) are the result of a par-
tial integration. For A/4-shifted (or similar) lasers, it follows
from numerical calculations that the 3rd term (of which the inte-
grand is symmetric around z=L/2) can be neglected. It can also be
remarked that, as a result of the assumed boundary conditions, the
output power (proportional with (r+(L))2 or (r-(L))2) is determined
by the unperturbed fields only, and one can write

(5P £ (15)? = (r3(0))? 9u(2) = Vghw i °(0) g4(2) (2.C.7)

with g4 and g. being independent of the power level. g, and g. can
be calculated from the longitudinal power variation in the absence
of spatial hole burning (e.g. calculated at threshold). Substitution
of (2.C.7) into (2.C.6) and replacing N1 by its value as given in
(2.3.29b) then readily yields an expression for the reflection loss:

f 3

Jozt]
y dz f| dz'g_
1y AN BIAL % g L (2.C.8)

VI(O)—VI(L)— = 5
J.dz 2 Vg (TrgVatAl) ‘Ldz o

The functions f, g4+ and g. can, for a given laser, be calculated ana-
lytically or numerically. They are depicted in figs. 2.C.1, 2.C.2 and
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2.C.3 for 300 um long A/4-shifted lasers with xL=1 and xL=2. Fig.

2.C.1 shows the functions f, g. and the integral of g. for the case
kL=1 and fig. 2.C.2 for the case xL=2. Fig. 2.C.3 shows the product of

f and the integral of g. for both cases.

=40

1
0 60 120 180 240 300

Longltudinal coordinate ( micrometer )

Fig.2.C.1: f, g. and the integral of g. for a A/4-shifted laser with xL=1.
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Fig.2.C.2: f, g. and the integral of g. for a A/4-shifted laser with ¥L.=2,
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Fig.2.C.3: product of f and the integral of g. for A/4-shifted
laser with kL=1 (—) and xL=2 (---).
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Chapter 111

A NUMERICAL, LONGITUDINAL MODEL:
'"CLADISS®

Translation of the longitudinal equations (2.2.48) and (2.2.70)
and the boundary conditions ((2.2.75) and (2.2.77)) into an algo-
rithm for numerical solution would result in a very powerful laser
diode simulator. Such a laser simulator has been developped at the
Laboratory for Electromagnetism and Acoustics in Gent and it is
called CLADISS ('Compound Laser Diode Simulation Software'). As
was already mentioned, a first basic version of CLADISS, capable
of a single mode static and small-signal AC-analysis, has been
developped by Dr. P. Vankwikelberge [3.1]. In the framework of this
Ph. D. work, it has been cleared of bugs and extended to a multi
mode model, which now also allows an analysis of the noise beha-
viour and of the harmonic distortion during modulation.

CLADISS can handle the analysis of Fabry-Perot lasers, C3-
lasers (Cleaved Coupled Cavity lasers), DFB lasers (including some
more exotic types with a longitudinally varying grating amplitude
or phase), DBR lasers and external cavity lasers. It consists of
three separate modules: for the analysis of the static, the dynamic
and the stochastic behaviour. Especially the fact that longitudinal
spatial hole burning is included in a detailed way and the multi mo-
de analysis in each module have made CLADISS to one of the most
powerful and unique laser models that have been developed in the
past years.

In this chapter, we review the implementation of each sepa-
rate module in some detail. However, we must warn the reader that
the review is rather of a descriptive nature and that some numeri-
cal algorithms are not fully worked out. Most algorithms are wor-
ked out theoretically in ref. [3.1] (even for the multi mode ana-
lysis). The extensions such as the analysis of the noise behaviour
and the calculation of the distortion during modulation on the other
hand have been given considerably more attention.
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At the same time, illustrutative numerical examples are
given for each module. We conclude this chapter by comparing
CLADISS to other existing laser models.

III.1 The analysis of the static behaviour

This analysis aims at calculating quantities such as the total
output power and the central wavelength of each line in the optical
spectrum, and this for a given static current injection. The laser is
assumed to have reached a static (time-independent) regime in this
case and all derivatives with respect to the time are thus neglec-
ted. Langevin forces, which determine the fluctuations in the out-
put power or the lineform of each line, are not included either.
However, when equations (2.2.29) are used, as will be the case for
the analysis of the static behaviour, care must be taken to include
the average spontaneous emission, coupling into the modes.

It is convenient to distinguish between two parts in the ana-
lysis: a threshold analysis and an above-threshold DC analysis. The
threshold analysis serves to investigate at which current levels
(the threshold currents) a transition from amplifier operation to
oscillator operation of the laser occurs. At the same time, the wa-
velength of the main longitudinal modes and an estimate of the
side mode suppression follow from the analysis.

Different approximations and numerical techniques are intro-
duced in both analysises and a separate description of each analy-
sis will be given.

[1.1.1 The threshold analysis

The transition from amplifier to oscillator operation takes
place when the population inversion in the active layer provides an
amount of stimulated emission, sufficient to compensate for the
absorption and mirror loss. However, in this situation, the presence
of even the slightest photon density will deplete, the carrier den-
sity and' decrease the stimulated emission again below the loss.
Oscillator operation then only is possible if no light propagates
inside the cavity. In practice, there is no real laser operation in
this case and the output power merely consists of amplified spon-
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taneous emission. Laser operation begins for current levels imme-
diately above the threshold currents however.

In the theoretical threshold analysis, one must neglect the
stimulated emission rate in the carrier rate equation, the power
dependence of the gain and the spontaneous emission in the coupled
wave equations. The carrier rate equation in a section v with a uni-
form waveguide geometry and a uniform injection then reduces to:

J
vy o N B N2+ Co N @.1.1)

qdy, W

and the (uniform) carrier density is easily found for a given uni-
form current density Jy (e.g. from Cardano's formula). Equations
(2.2.29), in which the Langevin forces and the time dependences are
ignored, can be solved for this uniform carrier density and for a u-
niform grating (i.e. with a constant phase and amplitude):

(%cn} i (aﬂ (2-2o) aﬁ“a(z—sz (H?n(zu)]
Rn(2)) \af}(z-zo) agn(z—2zq) ) \Rm(Zo)
A
with: af}(z) = cosh(A,2) -] Eﬁ—"l sinh(Am2)
m

A
agh(z) = cosh(Ap2) + | Tﬂrﬂ sinh(Ap2)
m
aly(2) = F sinh(Amz) ; ay(z) = - E—Bf sinh(Am2)
m m
and: (Am)® = ~[ (ABm)° + krpKar] (3.1.2)

ABm, as given in (2.2.15) and (2.2.30a) is now a function of the car-
rier density and of the wavelength.

Equations (3.1.1) and (3.1.2), together with the boundary con-
ditions (2.2.75)-(2.2.77) can be used to develop a numerical thres-
hold algorithm. To this end, we consider a general multi-section
laser as shown in fig. 3.1. For a multi-section laser, it is assumed
that the currents injected into the different sections depend li-
nearly on an independent current ly, injected into the section v. For
a given current |, and a given wavelength, it is then possible to
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calculate the Bragg deviation AB and the aj-coefficients in each
section.

In practice, a point zy in the middle of the section v is chosen
and the field reflections pL and pr of the left and the right part of
the laser cavity are calculated at zy, for a given injection and a
given wavelength A. An oscillation can now be defined as the state
where the product pLpr (which is called the roundtrip gain as it
denotes the field gain after one roundirip in the cavity) equals one.
The field reflectivities pL and pr can be derived from the propaga-
tor matrices (3.1.2),which must be transformed into relations be-
tween the fields E*, and the matrices (2.2.75), expressing the
boundary conditions. One can write:

_pe(FD11+ (FD12 (FRr)21 + po(FR)22

= , PR= (3.1.3)
Yt (FU21 + (FLz2 PR (Fr)11+ po(FR)12
where the propagator matrices F| and Fg are defined by:

+ + + +
{E czw]z . [E (L)J' [E (@) Jz g (E <0>] 5.1
E(z) EL)/ \E(zy) E7(0)
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Fig. 3.1: Division of a laser in 2 parts for the calculation
of the roundtrip gain.
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The determination of the threshold current and of the wave-
length of the main modes proceeds as follows. Initially, an esti-
mate of the threshold current |y, and of the wavelength Ag of the
main mode must be chosen. For this value of ly, the roundtrip gain
is calculated for a wide range of wavelengths around Ap. The values
of the roundtrip gain are subsequently scanned to check whether a
resonance occurs. If this is not the case, the current is gradually
increased (if all points with zero phase, i.e. if all longitudinal mo-
des, have an amplitude below one) or decreased (if a point with
zero phase and an amplitude above one exists) until at least one
wavelength gives a zero phase and an amplitude of one. This de-
fines the threshold current, as well as the wavelength Am of the
most important longitudinal modes.

As an illustration, the complex roundtrip gain at threshold is
shown in fig. 3.2 for a 300 pum long DFB laser (laser A) with xL=1.5
and with facet reflectivities pf= 0.566 el™ and pp = 0.224 el3m/2,
Other parameters are listed in table Ill.1. The threshold current has
the value 21.5 mA in this case. Both the main (lasing) mode and the
most important side mode are indicated by an arrow in fig. 3.2.

]
1.}56 1.564
WAVELENGTH ( micrometer )

Fig. 3.2: roundtrip gain at threshold for laser A.
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The roundtrip gain of the side mode could be considered as a
measure for the side mode suppression. A more conventional quan-
tity however is given by the difference in threshold gain AgL be-
tween main and side mode. This is the difference between the nor-
malized gain giL at the threshold current and the gain ga2L for
which the side mode starts lasing. For the laser A, this quantity
AgL has the value 0.25, a value which is generally regarded as
guaranteeing a large side mode suppression [3.4], [3.5].

Parameter Typical value

W [Lm] 1.9 Stripe width

d [um] 0.12 Thickness active layer

I 0.5 Confinement factor

L. [um] 300 Laser length

B [nm] 0.2413 Grating period

Ne 3:25 Effective refractive index

of the unperturbed waveguide

0.8 Injection efficiency

T [s] 5. 10-9 Carrier lifetime

Bo [um3/s] 100 Bimoleculaire recombination

Co [nm6/s] 20 10-5 Auger recombination

Bsp 10-4 Spontaneous emission factor

Nsp 2. Inversion factor

oint [um-1] 50. 10-4 Internal absorption loss
TABLE IlI.1

UL1.2 The DC analysis

Above threshold, one can no longer neglect the stimulated
emission rate in the carrier rate equation or the power dependence
of the gain. Since the optical power is generally not uniform in the
longitudinal direction, it follows that a non-uniform carrier densi-
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ty (and hence a non-uniform Bragg deviation) might exist in the ca-
vity. Furthermore, one must also include the static contribution
from the spontaneous emission. The equations (2.2.29) should the-
refore be changed into:

oR;; { S } y

am+ ]ABm_% R = Krp Rm

z 4L |Ry|

R~ S
-+ J'A[-”m“—m-—:a R = kgr R 3.1.5)
9z 4L [Ry|

It can be seen that the spontaneous emission manifests itself as a
non-linearity and an exact solution of the coupled wave equations
is now no longer possible.

The z-dependence of the Bragg deviation and the spontaneous
emission can be taken into account by dividing the cavity in a large
number of small segments (with length I, in a section v), as is il-
lustrated in fig. 3.3. The carrier rate equation and the coupled wave

equations can be solved approximately in such small segments
(which typically must be a few um long). We further assume the

expression (2.2.53), with Psp being an input parameter, for the
spontaneous emission rate Sy, although it must be noted that the
expression (2.2.52) is just as valid.

il S —— N "

Zi1 Z i+1 . Zis2

Fig. 3.3: Division of a laser into small sections
zj : discretisation points for the fields
z' : discretisation points for the carrier density
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.1.2. luti

For small segments, we can approximate both the carrier
density N and the optical powers by constants with a value equal to
their value in the middle of the segment (at z'j). The optical powers
can thereby be obtained as the average of the power levels at zjand

Zit+1, eg

Ph(zi) = % { IRE@)I? + |RE (i) ) (3.1.6)

For a uniform carrier density and uniform powers, the appro-
ximate solution of (3.1.5) reduces to:

(H}.(zm) ]= o (31 () aw(h)][ﬂ?}(z;)}
Rn(Ziv1 ) az1'(l) az'() J\Rn(z)

i Smli ( 1 1 ]
with: s.(l;) = exp -
8L \Phz) Pri)

and: a;' = aj in which jAB, is replaced by :

S 1 1
AR = + (3.1.7)
IG5 8L ( Phz) Pmz" )

The propagator matrix now obviously depends on the resulting
fields through P*n(z'i) and an accurate solution can be achieved on-
ly after iteration. E.g. as a first approximation, one can replace the
carrier density and the optical powers at z'j by their value at z.
Substitution of these values in (3.1.7) yields better estimates for
the fields at z;. This then allows the determination of more accu-
rate values for the carrier density and the optical powers at zj,
which in turn lead to more accurate values for the fields at zj. This
iteration can be repeated until further iterations no longer result
in significant changes (typically, only about 5 iterations are nee-
ded).

However, care must be taken in a segment, next to a front fa-
cet with zero (or small) reflectivity. The first approximation for
the optical powers (as defined above) would result in singularities
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in this case. The laser model CLADISS automatically introduces a
better approximation for P+m(z'i):

Shoql

3.1.8
oL ( )

P?-n(zi') =

The field quantities and the carrier density in each point a-
long the longitudinal axis can be determined completely if proper
values for the fields at the front facet and for the wavelengths are
chosen. More specificly, a value for Am and R'm(z=0) (or R*m(z=0),
both quantities are related by the boundary condition (2.2.77)) must
be chosen for each longitudinal mode m under consideration. We no-
tice that all quantities R m(z=0) can be considered as real num-
bers. This is justified by the absence of any phase relation between
the different modes (as a result of the time averaging (2.2.24)) and
by the fact that, at least for the static regime, the time origin can
be chosen arbitrarely.

Assume that q longitudinal modes are included in the calcu-
lations. The 2q values for Am and R-m(z=0) then allow to determine
the fields at the right facet z=L, where the boundary condition
must be fulfilled. This boundary condition actually constitutes a
complex equation which, for the case of g modes, gives 2q real
equations, which the 2q choices of Am and R-m(z=0) (m=1,q) must
obey. These non-linear equations can be solved by the Newton-
Raphson method [3.6].

The complete algorithm can be explained as follows. One
chooses initial estimates for Am and R m(z=0). With these values,
the fields are propagated subsequently along the small segments
(as explained in 1.2.1), until to the right laser facet is reached. At
the same time, the derivatives of the fields with respect to Am and
R-m(z=0) are propagated as well. The resulting system of equations
at the right facet and its jacobian can thus be calculated numeri-
cally and, if necessary, better approximations for Am and R-m(z=0)
can be derived by means of the Newton-Raphson algorithm. The
iteration can continue until sufficient accuracy has been reached.
It must be noticed here that the propagation of the field deriva-
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tives can proceed in a very similar way as the field propagation;
mainly as a result of the analytical expression for the field propa-
gation over a small segment. (For more details, we refer to [3.1]).

Output facilities of the DC-model include the variation of the
output power or the wavelength of several longitudinal modes as a
function of the injected currents, as well as the longitudinal va-
riation of the optical power, of the carrier density, the refractive
index or the Bragg deviation at a certain bias level. As an illus-
tration, we have shown the longitudinal variation of the power in
the main mode (fig. 3.4) and of the carrier density (fig. 3.5) for the
laser A. The injected current is chosen so as to obtain an output
power of 1 mW.

| POWER ¢ mW )

16 -
1.2 +

084~ oo e

044 .- ~
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.
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0. 60. 120. 180. 250, 300.
LONGITUDINAL COORDINATE ( micron )

Fig.3.4: Longitudinal variation of the optical power in the
main mode for laser A at 1 mW output power.

The DC-analysis furthermore allows to control whether the
side modes start lasing at a certain power levels. Two methods can
be followed. A first method is to include several modes in the ana-
lysis and to calculate the power in each mode for increasing injec-
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tion. The lasing of a side mode can be observed as a kink in the po-
wer-current relation in this case. The rise of a side mode can even
be seen if only the main mode is included in the calculations. In
this case, one can calculate the roundtrip gain vs. the wavelength
at different bias levels and check whether the roundtrip gain of the
side mode reaches one. The roundtrip gain above threshold is calcu-
lated in an identical way as the roundtrip gain at threshold, al-
though the gain suppression and the non-uniform carrier density
must be taken into account. This implies that many small sections
ought to be used now.

1.91E+06 -

Electron Denstty ( micron =3 )

1.83E+086

1.87E+06

1.85E+06

1.83E+06

0. 60. 120. 180, 240, 300,
Longltudinal coordinate ( micron )
Fig.3.5: Longitudinal variation of the carrier density

for laser A at 1 mW output power.

III.2 Analysis of the dynamic behaviour

The noise sources are still ignored in the analysis of the dy-
namic behaviour. However, the analysis now is based on solution of
the equations (2.2.48b), (2.2.69) and (2.2.70), in which the deriva-
tives with respect to time are taken into account as well. We the-
reby recall that equation (2.2.69), without the Langevin forces, de-
scribes the evolution of the statistically averaged field amplitu-
des.
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[1.2.1 m

The analysis is restricted to sinusoidal regimes, i.e. the in-
jected current densities are expressed as:

Jy(t) = Jyo + RefJyq ey 3.2.1)

with Jyg being the static current density and Jy1 the sinusoidal
current density, injected into the section v. The periodic excitation
makes the assumption of a periodic response plausible and we ex-
press the field quantities and the carrier densities as:

rE20) = Pho@) + Rel Y iz k) /K }
k=1

Pm(Z,1) = Pmo(2) + R&{ Z Pk (Z,kQ) ol ]
k=1

N(z,t) = Ng(2) + He{ D Ny(z ke ekt }
k=1

A0 =Rel D Ay k) el*< } (3.2.2)
k=1

The terms with subscript 0 obviously represent the static solution,
whereas the other terms denote deviations from the static solu-
tion, caused by the sinusoidal currents.

It can be remarked that (3.2.2) does not include alll possible
solutions of the dynamic laser equations. Indeed, due to the non-
linearity of these equations, a periodic excitation does not neces-
sarily imply a periodic respons with the same period. In fact, re-
sponses with different period (e.g. period doubling) and non-perio-
dic responses (e.g. patterning effects) have already been observed
experimentally [3.7]. Such effects nevertheless tehd to appear for
large modulation currents and at high modulation frequencies. We
therefore restrict ourselves to relatively small modulation depths,
for which the expansion (3.2.2) can be used. The terms with sub-
script 1 then represent the linear or small-signal modulation re-
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sponses, while the terms with higher subscript are an indication
for the harmonic distortion.

It must finally be noted that the time dependent parts of the
field phases and of the optical frequencies are not uniquely defi-
ned. As a matter of fact, it is actually possible to assign a z-de-
pendent frequency to both the forward and backward propagating
waves, according to:

(2 1) = 0o+ RE{ Y, (AomkQ) + Koz k) L (3.2.3)
k=1

This ambiguity is removed in CLADISS by requiring ¢ mk(z=0,kQ) to
be zero for all m and k. The frequency then denotes the frequency of
the light that leaves the laser at the front facet. Up to frequencies
of several tens of GHz, this frequency is nearly identical to that
defined in (2.3.3) (i.e. the phase has a negligible influence), so that
our definition can safely be regarded as 'the' optical frequency.

oo A . | alqorit

We restrict the sums in (3.2.2) to the first three terms,
which is acceptable for sufficiently small modulation depths. As a
matter of fact, it follows both from experiments [3.8] and theory
[8.9] that the terms with index k are proportional with the k-th
power of the modulation depth.

The laser equations are solved by substitution of the ex-
pansions (3.2.2), whereby the exp(jkQt)-time variation removes the
derivatives with respect to the time. Multiplication of the resul-
ting equations with exp(-jkQt) and integration over the period cor-
responding with Q leads to separate equations for the terms with
index k. The separate equations for the terms with index 1 can be
written under the form of a matrix equation (i.e. Xk, Bk and A are
matrices) as:

dXy(z,Q)
—:-j%_—l = A(Z,Q) X1(Z,Q) + B1 (Jv1 lzlﬂ)

with X{(2,2) = [(A0mk, ks Frok @k @) M=1,0] (3.2.4)
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with g being the total number of modes taken into account. For the
terms with index 2 or 3, the equations have a similar form:

dX»(z,2Q

2—;2_2 = A(z,2Q) X5(z,2Q) + B5(2,2Q,Xy) (3.2.52)
Z

dX5(z,3Q

_._F = A(z,3Q) X5(z,3Q) + B3(z,3Q,X,X5) (3.2.5b)
z

As can be seen, the homogeneous parts of the equations (3.2.4) and
(8.2.5) are identical, except for the frequency to be used. The equa-
tions for dAmmk/dz, included in (3.2.4) and (3.2.5) are the trivial
identities dAomk/dz=0.

We will not give the equations (3.2.4) and (3.2.5) in any fur-
ther detail because they are too extended. Their derivation is none-
theless straightforward. By applying finite differences with the
same longitudinal discretisation scheme as in the DC analysis, the
equations (3.2.4) and (3.2.5) can be transformed into a set of linear
algebraic equations: |

5 Xk(Zip1,kQ) — Xi(z,kQ)

Zis1 — Zj

=right memb. at z;+ right memb. at z;,4

(3.2.6)

The discretised equations, together with the boundary equations
can now be solved by standard techniques. The simulator CLADISS
uses the ACM software package COLROW, which decomposes the
system matrix into triangular matrices [3.10]

The dependence of X2 on X1 and of X3 on Xy and Xz defines the
order in which the equations must be solved. First, the equations
for the first order quantities, which can be obtained also by Ii-
nearisation of the laser equations and of the boundary equations,
and consecutively the equations for the second and third order
guantities must be solved.

The AC analysis allows to calculate the small signal FM-
(Frequency Modulation) and IM- (Intensity Modulation) response as a
function of the modulation frequency Q/2x, as well as the 2nd and
3rd order harmonic distortion in the FM- and IM-response. The
exact definitions of these characteristics are given below in table
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[11.2. An example of the AC-analysis is given in fig.3.6, which de-
picts the amplitude and the phase of the FM-response vs. the modu-
lation frequency for laser A at different bias points and for a mo-
dulation current of 1mA.

A Q
Omi(2) : FM—response for mode m
27
Aw i (KQ) T T —
m cK=1h orger narmonic distortion
in the FM-response of mode m
(1= |pel?) 2rm0(0)rim1(0,9) : IM-response for mode m at left facet

2170(0)m2(0,2Q)+(rm1 (0,2))2
4 I'_mQ(O)r;ﬂ (O»Q)

2nd order harmonic distortion in

the IM-response at the left facet

:3rd order harmonic distortion in

1 (r;na(o.am N r;nz(o,zn)J

4L rm0,Q2) 1m0
the IM-response at the left facet

(1- |pb|2)2r‘;no(L)r:m(L,Q) : IM-response for mode m at right facet

21t o (Lo (L, 2Q)+(Fhy (L, Q)2
4 oL (L)

:2nd order harmonic distortion in

the IM-response at the right facet

1 [r‘am(L,sn) Fa(L,2Q)
— +
4

= . J :3rd order harmonic distortion in
rm1(|—sn) rmD(L)

the IM-response at the right facet

Table 111.2
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Fig. 3.6: Amplitude (——) and phase (--) of the FM-response of laser A.

ITII.3 Analysis of the noise behaviour

We restrict the analysis here to situations with static in-
jection only. The fluctuations, mainly caused by spontaneous emis-
sion, are nevertheless time dependent and we must use the time-
dependent equations (2.2.48b), (2.2.69) and (2.2.72). The Langevin
forces, which represent the noise sources, can thereby be regarded
as time dependent excitations with a small amplitude.

The small amplitude of these Langevin forces will in general
result in small fluctuations of the field amplitudes and phases and
of the carrier density. Hence, a linearisation of the laser equations
into these small fluctuations is justified. By defining the intensity
fluctuations according to (2.2.68), the linearisation of the ampli-
tude equations may even be considered as an exact procedure, as
has been mentioned in chapter 2 (section 2.2.3). Anyway, the li-
nearisation can be more generally justified (also for the phase
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equations) by the small distortion in the FM- and IM-responses,
which is usually found. In order to eliminate the derivatives with
respect to the time, we now use the Fourier transform of the fluc-
tuations, i.e. we use the expansions:

oo ;
i (2,8 = rt o (2) + 21—j dQ Art (2,Q) el€2!
TC & —o

1 (™ :
Pm(Z,1) = Pmo(2) + 'é'";,[ dQ Aot (z,0) @)1

e g
N(z,t) = Ng(z) + 21—_[ dQ AN(z,Q) e
TC oo

B ]

A () = 21_-[ 40 Awy(Q) el 2t (3.3.1)

—

The Langevin functions can be Fourier transformed in a si-
milar way. Since they can be considered as stationary (i.e. for time
differences of the order of 0.01 nsec. or more), it follows that
their Fourier transforms at different Fourier frequencies are also
uncorrelated. It can easily be shown that the correlation of the
Fourier transforms of two Langevin functions fq(t) and fa(t), with
the property (as in our case) that:

{f1(t) fE(t')}=2D12j—[“-[ _,E.._Tt_.IJl |t_tl| ‘:T

=0 ] =T (3.3.2)

,is given by:
4 sing(Q—T]

e, (3.3.3)

<Fy(Q) Fp(Q) >= 2Dy, 21 §(Q-Q)

As long as only the spectral components in a bandwidth of the
order of a few tens of GHz are considered (for which QT is very
small), the transformed second order moments are related to the
original moments by a very simple relation. We will further re-
strict ourselves to this situation and ignore the sinc2 -function.
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[11.3.1_Application of the small signal m

Substitution of the Fourier integrals in the small signal
(linearised) laser equations, multiplication of the resulting equa-
tions with exp(-jQt) and averaging over a long (theoretically an in-
finite) time results again in separate equations for the different
spectral components of the fluctuations. The obtained system of
equations is identical to that obtained in the small signal AC ana-
lysis, except that other non-homogeneous terms (i.e. the Fourier
transforms of the Langevin functions in stead of the modulation
currents) are now present. The system of small signal equations
can, symbollically, be written as:

A(Q) X(Q) = Z Ci(Q) Fi(Q) (3.3.4)

i
The Fjrepresent the different, uncorrelated Langevin functions
after Fourier transform and longitudinal discretisation. It can be
remarked that the Fjcan be obtained by integrating the original
Langevin functions over the length of the small segments. It can

then easily be proven that the Langevin functions referring to dif-
ferent segments are uncorrelated (the &(z-z')-function is transfor-

med into a discrete Kronecker delta). X (Q) is a column matrix, con-
taining the fluctuations of the different variables in all discreti-
sation points zj. A (Q) represents the system matrix (which also
appears in the small signal AC analysis) and the Ci(Q) are column
matrices with which the Langevin functions have to be multiplied.

The linear character of (3.3.4) and the gaussian character of
the Langevin forces allow to calculate the 2nd order moment of
% (Q) readily as:

«X(Q) X'(Q') >= 2A(Q) { D el Dii} Al s@-o)
i

with D; being defined by:
<F(Q) F (@) >=2D; 8Q-Q) (3.3.5)

The spectrum of the FM-noise or the relative intensity noise (RIN)
can be extracted from < %X (Q) X T(Q') >. The spectrum of the FM-
noise and the RIN are defined below in table |lIl.3. The spectrum of
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the FM-noise and of the RIN can be defined for each mode separa-
tely. In coherent communication systems, the presence of only one
lasing mode is required and one then often considers the FM-noise
and the RIN for this mode. Sometimes one also considers the rela-
tive noise in the overall intensity (sum of the intensities of all
modes).

With the definitions: <Amp(Q) Aan(Q) >= 2D, m() S(Q-Q)
<Arm(0,Q) At (0,Q) >=2D; 1(Q) §(Q-Q)
<Art(LQ) AT (L,Q) >= 2D} 1(Q) 8§(Q-Q)

the FM-noise and the RIN can be defined as:

2D
Saom@) = —-297-;‘-:'_"5 :spectral density of the fluctuations

in the pulsation w,, of mode m.

S Q
Sm,m(n):mﬁﬁﬂi—) :spectral density of the FM-noise
(2m)
for mode m.
2200
S4iml) = ———_——-5-5-"-—2 :spectral density of the relative
7 (Fmo(0))
g o0
= _Tr_mé_ intensity noise for mode m
T (Fmo(L))

2 i {(fmo(0))? 2D}, 1}

m=1

2
n { i (r:no(onz}
m=1

TABLE 111.3

S,i(€) = :overall relative intensity noise
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[1. wer inewi

It has been shown before that the power spectrum and its
width (the linewidth) are mainly due to the fluctuations in the op-
tical frequency of each mode [3.11]. We can therefore assume the
fields, emitted at each laser facet, to be of the form:

t
Eqih= Egs exp{jmmot +jJ- Awq,(tHdt' (3.3.6)

As in section 11.3 , Aoy has a gaussian distribution and the relative
power spectrum is thereby given as:

2
T
S,._\p,m(m)zr{el'mmot 5—0:5 {[joAmm(t')dt'J > } (3.3.7)

in which ¥ denotes the Fourier transform. The exponent can easily
be calculated by inverse Fourier transform of the spectral density
of the FM-noise:

2
i T T o
] (] 1 i e
-::[LAmm(t )dt) >=E;J'OdtJodtngﬂsAm,m(n)eJQ(“ t2) (3.3.8)

In CLADISS, the integration is performed numerically and the
Fourier transforms are calculated with the help of FFT-routines
[3.12]. In this way, one readily finds the detailed power spectrum,
including possible relaxation oscillation peaks (see e.g. chapter 4).
However, another option, based on a more simple approximation for
the linewidth is also offered by CLADISS. The simple approximation
assumes a white FM-noise, which, at not too low a power level, is
justified. The spectrum of the FM-noise is usually constant up to
+1 GHz, while the linewidth is usually far below 1 GHz. The line-
width in this approximation is given by:

- SAm,m(Q;O)

3.3.9
2n ¢ )

Vm
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and one only needs to calculate the low frequency value of the FM-
noise in this case.

As an example, we have shown the power spectrum of the
main mode of laser A at 1 mW output power in fig. 3.7. The line-
width is 43.5 MHz.

1.~

Spectral Denstiy

of the Power
0.8

( Rel. untis )
0.6 ~
04 -

-

0.2 -
0.
-100. =60, -20, 20. 60, 100,

Frequency Deviation ( MHz )

Fig. 3.7: Spectrum for the main mode of laser A at 1 mW.

I11.4 Comparison of CLADISS with other existing models

The first longitudinal model for multi-section laser diodes,
with or without distributed feedback, has been developped by
Whiteaway et all. [3.13]. However, this model was (and still is) re-
stricted to a static analysis, extended in some way for the calcu-
lation of the linewidth. Furthermore, this model can not really
handle multi mode situations, neither does it include the gain sup-
pression. :

A -model which takes into account dynamic aspects has been
proposed by Tromborg et all. [3.14]. Their model however doesn't
include spatial hole burning effects and as such one cannot really
call it a longitudinal model. A similar model, which neither inclu-
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des spatial hole burning, has been developped by Lowery [3.15]. Both
models are often referred to as transmission line models.

All previous models neither allow to calculate the distor-
tion.

CLADISS was the 'first ever' multi-mode model to take into
account both longitudinal variations and dynamic effects, as well
as noise sources. Particularly the inclusion of longitudinal spatial
hole burning in the AC and noise analysis is unique. CLADISS should
be considered as the ideal complement of a more theoretical
approach based on analytical solution of the rate equations or the
coupled wave equations. CLADISS doesn't make the analytical
treatment worthless. In fact, the majority of the original results,
presented here, were more or less initiated by analytical work.

One drawback of CLADISS is that explicit time-dependent
phenomena such as the transient response can not be analyzed. This
would require a model which solves the laser equations in the time
domain. In contrast with CLADISS, this type of model on the other
hand is hardly suited for the investigation of low-frequency pheno-
mena, such as thermal effects or 1/f-noise.
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IV.1

Chapter 1V

ASPECTS OF THE STATIC BEHAVIOUR:
THE °'DSM' OPERATION OF DIFEB LASERS

In this chapter, we will concentrate on the mode discri-
mination in DFB lasers. This is of great interest in coherent optical
communcations where the transmitter and local oscillator lasers
must have a side mode suppression of at least 30 dB. Such lasers
are called 'dynamic single mode' (DSM), as they remain single mode
even if they are modulated . Here we discuss how some DFB lasers,
which are single mode at low power levels can become multi mode
at higher power levels due to longitudinal spatial hole burning. The
influence of several laser parameters on this side mode onset is
also reported.

The detrimental influence of spatial hole burning has led us
to investigate possible new laser structures with a substantially
reduced spatial hole burning. A variety of new, special laser struc-
tures have been discovered and therefore, a second major part of
this chapter consists of descriptions of these special laser struc-
tures.

Other aspects of the static behaviour, such as the variation
of the wavelength with the injected currents or the linearity of the
L-I curve are not considered here. These topics are partly covered
in the chapter 6 or, in the case of multi-section tunable devices,
are beyond the scope of this work.

IV.1 Introduction: F-P lasers

The mirror losses in F-P lasers are equal for all modes and
hence the mode discrimination can have its origin only in the
wavelength dependence of the gain and the internal loss. In the fol-
lowing, we 'll always assume a constant internal loss ajp=50cm-1.
The dispersion in the gain then remains as the only mode discrimi-
nating factor for F-P lasers.
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From (2.3.13), it can be seen that the output power of the side
modes is nearly constant above threshold and that the SMSR in-
creases nearly proportional with the output power in the main mo-
de. Although one must bear in mind that, due to the gain suppres-
sion, the dispersion in the gain may change with bias level, it can
be arqgued that gain suppression only has a minor effect on the sta-
tic behaviour. The above statements (with the words 'nearly' ac-
counting for the gain suppression) are therefore still valid.

The difference in gain between the main mode and a side
mode is largely determined by their wavelength difference. Indeed,
the curvature of the g(A)-curve is, for a given material, practically
independent of the carrier density and thus of the threshold gain.
The side mode suppression can thus be improved by an increase in
the mode separation (AA = A2/2ngl), i.e. by decreasing the laser

length.

Parameter Typical value

w [um] 1.5 Stripe width

d [um] 0.12 Thickness active layer

r 0.5 Confinement factor

L [tm] 300 Laser length

2 [wm] 0.2413 Grating period

Ne 3.25 Effective refractive index
of the unperturbed waveguide

n 0.8 Injection efficiency

1 [s] 5. 10-9 Carrier lifetime

Bo [um3/s) 100 Bimoleculaire recombination

Co [Lm6/s] 20 10-5 Auger recombination

Bsp 10-4 Spontaneous emission factor

Nsp 2. Inversion factor

oint [um-1] 50. 10-4 Internal absorption loss

TABLE V.1
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As an example, we consider a 300 um long, as-cleaved F-P la-
ser, of which the roundtrip gain at threshold is shown in fig. 4.1.1
and the output power in main and side modes as a function of the
injected current in fig. 4.1.2. The laser parameters used in the cal-
culation are given in table IV.1. To illustrate the capabilities of
CLADISS, 5 modes have been included in the calculations. It can be
remarked that the amplitude of the roundtrip gain is proportional
with exp(gL) and thus fig. 4.1.1 gives an idea of the dispersion in
the gain. Fig. 4.1.1 confirms that the power in the side modes re-
mains constant above threshold. It also indicates that the SMSR in
F-P lasers of reasonable length is usually well below 20 dB.

The SMSR and the output power in the side modes further de-
pend on the spontaneous emission factor Bsp. This is illustrated in
fig. 4.1.2, where the power in main and side mode for the same la-
ser is also depicted for a different values (10-) of Bsp. The reduc-
tion of Bsp by a factor of 10 obviously causes an increase of the
SMSR by 10 dB. From the same figure, it also follows that the
threshold current (defined as the intercept of the steep line in fig.
4.1.2 with the x-axis) is independent of the value of Bsp and equals
14.5 mA here.

. Amplitude A_ l I ,1 1
|

-

.
e

I-
—.t.-_
-
e
-
-
‘--
-
-

- -

-

96

I
Jo
b

S

S ———— -
-
- = -

w

LX)

|
—

-

—
-
—
=
-
-'_"‘-'

- =
-

l 1]
1,556 1.56 1.564 1.568

Wavelength ( micrometer )

Fig. 4.1.1: Amplitude (—) and phase (--) of the roundtrip
gain for a 300 um long, cleaved F-P laser.
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Fig.4.1.2: Output power of main and side mode vs. injected
current for a 300 um long, cleaved F-P laser.
() : Bsp = 105, (—) : Bsp = 10°4

IV.2 Single mode properties of common DFB lasers

V2.1 The threshold gain diff | ! e

For DFB lasers, an estimate of the side mode suppression at
low power levels can be obtained from the threshold gain dif-
ference AglL, according to formula (2.3.15). The value of AgL strong-
ly depends on the laser structure under consideration and on the
normalised coupling constant xL and varies from 0 for AR-coated
lasers to more than 1 for some A/4-shifted or gain coupled lasers.
As outlined in chapter 2, a AglL value of 0.1 or more would (if spa-
tial hole burning were absent) guarantee a single mode operation
(with a SMSR of 30 dB) at + 1mW output power.

For DFB lasers with partly reflecting facets, AgL also de-
pends on the phase of the reflection coefficients. The current tech-
nology (i.e. the cleaving or etching processes) does not yet allow to
control these phases and one can say that the reflection phases are
distributed randomly among the different lasers grown on one wa-
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fer. Hence, this random distribution of phases gives rise to a ran-
dom distribution of Agl-values and a yield (the percentage of
lasers with a AglL-value larger than a certain, predefined value) is
therefore defined.

The yield has already been studied in very much detail (see
e.g. [4.1], [4.2]) and [4.3]). For later reference, we have depicted the
yield as a function of AgL for 300 um long, as-cleaved lasers with
kL=2 in fig.4.2.1. 16 values of the phases, uniformly distributed in
the interval [0,2x] have been considered for both facets.

YIELD

] ¥ T ) 1

T T
0 L5 B 15 2
THRESHOLD GRIN DIFFERENCE

Fig.4.2.1: Yield of as-cleaved DFB lasers with L=300 pm and xL=2.

IV.2.2 The onset of side modes at high power levels

IV.2.2.1 Exampl n hysical explanati

A DFB laser with a relatively high AglL-value and being single
mode at low power levels can become multi mode at moderate or
high power levels due to spatial hole burning [4.4]. We first illu-

strate this by an example.
To this end, we consider a 600 um long laser (which for

future reference we call laser B) with a xL-value of 3 and with the
field reflectivities of the facets being given by pi= 0.566 ei* and
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pp = 0.224 eidn/2, The parameters are identical to those of table
IV.1. Fig. 4.2.2 shows the complex roundtrip gain at threshold of
this laser, which has a threshold current of 39.6 mA and a thres-
hold gain difference between main and first side mode of 0.25. In
spite of this large Agl-value, one finds that the side mode reaches
the threshold at 70 mA, corresponding with an ex-facet power of 2
mW (fig. 4.2.3). This side mode onset is also visible on the wave-
length dependence of the roundtrip gain calculated at 70 mA, dis-
played in fig. 4.2.4. From this figure, it should also be clear that all
other side modes remain well suppressed. Spectral hole burning has
not been taken into account in the previous calculated results.

AMPLITUDE
(-]
1

e e e e e

0 ¥ 1 y T
1.558 156 1.562

WAVELENGTH ( micromoter )

1564

Fig.4.2.2: Amplitude (—) and phase (---) of the roundtrip
gain of laser B at threshold.

Evidence for spatial hole burning (i.e. the variation of the
carrier density due to the variation of the power) being the cause
of the side mode onset can be given as follows. The z-dependence
of the carrier density implies that the effective refractive index
ne, the Bragg wavelength (Ag=2neA) and the real 'part of the Bragg
deviation AP, also become z-dependent. The reflection losses how-
ever depend on AP, and, since the last quantity assumes various va-
lues along the z-axis, become less dependent on the wavelength.
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Fig.4.2.3: Output power in main and side mode vs. the

injected current for laser B.

WAVELENGTH ¢ micrometer )

Fig.4.2.4: Amplitude (—) and phase (---) of the roundtrip

gain of laser B at 70 mA bias current.
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For the specific case of laser B, a large carrier density exists near
the facets. This corresponds with a locally smaller Bragg wave-
length, which, at sufficiently high excitation, coincides with the
wavelength of the side mode. The side mode is then strongly re-
flected and experiences noticably lower losses.

APy is depicted in fig. 4.2.5 for both the main and side mode
and for different injection levels. One can see how the average
Bragg deviation increases for the main mode, while it decreases
for the side mode. The first phenomenon is accompanied by an in-
crease in the loss of the main mode and thus, due to gain clamping,
an increase in the modal gain for both the main and side mode. The
second phenomenon results in a decreased loss of the side mode,
which, eventually makes it reach the threshold.

It must be noticed that another non-linearity, associated
with the non-uniformity of the gain may have an additional in-
fluence. This non-linearity is nevertheless much weaker than the
one associated with the non-uniformity of APrand has a much
weaker impact on the side mode onset.

Inclusion of spectral hole burning in this particular case gi-
ves an onset of the side mode at an output power of 25 mW in
stead of 2 mW. A possible explanation for this effect is that spec-
tral hole burning damps the spatial hole burning. In regions with
high local optical photon density, it implies a reduced differential
gain (dg/dN) and an increased spontaneous carrier recombination
(bimolecular and Auger recombination). The latter is due to an in-
creased average carrier density needed to compensate the loss by
gain. Both effects result in a smaller influence of the optical po-
wer on the carrier density, as can easily be controlled with the
help of (2.3.31).

IvV.2.2.2 Influen f differen r meter

The impact of spatial hole burning on the side mode onset de-
pends on the non-uniformity of the carrier density, but equally
well on the degree to which this non-uniformity is reflected in a
non-uniformity of the refractive index and the Bragg deviation.
From the expression (2.3.29) for the non-uniform carrier denstity:
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Fig.4.2.5: Longitudinal variation of the Bragg deviation of
laser B at different injection levels.
(a) main mode , (b) side mode
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(ANo-B) I

N1f =
(VaTrg +Al)

4.2.1)

, with all symbols being defined as in 1.3, it readily becomes clear
which parameters are of importance:

the non-uniformity of the optical power (expressed by f)
the power level (expressed by I)

the losses (expressed by the average gain ANg-B)

the differential gain A and the carrier lifetime 14.

the 'differential' refractive index dn/dN

the wavelength separation between main and side mode

1

The non-uniformity of the power depends on the specific la-
ser structure and on the xL-value. Lasers with high xL-value tend
to become rapidly multi mode due the strongly non-uniform power.
Indeed, the distributed reflections are stronger for higher xL-va-
lues and, in general, the power seems to be concentrated in the
central region of the laser. This is illustrated in fig.4.6, which
shows the power variation for a 300 um long A/4-shifted DFB laser
with kL=3 (laser C).

In lasers with high xL-value, it is often the side mode on the
short wavelength side of the main mode that can reach the thres-
hold. This mode has a positive Bragg deviation at threshold. How-
ever, the concentration of the power in the centre of the laser in
this case corresponds with a concentration of the electron density
near the facets. Since the refractive index decreases with increa-
sing carrier density, it follows that the Bragg deviation of each
mode decreases near the facets and only the Bragg deviation of the
side mode on the short wavelength side approaches zero.

It must however be remarked that higher xL-values also im-
ply smaller facet losses and thus a relatively smaller non-uniform
carrier density. The loss can further be reduced by decreasing the
internal absorption. The non-uniformity of the power is not affec-
ted in this case. The absorption depends on the quality of the grown
active and passive layers, but also on the carrier density (which
itself depends on the loss and gain parameters) and on the wave-
length [4.5].
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Longttudinal Coordinate ( micron )

Fig.4.2.6: Longitudinal variation of the power in a A/4-
shifted laser with xL=3.

The non-uniform carrier density can also be reduced by redu-
cing the carrier lifetime or, to a lesser extend, by increasing the
differential gain. Both quantities depend on the chosen material
(e.g. bulk or quantum well material), on the temperature and on the
doping levels in the active layer. The small-signal carrier lifetime
furthermore depends on the threshold carrier density (i.e. on the
loss) and on the quality of the semiconductor layers.

A change in the carrier dependence of the refractive index on
the other hand reduces the non-uniform index or Bragg deviation in
stead of the non-uniform carrier density. As shown in IV.2.2.1, it is
the non-uniformity in the Bragg deviation which causes the side
mode onset. The carrier dependence of the refractive index again
depends on the semiconductor material, the temperature and the
doping levels.

It must finally be noticed that shorter lasers are more sta-
ble with respect to the side mode onset. In many cases, the Bragg
deviation of the side mode is inversely proportional with the laser
length, and thus larger for shorter lasers. A larger non-uniformity
of the refractive index is then required to cause a side mode onset.
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All of the dependencies reported here have indeed been con-
firmed, by experiments as well as by our simulations. As an illus-
tration we show in fig. 4.2.7 the output power in main and side mo-
de for laser A, which is identical to laser B except that it is only
half as long. One finds a stable single mode behaviour up to very
high power levels and the side mode suppression does not drop be-
low 20 dB, even at an output power of 20 mW.

=10 —

OUTPUT POWER ¢ dB )
-20-]
-30- \
Maln mode

-40 -
=80~ Stde mode
H?ﬂ i I v i i 1 T T T 1

.02 0k .06 .08 1 g2

INJECTED CURRENT ( R )

Fig.4.2.7: Output power in main and side mode vs injected
current for laser A.

According to (4.2.1), the spatial hole burning saturates at
high power levels. In the derivation of (4.2.1), it was assumed that
the longitudinal variation of the optical power in the main mode
remains virtually unchanged above threshold. This is not always
the case and the longitudinal mode profile of the main mode may
itself be instable. This aspect already has been discussed in detalil
in ref. [4.6], and therefore we will only briefly review it here.
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We consider a 300 um long DFB laser (laser D) with xL=2 and
facet reflectivities p¢=-j0.566 and pp=0. Fig. 4.2.8 shows the longi-
tudinal variation of the power in the main mode at threshold and at
5 mW bias output power. One can see that the power in the main
mode becomes concentrated more and more near the facet at z=L as
the power increases. This is easily understood from the threshold
characteristics. At threshold, the Bragg deviation of the laser is
positive and the power is concentrated near z=L. Hence, above
threshold, the carrier density will be depleted near z=L and an in-
creased Bragg deviation will result. This in turn implies that the
Bragg reflections are weakened near z=L and intensified near z=0.,
so that the power becomes more concentrated near z=L.

This effect occurs mainly in lasers with strongly asymmetric
facets or when the main mode emits at the short, resp. long wave-
length side of the Bragg wavelength for lasers with high, resp.
small kL-value. Obviously, this relatively strong spatial hole bur-
ning easily causes the onset of side modes.

Power ( Rel. Unlts )

-,

Lttt e T I T e —

0. 60. 120. 180. 240, 300.

Longttudinal Coordinate ( micron )

Fig.4.2.8a: Longitudinal variation of the optical power in
laser D at threshold.
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12, -
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Fig.4.2.8b: Longitudinal variation of the optical power in
laser D at a bias level of 5 mW output power.

IV.2.2.4 Im n_the 'yield'

The spatial hole burning and the instabilities indicate that
one may not exclusively rely on the value of AgL and on the former-
ly defined yield. In practice as well, the actual yield always ap-
pears to be smaller than the theoretical yield.

Nonetheless, CLADISS offers enough possibilities to allow
a better predictability of the above threshold yield, e.g. by calcu-
lating the SMSR at a certain level above threshold. For cleaved la-
sers, the yield can then be defined as the percentage of lasers with
a certain minimum value of the SMSR. This is illustrated in fig.
4.2.9, which shows the distribution of the SMSR values for the
cleaved lasers of IV.2.1 at an injection equal to 3 times the thres-
hold current. The percentage of lasers with an SMSR above 30 dB is

a lot smaller than one can expect from the yield of IV.2.1.
Calculation of the above threshold yield as a function of x

and L would principally allow to determine the optimum values of
and L. Though must also take into account that ajyt decreases for
increasing values of x and L. Small deviations with respect to the
results for a constant ajpt might then arise.
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Fig. 4.2.9: Distribution of the SMSR for cleaved lasers
with L=300 um and xL=2.

IV.3 Reduction of spatial hole burning in DFB lasers

An intense search for methods which allow to elevate the de-
trimental consequences of spatial hole burning has started recent-
ly (1989). This search is restricted to perfectly AR-coated lasers,
in order to eliminate the uncertainty in the facet reflectivity pha-
ses.

IV.3.1 Non-uniform__injection

This obviously requires the use of multi-electrode lasers,
where the injection into each electrode is adjusted until single
mode behaviour is achieved. Numerous examples of this approach
have already been given in literature ([4.7], [4.8] and [4.9]). We re-
peat that such laser types are most suitable for tuning purposes,
an aspect which we won't treat however.

As an example, we consider again the A/4-shifted laser (laser
C) with L=300 um, xL=3 and other parameters as given in table IV.1.
The stripe electrode has been divided into three parts, as shown in
fig. 4.3.1 , although the first and third part are short-circuited. The
laser becomes multi mode at + 80 mA when uniformly pumped (the



IV.16

full line in fig.4.3.1). But one easily finds that this can be resolved
by pumping the central electrode stronger than the outer electro-
des, which is illustrated by the dashed line in fig. 4.3.2 for the

case lg=1.2le.

150 um

Fig.4.3.1: Schematic view of a multi-electrode laser.

OUTPUT POWER ( dB )

T
0. 4 E-02
CURRENT ( A )

Fig.4.3.2: Power in main and side mode for uniform (—)
and non-uniform (=) injection, for laser C.
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IV.3.2 Special index-coupled structures
1V.3.2.1 Introduction

A large part of the recent literature on DFB lasers is formed
by discussions of new laser structures, which aim at a more uni-
form power distribution along the longitudinal axis. Especially
multi-phase-shifted lasers (i.e. with several phase shifts in the
grating) and chirped grating lasers (gratings with a varying period)
were initially considered as 'the solution' to the problem (see e.g.
[4.10], [4.11]). Such lasers have also been fabricated ([4.12]).

Some of these laser types have been modelled with the help
of CLADISS. As an example, we show the longitudinal variation of
the power for a multi-phase-shifted laser (fig. 4.3.3). The laser
under consideration has a length of 1200um and a normalised coup-
ling constant of 2. 3 phase shifts of 4x/5 have been incorporated in
the grating every 300 um. The total optical power density varies
only with + 30 %, which, in comparison with common DFB lasers, is
an appreciable reduction. However, our calculations also indicate
that this uniformity can't be improved a lot anymore simply by
using more phase shifts or chirped gratings.

1.4

POWER ( Rel. Untts )

1.2

T T
0 400 800 1200

Longltudinal coordinate ( micron )

Fig.4.3.3: Longitudinal variation of the power in a
multi-phase-shifted laser.
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IV.3.2.2 Theory

Complete elimination of spatial hole burning is possible only
if a variable coupling constant and/or if a variable gain/loss is al-
lowed. This can easily be shown theoretically with the help of the
coupled wave equations (2.2.48), which we rewrite here for the
static, single mode regime and with the spontaneous emission
being disregarded.

drt

proaiat ] It = || r” cos(p.+ 0 - ¢") (4.3.1a)

Z

dr - + ol

d—z-mﬂir =|k| 1" cos(pe+ 9 —¢) (4.3.1b)

do* F v

——+ AR, =|x| — sin(pe+ ¢ —¢) (4.3.1¢)

dZ r"’

de” P -

"(E'_Aﬁrz_|ﬁ|__sm(@x+¢ -9) (4.3.1¢)
r

Multiplication of equation (4.3.1a) with r*, of equation (4.3.1b)
with r- and subtration of both resulting equations gives an equa-
tion for the z-variation of the optical power (r+)2 + (r/)2, from
which it follows that a uniform power requires the following re-
lation:

()2 - (tH)°

rr

2 || cos(@+ ¢ — @)= AB; (4.3.2)

The denominator on the r.h.s. of (4.3.2) approaches infinity if one or
both facets are perfectly AR-coated. The requirement can then only
be fulfilled if |x| approaches infinity as well or if ABjvanishes at
this facet. The case with ABibeing identically zero is not really of
interest and nor is the case with |k| being identically infinite. Both
cases actually correspond with lasers with zero éfficiency (i.,e. no
output power can be extracted).

Structures with uniform optical power can be derived after
transformation of the coupled wave equations in the following way.
We first remark that the perfect AR-coating of the facets and the
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requirement of a uniform power can be expressed by the following
relations:

r(0)=r"(L)=0. (4.3.3a)
@)1+ @)% =1 (4.3.3b)

The power is normalized here. A first useful equation can now be
derived by multiplication of (4.3.1a) with r+, multiplication of
(4.3.1b) with r- and subtraction of both equations:

2 -2
d(r’) _2AB; (I'+)2= d(r)

DAB; ()2 4.3.4
n e + 2AB;i (r) ( )

Taking into account the relation (4.3.3b) readily gives:

d(r+)2
dz

= AP, (4.3.5)
and integration of this last equation gives:

L
_[0 ABi(2)dz =1 (4.3.6)

The power of forward and backward propagating waves is then
found to be:

z L
(r"? = L ABi(z')dz' ; ()2 = J; ABi(z")dz' (4.3.7)

Substitution of these functions into (4.3.2) shows that the r.h.s. is
completely determined. (4.3.2) allows to determine the required
coupling coefficient, provided the phase difference is known. An
equation for this phase difference can be derived from (4.3.1c) and
(4.3.1d):

= +y2

t9(oc+ 9 - 9" (4.3.8)
a2 2 (M? ()
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It must be noticed that, due to the AR-coating of the facets, only
this phase difference has a physical meaning. The phase ¢« can be
considered as a stepwise constant function. Continuous changes in
this phase can be included in AR since they can also be regarded as
changes in the grating period. In fact, phase jumps as in phase
shifted lasers could also be included in ARy as Dirac functions.
Several structures with a uniform power density can now be
derived from the equations (4.3.6)-(4.3.9), just be choosing appro-
priate functions for ABj, x and ABr. Two of these functions, e.g. ABj
and ABr, can be chosen freely. It can be remarked however that the
equation (4.3.8) is easier to solve if AR, is replaced by another

function:

f(z)

AB(2) = ——— 1y =sin(ec+ ¢ - ") (4.3.92)
CosS(@p+9 —¢’)
yielding for (4.3.8):
+.2
. ABi(2) Lzt ] y =2 f(z) (4.3.9b)
dz 2 (M2 (1)

The last equation is a first order linear differential equation,
which, for a given f, is easily solved. Hence, by choosing functions
for f(z) and ABj, one can determine the fields and the phases. The
required variations of x and AP, then follow from (4.3.2) and

(4.3.9a).
1vV.3.2.3 Exact solutions to the problem
- solutions with uniform AB;:

For this case, one readily finds from (4.3.6) and (4.3.7):

ABi=1/L and r*=~z/L;rr=v1-z/L (4.3.10)
The power of forward and backward propagating beams varies li-
nearly in the longitudinal direction. A simple solution of (4.3.8) is
then:
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tg(p.+ ¢ —¢")=c, with canarbitrary real constant

(1)

A= ————2<0 (4.3.11)
4L—(1—-]
LU L

The x(z)-function can be derived from (4.3.2). It follows that a pha-
se shift of & is needed at z=1/2 in order to keep |x| positive and one
finds for x:

s 1+c? (4.3.12)

The variation of AB; can practically result from a variation in e.g.
the composition of the cladding or active layers (although this usu-
ally also implies a small variation of aint) or the grating period. An
interesting special case rises when ¢ is chosen zero. Both AB; and
ABr are then uniform and the solution corresponds with a uniform
waveguide geometry, where the amplitude of the grating varies in
the longitudinal direction. Lasing occurs at the Bragg wavelength in
this case.

The functions ABy, ABi and |x| are depicted in fig. 4.3.4 for a
few values of the parameter c. AP, and |k| both increase for increa-
sing values of c. This can be related to the fact that an increase of
the Bragg deviation (and thus of c) results in a weakening of the
distributed reflections, which must be compensated by an increase
of the coupling coefficient (which enhances the distributed reflec-
tions). The low value of |k(z)| in the central region of the laser pre-
vents a power concentration in this region. There is little reflec-
tion in this region and the longitudinal variation of the power of
the forward and backward propagating beams is mainly caused by
stimulated emission in this region. This stimulated emission would
result in a concentration of power near the facets (as in Fabry-
Perot lasers), if it were not for the increase of |x| (or the growth
of the reflections) near the facets.
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- solutions with variable Af;:

To remove the singularity in the x(z)-function, one can try a
solution of the form:

ABi=rt ¢ (4.3.13)

The solutions are:

r*.= Sin(_______(2n+1 )nz) o= CDS[—-(2H+1 )nz) (4.3.14a)
2L 2L
@n+1)n sin((an )nz)
2L 58
with n an integer. From the equation (4.3.8), one can see that again
a solution with ABr =0 exists. Again, a phase shift of n at z=L/2 is
required to keep |k| positive and one finds:

ABi= (4.3.14b)

@n+1n [(2n+1 )nz) 4
- el B . e 8.
K(Z) oL o8 T (4.3.15)

A strucure which for n=0 has been reported also in literature [4.13]
It must be noticed once more that the variation of ABj (which can
be implemented as a variation of the absorption or as a variation of
the gain) will often be accompanied by a variation of AB,. This is
the case when a variable composition of the passive layers (i.e. a
variable loss in the passive layers) or a non-uniform injection is
applied. The variations of AB; should be restricted or compensated
for by a varying grating period.

The functions APy, ABj and |k| are depicted in fig.4.3.5 for n=0
and n=1. For the case n=0, one can again argue that the low |k|-value
near z=L/2 prevents a concentration of power in the central part of
the laser. The concentration of power near the facets however is
now anticipated both by an increase of x| and by a decrease of Apj
(i.e. the net stimulated emission is reduced and the reflections ha-
ve become stronger).

Other solutions can be derived after substitution of f by:
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k
f(z):c[sin(@%ﬁt—z H cos((—zn—fzﬂj (4.3.16)

with ¢ being an arbitrary real constant and k an arbitrary integer.
The solution of (4.3.9b) for this choice of f becomes:

k+1
. [ @n+1)nz ):|
) T ke
C[Slﬂ( L , ) B

h a=
@2n+1) (k+2) /L W 8 @n+1)(k+2)n

(4.3.17)

y:

The last requirement thereby follows from (4.3.9a). From y and f,
the Bragg deviation can be determined via the equation (4.3.9a). The
sign of cos(px+¢-¢*), which also determines |x|, can not be deter-
mined from (4.3.17). Both + and - sign, as well as changes of the
sign along the longitudinal axis are allowed. Though, one must as-
sure that the value of |x| remains positive (e.g. by including phase
shifts ¢y). For the case a=1 and n=0, one finds for x and A:

n| . (nz
oy i e
S )2L_S'”( L ﬂ
AR, =2 (4.3.18a)
ol , ok
\/1 +[Sin(?—?~ :| 4 +{sm(n—ﬂ
L/ L
T 1
i e e (4.3.18b)

2k

C \/1+[Sin[%]]2+...+[sin(%ﬂ

The cases with k=0 and k=1 are of most interest. For k=0, one finds
a uniform x (=rn/2L) and lasing at the average Bragg wavelength if

APy is chosen as:

Aﬁr=%for 0<z<L/2 and A|3r=—§for L/2<z<L (4.3.19)

For k=1, one finds that AB; and AB; vary in a similar way along the
longitudinal axis, while the variation of k is rather small.
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AB, = tls (4.3.20a)
2
\/1 +[sin[-——ﬂ

K= == ] (4.3.20b)

RVAEEC)

It must be emphasized that the previous solutions are not ne-
cessarily the modes with the lowest threshold gain (current), nor
has it been proven that the special structures are single mode. Only
when the uniform power solution is the main and single mode will
there be an absence of spatial hole burning effects in the laser be-
haviour. This can be expected for the solutions lasing at the avera-
ge Bragg wavelength. For the solutions with variable ABj, especial-
ly the cases where nz0 seem to be higher order modes which might
not be the main mode.

The variations of ARy, ABi and |k| are shown in fig. 4.3.6, resp.
4.3.7 for the solutions (4.3.19), resp. (4.3.20). For these solutions,
the value of |k| near z=L/2 is not that small anymore, but the di-
stributed reflections are now also suppressed by the larger Bragg
deviation AB,;. This Bragg deviation decreases near the facets for
the solution (4.3.20), which, together with the decrease of the net
stimulated emission again prevents a power concentration.

We emphasize once more that other interesting structures
can be derived from the equtions (4.3.6)-(4.3.9). Only a few simple
solutions have been discussed here and we leave the further explo-
ration of other (and probably also more complex) solutions as futu-
re work.
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1V.3.2.4 Approximations and simulations
- solutions with uniform AB;:

For ¢=0, one finds a laser with a grating of which the ampli-
tude varies in the longitudinal direction [4.14]. The x(z)-variation
can then e.g. be approximated by a linear, a cosine or a stepwise
constant function. As a matter of fact, the function can be approxi-
mated to any degree if gratings are written by e-beam lithography.
One can either vary the actual grating amplitude or the duty cycle
of the grating, as shown in fig.4.3.8. A stepwise constant approxi-
mation, together with the exact function, is shown in fig. 4.3.9 for
a 300 um long laser. This approximation already results in an ex-
tremely uniform optical power (fig. 4.3.10), with variations that
are restricted to 5 %. For the threshold gain difference AglL, one
finds the value 0.17 and therefore, a stable single mode behaviour
should be observed for this structure.

A second approximation can be formed by the double exposure
of a photoresist to form 2 holographic interference patterns of
slightly different periods A; and A2 ([4.15], [4.16]). This results in a
cosine variation of x. However, the variation of the coupling coef-
ficient will in general be accompanied by a variation of the effec-
tive refractive index (and of the Bragg deviation) if the last me-
thod is used.! The relation between the variation of the coupling
coefficient and that of the refractive index depends on the litho-
graphy and etching process. One possible structure is shown in fig.
4.3.11, in which case AB;= 0.5 |x|. This is fundamentally different
from (4.3.11), which could be approximated somehow as Af; = C «x.
The case of a linearly varying coupling coefficient and a linear re-
fractive index variation has been modelled numerically for a 300
pm long laser. Fig. 4.3.12 shows the variation of the optical power,
which still is restricted to about 10 %. With Agl being equal to

0.14, a good mode rejection can still be expected.

"Notice that this is also the case for a variable duty cycle.



Epipimim

|

Fig.4.3.8: Grating with variable duty cycle.

1.2E-02 — 4 i
1 COUPLING COEFFICIENT ( per micrometer ) 1
L) ]
1 [
-1 i
1 I
' I
i ]
| ]
8E-034 ! )
' 1
1 !
A i
N '
! I
h
4 £-03 % /
7 \‘ -
|l‘\. I’
= P phaseshift of pt e
0. T T 1 T “A?f-ﬂ T T T T 1
0. 60. 120. 160. 240, 300.

LONGITUDINAL CODRDINATE ( micrometer )
Fig.4.3.9: Longitudinal variation of x (4.3.12) and stepwise
constant approximation for c=1.

124 POMER ( Rel. Units )
1-WWMV

o el = F i

\\ f’
ﬁ-— “‘«- f’
~ . L
= i 4 e
Wi s
6- e | wf
. EMH{r'
s
'I‘— .ﬂ’ Nt
- -
P S
A .f’ \\
=
2 .w"# H’""-..
f,"- \ﬁ
& #7 Sa
Ld ~

0 =~ T T T T ¥ = 1

0 100 200 300

LONGITUDINAL COORDINATE ( micrometer )
Fig.4.3.10: Longitudinal variation of the power for the
stepwise constant approximation of fig. 4.3.5.

V.30



IV.31

electrode l current injection

t

/\/V\MMW\/\/\
; '

active layer .
grating

Fig.4.3.11: Grating formed by the double exposure technique.

1-\ POVER ( Rel, Unlts ) .
N 1
% 1
\~ ’/ I
84 ~ - 1
~ -
.\ -~ I
& ‘."" "’ !
~ L 1
- ’
- -t i
6- "‘\ ar ]
~ - !
~ i i
- ~ -
. 1
f Y
# 5 I
#* .

“-' L 5 I
F ,,: |

< ~
3 ! . !
n" ~ 1
’l \\ 1
24 - - |
# ke i

m L
- ~ '
- ” s 1
- -~
- =~ i
i i

04— T I T T £ - ||
0 100 200 300

LONGITUDINAL COORDINATE ( micrometer )

Fig.4.3.12: Longitudinal variation of the power for the
laser of fig. 4.3.7.

A last approximation, worthwile mentioning, is a stepwise
constant approximation with x being constant in the outer sections
and zero (i.e. no grating) in the central section. One must thereby
assure that the n-phaseshift between both gratings near the facets
is still present. One possibility is to fabricate a A/4-shifted gra-

ting of which a central part is removed afterwards.



V.32
- solutions with variable Ap, :

The solution given by (4.3.14) and (4.3.15) with n=0 could be
fabricated approximately by producing the x(z)-function by the
double exposure technique. The Apj-variation can be approximated
by e.g. a stepwise constant variation (with 3 steps) of the cladding
layer composition. The additional AB(-variation caused by this
composition variation will modify the «x-variation, but it also
might compensate for the AB;-variation caused by the double expo-
sure technique. We further remark that the exact structure (and the
stepwise constant approximation) exhibit a high AglL-value of
+0.46.

2 simple structures can further be obtained from approxima-
tions of (4.3.19), resp. (4.3.20). For the case (4.3.19) e.g., one can
approximate APj by a constant and divide the laser into 2 halfs
with different grating periods, and separated by a A/4-shift. We
have modelled such a 300 um long laser with grating periods A=
241.3 nm and A2=240.9 nm. For the uniform ABj, one finds an opti-
mum kL-value of 1.75 (instead of =n/2). fig. 4.3.13 depicts the lon-
gitudinal variation of the power. A value of 0.66 was found for AgL.

The solution (4.3.20) can be fabricated by introducing a step-
wise (or other) variation of ABj, which is accompanied by a AP~
+3ABj. Variations in the absorption (or in the composition of the
cladding layers) and in the gain (or in the composition of the active
layer) are indeed accompanied by variations of the refractive index
of this order of magnitude. If the variation of AB;j is implemented
as e.g. a non-uniform injection, one has ABr=-aABj with a being the
linewidth enhancement factor and «-~3. Fig. 4.3.14 shows simula-
tion results for a 300 um long structure, that is a stepwise con-
stant approximation (with 5 steps) of the required ABi-function
(implemented as an absorption variation) and for which AB;=-3AB;.
The power variations are again restricted to 10 % and a Agl-value
of 0.22 is achieved.

We further mention that also solutions for o = 4,5,.. can be
found, e.g. starting from (4.3.18) with k = 2,3,... The z-dependence
of the denominator in (4.3.18) is more important in this case and
neglecting it will further reduce the uniform character of the
power.
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We finally remark that by neglecting the variation of ABj, one
retrieves the chirped grating lasers. The variation of the optical
power in such lasers is comparable with that in multiple-phase-
shifted lasers. Fig. 4.3.15 shows the longitudinal variation of the
power for a 300 um long laser, where AB; is a stepwise constant
approximation (with 5 sections) of the function (4.3.20a), and
where x and APB; are constant along the longitudinal axis. For the
optimum value of x, equal to 1.6, one finds power variations that are
restricted to 10% and a Agl-value of 0.25.
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section approximation of (4.3.20a) (see text).
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IV.3.3 Gain-coupled lasers

The use of gain-coupling (i.e. a periodic variation in gain or
loss) provides an alternative for the previous index-coupled struc-
tures [4.17]. In the following, it will become clear that by supply-
ing even a small fraction of gain-coupling to the index-coupling
one can get very stable single mode lasers with low spatial hole
burning. Moreover, gain-coupling also results in both a spectacular
decrease of the threshold gain (and current) and a strong increase
in threshold gain difference AglL. A tremendous performance is al-
ready obtained for a gain-coupling equal to a few tenths of the in-
dex-coupling. Theoretically, one finds a stable single mode beha-
viour up to power levels of more than 50 mW in this case.

An analysis of the influence of gain coupling on distributed
feedback lasers has already been given by Kapon [4.18], who calcu-
lated the threshold behaviour of AR-coated lasers for several va-
lues of the normalized coupling coefficient and for various degrees
of gain-coupling. We have extended this analysis by considering
above-threshold operation and by optimisation of the normalized
coupling coefficient in order to obtain minimal spatial hole bur-
ning.

Before proceeding with the analysis, we remark that some
gain-coupling can also be present in so-called index-coupled la-
sers. Indeed, the grating in the passive layer modifies the lateral/
transverse mode profile and hence also the confinement factor T.
Furthermore, the standing wave pattern in the power, caused by the
interference between the forward and backward propagating beams
gives rise to a weak periodic variation of the carrier density,
which acts as gain-coupling as well. It is estimated however that
the gain-coupling, originating from both effects, only amounts to a
few percent of the index-coupling in a typical index-coupled laser.
On the other hand, DFB lasers with a considerably higher degree of
gain-coupling have been produced [4.19] and they seem to exhibit
excellent single mode properties.

The coupled wave equations for DFB lasers with both index-
and gain-coupling can be written as:
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CLR +JAB R"= (kg + k) R (4.3.21a)

Z

dd—R —JAB R =~ (kg +jx,) R (4.3.21b)
P

in which the coupling constants kg, resp. kn stand for the gain-,
resp. the index-coupling. The phases of kg and xp are assumed to be
equal here, which is justified if the gain- and index-coupling are
induced by one grating (e.g. a modulation of the active layer thick-
ness). The phase difference between xg and xn then can only assume
the values 0 and n, whereas a phase difference of n would only cau-
se a change in the sign of the Bragg deviation of the lasing mode. In
addition, the grating phase at the left facet is chosen such that kg
and xp are both real.

We have calculated the threshold gain 2ABj, the threshold gain
difference AglL, the real Bragg deviation ARy and the longitudinal
spatial hole burning of AR-coated lasers of length 300 um as a
function of kg/xn. The value of |k| is optimised so as to achieve mi-
nimal spatial hole burning. As a measure for the spatial hole bur-
ning, we use the ratio Pmin/Pmax With Pmin(max) denoting the mini-
mum (maximum) value of the power along the longitudinal axis.
Above threshold, the power level Py where the SMSR drops below
20 dB has been calculated.

Fig. 4.3.16 shows the value of |k|L that gives minimal spatial
hole burning and the corresponding value of Pmin/Pmax. Little spa-
tial hole burning is obtained in all cases and one can see that a
uniform power results for pure gain-coupling. |x|L equals the value
n/2 in this case and both ABjand AR, are zero. It can easily be veri-
fied that the solution of the coupled wave equations then reduces
T

R*(z)=sin(rz/2L) ; R(2)=cos(nz/2L) (4.3.22)

The longitudinal variation of forward and backward propagating
power, as well as the total power is depicted in fig. 4.3.17 for
three values of kg/xn (10-2, 0.5 and 10). A relatively uniform power
is also found for the case of weak gain-coupling or almost pure in-

dex-coupling. The low threshold gain difference in this case makes
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such a laser unattractive however. As xgincreases, both R+ and R-
become more sinusoidal and the power becomes more uniform.

Fig. 4.3.18 shows the variation of Afjand AB; as a function of
kg/kn. The threshold gain and the Bragg deviation, as well as the
spatial hole burning are slowly decreasing functions of the gain-
coupling for small values of xg/xn, but they rapidly approach zero if
the gain-coupling becomes comparable with or larger than the in-
dex-coupling. The threshold gain difference (fig. 4.3.19) on the o-
ther hand increases considerably for even a small fraction of gain-
coupling. The output power Pm (the dashed curve on fig. 4.3.19)
where the SMSR drops below 20 dB also increases rapidly for in-
creasing gain-coupling. E.g. for xg/xn=0.05 we obtained a genuine
single mode behaviour (SMSR > 30 dB) up to an output power level
of more than 50 mW.

Due to the gain-coupling, the phase resonances occur no lon-
ger at wavelengths that are symmetric with respect to the Bragg
wavelength (as in index-coupled AR-coated lasers). This asymme-
try in the phase resonance can be seen from the resonance condi-
tion, which is easily derived from the coupled wave equations:

5+ AP - jA
Bxp(EBL):~8+A[§'+}AEr with 8%=—(AB)? - (kgHikn)® (4.3.23)
= i ol o

In the high gain approximation e.g., |AB| >> || , one finds the phase
resonance condition:

Ok AR+ AR (K2 — K2
ABr+l KgKpy Bi+ ﬁr(l{g Kn)] L=tg“1[%%)+tg_1(ﬁ)+mﬂ (4.3.24)
2 (AB? + ABD) | i

from which it is easily verified that the phase resonances are
symmetric with respect to the Bragg wavelength only for xg=0 or
Kn=0.

At the same time, a larger effective gain is provided for the
cavity mode nearest to the Bragg wavelength. This effect can be
understood from the presence of a standing wave pattern, both in
the power of the cavity modes (with period A/2ng) and in the gain
(period A). The overlap of both standing wave patterns, which
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describes the degree of coincidence of points with high gain and
points with large optical power, increases for a decreasing diffe-
rence between mode wavelength and Bragg wavelength. This results
in a larger netto stimulated emission rate.

This standing wave aspect also finds expression in the photon
rate equation (2.3.7), which for gain-coupled lasers reads:

dl ARy #he. = o

— = [G(Ng,0)=7v] 1 + S +—-I r'recos(e —¢ )dz + F, (4.3.25)
dt ho Jo

The 3rd term on the r.h.s. of (4.3.25) is identical to the overlap
integral between the standing wave patterns in the power and in
the gain. Indeed, the standing wave patterns in the power and in the
gain are:

|E|2: Ir+ej((P+_Bgz) + r_eJ((PH+Bgz)|2
= (r")? + (M) + 2r'r cos(g = g™+ 2B42)
A(Tg) =2 kg COS(2B42) (4.3.26)

Only the first harmonic of A(I'g) is retained here since the higher
harmonics disappear after averaging over the longitudinal coordi-
nate. The overlap integral is given by:

L
L dz 4 kgr'r” cos(2Byz) cos(2Bgz + ¢ - @) =

L
4 K-g-[o dz r'rcos(p— ") (4.3.27)

It must finally be noticed that the calculations discussed
here are valid only for an optimized value of |k|L. In practical cal-
culations however, the gain-coupling and thus |x|L generally will
depend on the threshold gain (see [4.20]). Such a dependence is not
taken into account in our calculations. For values:of kg not larger
than a few tenths of xp, there is hardly any influence of kg on |x|L
and the optimum value solely depends on the choice of xn. The
threshold gain and Bragg deviation remain almost independent of kg
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in this case, and practically, kg can be calculated from the thres-
hold gain of the corresponding index-coupled laser.

Although we have only considered AR-coated lasers here, it
can be mentioned that the introduction of gain-coupling is equally
well advantageous for lasers with cleaved facets (or facets with a
finite reflection). The phase of the reflection coefficients seems
to have less influence in this case and a larger yield of single mode
lasers can be expected [4.21].
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Chapter V

THE NOISE IN DFB LASERS:
LINEWIDTH, RIN AND POWER SPECTRUM

This chapter describes the influence of the (spontaneous
emission and other) noise on the power spectrum. This influence is
twofold: on one hand, it causes phase fluctuations and a broadening
of the emission lines (the width of the emission line corresponding
with the main mode is then called the linewidth), while on the
other hand it also results in fluctuations in the light intensity (ex-
pressed by the so-called RIN, Relative Intensity Noise).

Our research in this field principally aimed at understanding
the linewidth behaviour, in particular the rebroadening or the satu-
ration of the linewidth at moderate or high power levels. Indeed,
according to well-accepted theories (see [5.1], [5.2], [5.3] or chap-
ter 2) the linewidth ought to decrease with increasing power level,
whereas experiments show that this is no longer the case at mode-
rate or high power levels. We have found a few original explana-
tions for this phenomenon and a large part of this chapter is dedi-
cated to L

However, other aspects of the noise are considered here as
well. Interesting modelling results, other than those relating to
the linewidth rebroadening, have indeed been obtained. In addition,
we have tried to touch the most important aspects related to noise.
In this respect, we have chosen to introduce a brief overview of
the recent literature here. This is then followed by a detailed de-
scription of the linewidth and RIN behaviour. The latter also inclu-
des topics such as the spectra of the FM-noise, the intensity noise
and the power as well and the reduction of linewidth and RIN. A
last paragraph describes the influence of external feedback.

We finally remark that this chapter relies heavily on the rate
equations and their analytical, small-signal solutions.
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V.1 Overview of literature

For a long time, the linewidth and the RIN of DFB lasers have
been calculated with the help of the standard rate equation solu-
tions as given in I1.3. The mode loss and the relation between pho-
ton number and output power are then determined from solution of
the coupled wave equations, in which a uniform carrier density is
assumed.

Recently, various modifications of these standard formuli for
linewidth and RIN have been proposed. First, the longitudinal varia-
tion of the optical power was included by the introduction of a
structure dependent factor K (the longitudinal Petermann factor) in
S [5.4], [5.5]:

Ser=SK

Iz
IL (2 + ()2 dz |2

with: K= (5.1.1)

L
I_[oFa*Frdz |2

The mode index has been left behind here. K can assume values up
to 4, but it has only a weak bias dependence, unable to cause a li-
newidth rebroadening.

The previous approach was given a more theoretical basis by
Henry [5.6], who proposed a Green's function approach for the equa-
tion (2.2.7). With this theory, the formula (5.1.1) can be retrieved
for Fabry-Perot lasers. More accurate formuli are found for DFB-
lasers. Henry's paper has given rise to numerous other contribu-
tions, e.g. about the application to ordinary DFB lasers [5.7], to
multi-phase-shifted lasers [5.8] or to multi-elecirode lasers [5.9].
Spatial hole burning, i.e. a non-uniform carrier density is usually
not considered when a Green's function is derived. Including it
would require extensive numerical treatment anyway.

Some theories further account for the dispersion in gain
[6.10] or loss [5.11]. These theories again ignore the spatial hole
burning, resulting in a bias dependence of the dispersion. They the-
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refore lead to a linewidth that is proportional with the inverse
output power.

By solving the rate equations in the multi mode case, it was
shown that the presence of relatively strong side modes could cau-
se a substantial enhancement of the linewidth and the RIN [5.12],
[5.13], [5.14]. The interaction between main and side mode has the-
reby been attributed to gain suppression. We will show furtheron
how also spatial hole burning can be responsible for the influence
of a side mode on the main mode. A linewidth rebroadening due to
the presence of side modes can occur when the side mode suppres-
sion drops below #20 dB. However, one finds experimentally that a
rebroadening also takes place if the side mode suppression remains
well above 30 dB.

A last modification of the standard formuli is based on the
introduction of an effective linewidth enhancement factor aeff
[5.15]. This effective o-factor can be calculated from a complex,
longitudinal confinement factor:

+ .
P=T 4 Tys——a 0| (5.1.2)

L
[ RRdz
0
The effective a-factor and the linewidth are given by:

AV = —— (1 + a2y

ol
L ] L]
[a. T, — I,] AN(z) dz
2 (5.1.3)

off = L

J; [T, + o I;] AN(z) dz

in which AN(z) represents the z-dependent change in carrier densi-
ty caused by the Langevin forces. This small-signal carrier density

can be obtained as a function of the photon density after linearisa-
tion of the carrier rate equation. AN(z) can then be expressed in

terms of the steady state carrier density and the steady state pho-
ton denstiy if one assumes a similar z-dependence for the steady
state and the small-signal photon density.
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The theory of the effective a-factor can easily be derived
from the wave equation and is therefore most justified. It also al-
lows to take into account spatial and spectral hole burning in an
easy manner. Its implications are illustrated by fig. 5.1.1, which
gives the aeff of AR-coated lasers as a function of xL [5.15]. One
can see that the use of aeff could result in a considerable enhance-
ment or reduction of the linewidth. One drawback is that dispersion
effects are still not included.

vVIETyr

01 1 1 i 1 I i 1 1 1
0 5 10

Fig. 5.1.1: correction factor for the linewidth resulting from ogff
for AR-coated lasers: (—) A=Ap, (--) A<ApB.

By solving the coupled wave equations and the carrier rate
equation, our model will take all previous effects into account.
Moreover, it is more suitable for the analysis of multi-section la-
sers, such as external cavity lasers. Spatial hole burning, gain sup-
pression and dispersion are all taken into account self consistent-
ly and at the same time . The power level and the mode profile of
the side modes are calculated self consistently as, well, whereas in
[6.12] and [5.13] one has to assume a certain power level for the
side modes, of which no spatial variation is considered. Finally, our
model also offers the possibility to include dynamic effects in a
more detailed way.



V.2 The linewidth of DFB lasers

Before discussing possible causes of the linewidth rebroade-
ning, we first illustrate the FM-noise and the adiabatic approxima-
tion which is usually applied to it. We then pay attention to the
different factors that determine the linewidth, i.e. causes of the
rebroadening such as the presence of side modes, gain non-lineari-
ties and dispersion and other important factors. We conclude by an
overview of methods that allow to reach smaller linewidths.

V.2.1 Th i i roximati

For the calculation of the linewidth, the spectrum of the FM-
noise is normally approximated as a white noise spectrum. The va-
lidity of this approximation is confirmed by fig. 5.2.1, which gives
the spectrum of the FM-noise for laser A at 1 mW output power.
The spectrum is white (uniform) in a bandwidth of £ 1 GHz. Relaxa-
tion oscillations, which are heavily damped by spectral hole bur-
ning, occur at a few GHz. The oscillations, which are the expression
of a resonant conversion of electrons into photons and vice-versa,
due to stimulated emission and absorption, are also damped by
spontaneous emission and diffusion. The spectral density of the
FM-noise decreases rapidly beyond these oscillations.

The FM-noise has a spectral density of 314 MHz in the flat
part of the spectrum. This implies that practically no loss of cohe-
rence occurs during the characteristic time of the relaxation os-
cillations (<1 nsec.) and that these oscillations have no influence

on the linewidth. The adiabatic approximation is therefore valid
and one finds a linewidth Av = 50 MHz, corresponding with a cohe-
rence time of 20 nanoseconds.

The presence of relaxation oscillations in the power spec-
trum is only at low power levels visible in DFB lasers. The relaxa-
tion oscillations are not yet heavily damped by spectral hole bur-
ning in this case. Fig. 5.1.2 shows the power spectrum of laser A at
an output power of 1 mW. The relaxation oscillations occur at fre-
quencies where the spectral density of the power has already de-
creased to 30 dB below the peak value. The strength of these oscil-
lations decreases strongly with bias power anyway. Fig.5.1.2 clear-
ly illustrates the heavy damping due to spectral hole burning. From
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chapter 2 (eq. 2.3.19) we know that the damping is proportional
with the gain suppression coefficient .
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V.2.2 Causes of linewidth rebroadening
V.2.2.1 The pr f si

The influence of a side mode (with intensity l4) on the line-
width of the main mode (with intensity lp) can, in DFB lasers, have
its origin in two non-linearities:

- Spectral hole burning (or more general gain suppression),
expressed by the coefficients Emk in the rate equations.

- Spatial hole burning, by which, in DFB lasers, mainly the
losses yp and y1 of main and side mode are affected. These losses

depend on the longitudinal variation of the carrier density, which
in turn depends on the intensities lp and 11 of both modes.

The interaction via spectral hole burning is easily estimated
analytically. In this case, we assume the following:

Coo=811
Eo1=&10<800 (5.2.1)

From calculations of the spectral hole burning [5.16] it seems that
the coefficients Emk (or emk) mainly depend on the wavelength
difference |Am-Ak| and that they reach a maximum value for m=k.
The maximum value then depends only little on the wavelength Ap.

From the analytical solution of the rate equations (I1.3.1 with
2 modes being taken into account), it follows that one can distinct
between 3 regimes.

1/ The side mode is far below threshold (i.e. strongly
suppressed) and one has:

Y1 S 2
——1 55E55l1 OF — >> |
S ool G, oo 19

(5.2.2)

The linewidth of the main mode is independent of the side mode
intensity in this case. The fluctuations in the intensity of the side
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mode are too small to affect the gain via spectral hole burning he-
re. Indeed, the second order moment of the Langevin function Fj 1 is
proportional with the side mode intensity and thus very small. Sin-
ce the side mode is far below threshold, its gain is far less than
its loss. The spontaneous emissions therefore are hardly ampli-
fied and only give small fluctuations in the side mode intensity.

2/ The side mode reaches the threshold, but still has a small

intensity. One then finds the following approximation for the main
mode linewidth:

(6.2.3)

Ay S 1+ a?)+ UQG?'?(&-DG‘@M)E
4rlg 418 (1 - Egolo)?

In this regime, an increase of the linewidth occurs when the side
mode intensity increases as it reaches the threshold. From (5.2.3),
it can be derived that the side mode only has a significant influen-
ce when its average intracavity power becomes + 50 pW or more
[5.12], [5.13]. The broadening of the linewidth can be explained by
noticing that, since the side mode is just below or at threshold, no
clamping of the side mode gain yet exists in this regime. However,
the gain of the side mode almost compensates the loss and the
enhanced resonance makes that all spontaneous emissions are
strongly amplified (they are propagated many times back and forth
inside the cavity). Hence, large fluctuations in the side mode inten-
sity and in the gain (due to spectral hole burning) are generated.
Since the gain of the main mode must be clamped to a value equal
to the main mode loss, the fluctuations in the gain, caused by spec-
tral hole burning, must be compensated by large fluctuations of the
carrier density. These large fluctuations in carrier density in turn
cause large fluctuations in the refractive index and, as a result of
the phase resonance condition, large frequency fluctuations and a
large linewidth.

3/ The side mode is far above threshold and its intensity no
longer consists of amplified spontaneous emission. In this case,
one finds for the linewidth of the main mode (with 2£ay=Epo+ &o1):
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s, (5.2.4)
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Av

The linewidth decreases again with increasing power in main and
side mode in this regime. Both modes are now truly oscillating and
the fluctuations of the carrier density are restricted by the fact
that the gain of both modes must remain equal to the loss. The
fluctuations in the intensity of the side mode are more damped as
compared with 2/ and the spectral hole burning effect no longer
occurs. The fluctuations of the carrier density are damped by both
modes and an increase in the power of one of these modes implies a
stronger damping and thus a smaller linewidth.

The influence of the side mode via spatial hole burning can be
described in a similar way by expanding the losses yp and y1 in the

small signal analysis as:

Yo=Tg (1 = 0gp Alg — Gg1Aly)
Y1=Ty (1 =040 Alp—oy4Aly) (5.2.5)

Numerical values for the coefficients omk (which are not necessa-
rily positive numbers) are not easily obtained however. The effect
can be investigated numerically in this case, i.e. by setting all
spectral hole burning coefficients zero in the model. As an exam-
ple, we consider again the laser B, of which we know from chapter
4 that it becomes multi mode at an output power of + 2 mW due to
spatial hole burning.

Fig. 5.2.3 shows the linewidth vs. the inverse output power.
The linewidth has been calculated both with and without taking in-
to account the presence of the side mode. Fig. 5.2.3 also gives the
relative side mode intensity. Again, one can distinguish between 3
regimes. As long as the side mode remains strongly suppressed, the
fluctuations in its intensity also remain small and the side mode
has no influence on the main mode linewidth.

As soon as the side mode approaches the threshold however, a
steep rebroadening of the linewidth occurs. The large fluctuations
in the intensity of the side mode now induce large fluctuations in
the loss of the main mode via spatial hole burning. Large fluctua-
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tions in the carrier density (or the gain), and hence large fluctua-
tions of the refractive index and the frequency, are then needed to
compensate the loss at all time. For the numerical example under
consideration, the rebroadening starts when the output power of
the side mode reaches + 50 pW, while the output power of the main
mode is 2 mW. From other examples, it can be concluded that the
rebroadening generally occurs when the side mode suppression de-
creases below 20 dB.
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Fig. 5.2.3: Linewidth vs. inverse output power for laser B;
Side mode suppression ratio.

As the side mode is far above threshold, one again finds a
decreasing linewidth for increasing power level of main and side
mode. As for the case of spectral hole burning, the fluctuations of
the side mode intensity are no longer determined by the photon rate
equation (which now expresses that the gain and the loss of the
side mode must be equal), but by the carrier rate equation and they
remain limited.

Fig. 5.2.4 show the influence of the side mode on the main
mode linewidth when both spectral and spatial hole burning are in-
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cluded in the calculations. A similar behaviour as in fig. 5.2.3 can
be seen, i.e. the rebroadening occurs when the side mode suppres-
sion decreases below 20 dB. It can be noticed however that the side
mode now reaches the threshold at an output power of 2.5 mW.
Spectral hole burning has a stabilising influence on the side mode
onset, as has been explained in chapter 4.
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Fig. 5.2.4: Same as fig. 5.2.3, but gain suppression is
also included now.
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V.2.22 in i

The definition of the linewidth enhancement factor (equation
2.3.11) actually implies that a must be considered as a bias or po-
wer dependent quantity and therefore one can write for single mo-
de lasers:

O

o (5.2.6)
1 =E&polo

A gain suppression as in (2.3.3) has been used. Substitution of this
expression for a in the linewidth formula (2.3.26) then gives:

2
PTTEL_EY ppeee.. (5.2.7)
4l il = ’éoo‘o)E

The bias dependence of a cannot be ignored at high power le-
vels. Important is that it gives rise to a minimum in the linewidth
at a bias level corresponding with lp = 1/3£00 [5.17]. The linewidth
rebroadening due to the gain suppression, which was proposed si-
multaneously by the author [5.18] and by Agrawal [5.19], is illus-
trated in fig. 5.2.5 for a 300 um long as-cleaved F-P laser (in order
to exclude all other effects such as spatial hole burning and dis-
persion). A value of 4.75 10-7 [5.20], [5.21] has been used for &,
corresponding with & = 15 W-1. Rebroadening of the linewidth oc-
curs at an output power of about 14 mW. This is different from the
value 11.5 mW which can be predicted from (5.2.7), but the diffe-
rence can be attributed to the spontaneous carrier recombination.
This recombination causes additional damping of the carrier densi-
ty fluctuations, as can easily be found by rigourous solution of the
static rate equations. One finds:

4zlo [(1 = Eoolo)® + EgoValATg) ' 1?

; w32V, (No/t+ BoN2 + CoN)

z = (5.2.8)
AT [(1 - Egole)® + EooValATg) ']
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Fig. 5.2.5: Linewidth vs. inverse output power for a 300 pm

long, as-cleaved F-P laser, with (=) and without
(--) gain suppression taken into account.

The last term in (5.2.8) represents the effect of shot noise,
which only has a minor influence in F-P and DFB lasers. It must
also be remarked that Ng (and thus also t,g) may be slightly bias
dependent, due to gain suppression or other non-linearities. This
might eventually turn the rebroadening into a saturation, especial-
ly if Trq is rather small.

A similar rebroadening can be found in DFB lasers. This is il-
lustrated in fig. 5.2.6 for laser A. The linewidth has been calcula-
ted both with and without taking into account the spontaneous car-
rier recombination. One can clearly see how the minimum in the li-
newidth occurs at a higher power level due to the spontaneous car-
rier recombination.

Experimental evidence for the rebroadening due to spectral
hole burning has been given by C. Park and J. Buus [5.22]. They have
measured the linewidth at 1 mW output power, the minimum line-
width and the power at which it occurs for two populations of as-
cleaved DFB lasers. All lasers were of the buried ridge type and the
two populations were detuned from the gain peak by 20 nm and 30



nm respectively. The two populations therefore had different
width enhancement factors, being 7.7 and 6.5 respectively.
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Fig. 5.2.6: Linewidth vs. inverse output power for laser A.
56—
30 P
47
AY TR
Kl
M=z

20 42 60 80 10 120 140 180

V.14

line-

{a) 20 nm deturing

{9 30 nm cetuning

Av MFz W e - 20 nm deluning

+ - 30 nm detuning

Fig. 5.2.7: Measured minimum linewidths against linewidth at 1 mW
power for 2 populations of 1.55 pm DFB lasers [5.22].
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Fig.5.2.7 shows the results for the single mode lasers. There seems
to be a good correlation between the linewidth at 1 mW and the
linewidth floor. The different gradients for different detuning in
fig. 5.2.7 are consistent with the weak wavelenght dependence of
the gain suppression factor e.

The average ratio between minimum linewidth and the line-
width at 1 mW is approximately 0.22 mW-1 in fig. 5.2.7. This cor-
responds extremely well with the formula (5.2.7). From this formu-
la, one finds that the ratio between the minimum linewidth and the
linewidth at 1 mW (intracavity power) is given approximately by:

2
AVmin/AV (1 mWintracavity power) = 4 € (5.2.9)

Since, for as-cleaved lasers, an output power of 1 mW corresponds
with £ 2 mW intracavity power, it follows from fig. 5.2.7 that the
value of ¢ is approximately 16 W-1 (a value to be compared with
the value of 15 W-1 which is theoretically found for &).

We finally remark that other non-linearities, which also have
a different impact on gain and refractive index, exist. Standing wa-
ve induced gratings, two photon absorption and lateral carrier dif-
fusion can be mentioned here. Moreover, other expressions for the
gain suppression (or the power dependence of the gain) are being
used, e.g.:

,;,:-—--—-AN""B or GD=———AN°"B (5.2.10)
T4+1o/ls 1 #1671,

A different linewidth behaviour (see appendix V.a) is then found for
these expressions.

V2.0 Di ion.in, e feedbag]

The distributed reflections and hence the loss in DFB lasers
are strongly wavelength or frequency dependent, as has been out-
lined in 11.3. This frequency dependence of the loss can also be seen
from the wavelength dependence of the roundtrip gain. This disper-
sion may not be neglected in a linearisation of the rate equations.
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More generally, the dispersion implies that variations in the fre-
quency (due to modulation or noise) feed back via a variation in the
loss. The last variation requires a variation of the carrier density
(and thus of the refractive index and the frequency) so that the
gain can compensate for the changed loss. Hence, one must, when
linearising the rate equations, also include a variation in the loss
of the form:

ay ady
A70=B—O:J-Amo+-é?\!9-ANn (5.2.11)

The variation of the loss with the carrier density is due to e.g. the
variation of the average refractive index and of the Bragg wave-
length. It accounts for the fact that the loss depends more general-
ly on the Bragg deviation (see e.g. fig. 2.3.3). This variation is also
caused by the dispersion (i.e. it is not present if the loss is inde-
pendent of the Bragg deviation). Notice that the variation with car-
rier density must be calculated under constant emission frequen-
cy and that the variation with frequency must be calculated under
constant average carrier density. The equation that expresses the
phase resonance must, due to the dispersion also be transformed
to:

o Vv
AU)O: ?0 AANG‘!‘ i

2L{3¢H O0R

Expressions for ¢g and yp have been given in chapter 2. It must be
noticed that to be exact and due to spatial hole burning, one should
also include variations of ¢r and yo with varying power. Here we
concentrate on the dispersion and neglect these variations. The de-
rivatives of yp and ¢g can be included in the o-factor. With these
adaptions to the rate equations, the linewidth can be derived to be:

o ocA+!g% ;
oo S (1 +p?) g LN
PP Yo

2n] 5 (5.2.13)
Tlo
{1_VE d0R p,ayo} A<
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B can be considered as some kind of effective linewidth enhance-
ment factor.

The term between brackets can cause a considerable line-
width enhancement when yo and/or ¢ are strongly increasing func-
tions of the frequency (i.e. in the case of strong dispersion). More-
over, due to spatial hole burning, this term is also power depen-
dent. In some lasers, e.g. where the loss yp increases with bias le-
vel and hence its derivative can also be expected to increase, the
enhancement increases with bias level. This can give rise to a line-
width floor.

B, 9y/dw and 9¢R/dw are not easily quantified. One possible me-
thod to investigate the effect of dispersion numerically is to cal-
culate the linewidth of two DFB-lasers, which are completely
identical except for the fact that they have an opposite dispersion.
As an example we consider two 300 um long 1.55 um DFB-lasers
(denoted by E and E') with field reflection coefficients ps = 0.2324
eir at the left facet and pp = 0.2324 ei37/2 for laser E and pp =
0.2324 ein/2 for laser E' at the right facet.

Both lasers have the same longitudinal distribution of optical
power (and hence identical spatial hole burning), but also the same
threshold gain and threshold gain difference AgL = 0.33. From cal-
culations of the spatial hole burning induced FM-response, it fol-
lows that the loss increases with bias level in both lasers. Fig.
5.2.8 shows the complex roundtrip gain (at threshold) as a function
of the wavelength for both lasers. The roundtrip gain is defined as
the optical field gain after one roundtrip through the cavity. A
wavelength independent gain has been assumed and hence this wa-
velength dependence of the roundtrip gain is completely due to the
dispersion in the loss. The amplitudes of the roundtrip gain of both
lasers are symmetric with respect to Ap (A being the Bragg wave-
length). The phases however are antisymmetric against Ag.

Both lasers have an opposite dispersion inyand an equal dis-
persion in ¢¢p. E.g. for laser E (E'), it follows from fig. 5.2.8 that a
decrease of A (Aw=>0) results in a enhanced (reduced) roundtrip gain
and thus an decreased (increased) loss. Thus dy/dw is negative (po-
sitive) for laser E (E'). It can also be seen from fig. 5.2.8 that, since
A decreases with increasing N, 9y/oN is positive (negative) for
laser E (E'). Any difference in linewidth between both lasers can be
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attributed to the dispersion in yand to the different B-values
(which also comes down to a power dependent dispersion effect).
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Fig. 5.2.8: Amplitude (—) and phase (--) of the roundtrip
gain at threshold for lasers E and E".

The linewidth as a function of inverse output power is shown
in fig. 5.2.9 for both lasers. The a-factor has a value of 3. Spectral
hole burning with a saturation power of 67 mW (e = 15 W-1) has
also been taken into account in the calculation. This spectral hole
burning leads to an extra term in the denominator of (5.2.13) and
weakens the effect of the dispersion. However, the dispersion still
causes the linewidth of laser E'to be about 15% larger than that of
laser E at low power levels, while the influence of the dispersion
still increases with increasing power level. The linewidth of laser
E' reaches a minimum of 77 MHz at a power level of about 2 mW and
then increases again to a value of 120 MHz at a power level of 3.7
mW. Beyond this power level, the laser becomes multi mode and a
steep increase of the linewidth starts.
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Fig. 5.2.9: Linewidth vs. inverse output power for the
lasers E and E'.

Fig. 5.2.10 further shows the roundtrip gain of laser E' at an
excitation of 38 mA (where the minimum in the linewidth occurs).
It can be concluded that the laser is still single mode at this bias
level. Calculation of the slope of the amplitude of this roundtrip
gain gives an indication of the increase in dispersion. This slope
has increased from 357/um at threshold to 401/um for a current of
38 mA and 530/um at 44 mA (corresponding with 3.7 mW).

This type of rebroadening has theoretically been observed in
most lasers where there is a local increase of the loss with the
frequency in the neighbourhood of the emission frequency and
where the loss increases with bias level. The minimum linewidth
and the power at which this minimum occurs depend on the
strength of the dispersion and of the spatial hole burning, but also
on the value of the linewidth enhancement factor. The dispersion is
often much weaker than it is in laser E', but the linewidth enhan-
cement factor is often larger (values of 5 and more are reported).
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Fig. 5.2.10: Amplitude (—) and phase (--) of the roundtrip
gain at 38 mA for laser E'.

As many lasers, emitting on the short wavelength side of the
Bragg wavelength, seem to become multi mode at low power levels
(they are instable), this rebroadening is only found for a limited
number of lasers. When considering again the fig. 5.2.7 with the
experimentally measured linewidth floor, one can notice that a few
lasers seem to differ quite a lot from the average behaviour. One
can wonder if the linewidth floor of these few (pathological) cases
is not caused by a dispersion effect.

The implications of dispersion in the gain can be estimated
by replacing dy/Qw in (5.2.13) by dy/0w - dG/dw. From the analytical
expressions for the gain, it follows that the dispersion in the gain
is equal to 0.0067 for each 10 nm detuning from the gain peak. This
would give a slope of the roundtrip gain equal to 17/um, which is
negligible with the slope resulting from the dispersion in the loss.
The dispersion in the gain affects the linewidth by less than 1 %.

The previous results also indicate that dispersion of the loss,
even if it doesn't result in a linewidth rebroadening, surely can
affect the linewidth quite a lot and should not be ignored.
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V.2.3 Other important factors
V.2.3.1 Spatial hole | .

Spatial hole burning not only affects the dispersion, but it al-
so influences the linewidth directly. It was already shown in [I.3
how spatial hole burning results in a bias dependence of the gain
and the loss. In general however, it will also affect the Langevin

functions and the feedback phase.
In order to eliminate the dispersion we first consider A/4-

shifted lasers here. We further neglect the spectral hole burning.
Fig. 5.2.11 shows the linewidth vs. the inverse output power for
300 um long A/4-shifted lasers with different xL-values. The line-
width has been divided by the threshold gain and by the facet loss
to eliminate the xL-dependence of these quantities. According to
Henry's formula, the different curves should then coincide. Any dif-
ference can now only be attributed to a difference in spatial hole
burning or in mode profile (resulting in a different K-factor or a
different agff). It certainly becomes clear that spatial hole burning
results in an offset for the linewidth, an offset which increases
with increasing kL [5.23], [5.24]. It is also seen that the offset be-
comes less at higher power levels and the linewidth eventually ap-
proaches zero. This can be related to the expression (2.3.31) for the
gain suppression and similar expressions for the power dependence
of the loss. At high power levels, the gain and loss suppression sa-
turate and the spatial hole burning only implies a change in the dif-
ferential gain and in the loss. The linewidth is therefore again pro-
portional with the inverse power level, just other values for the «-
factor and for the loss need to be used.

Fig. 5.2.12 and 5.2.13 show the influence of spatial hole bur-
ning on the linewidth of lasers A and B. Resulis obtained with a
(non-) uniform carrier density are thereby depicted by a (full)
dashed line. When, in addition, spectral hole burning is also taken
into account, one finds that spatial hole burning again causes an
offset for the linewidth, although it doesn't seem to have much in-
fluence on the power level where the minimum in the linewidth oc-
curs.
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Fig. 5.2.11: Linewidth (divided by the threshold gain and the facet
loss) vs. inverse outpower power for 300 pm long
A4-shifted lasers (in 108 MHz/um?2).
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Fig. 5.2.12: Linewidth of laser A vs. inverse output power, calculated
with uniform (--) and non-uniform ( ) carrier density
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Fig. 5.2.13: Linewidth of laser B vs. inverse output power; calculated
with uniform (--) and non-uniform ( ) carrier density

V.2.3.2 1/f-noi n mperature fl ion

The Langevin function Fg originates from fluctuations in the
spontaneous carrier recombinations. A considerable part of the
electron energy is converted into heat during these recombinations
and this causes a temperature increase AT, which depends on the
thermal resistance Rt (with typical value 60 K/W). Fg therefore in-
duces temperature fluctuations, which lead to additional noise
sources for the rate equations since the gain and the refractive
index are temperature dependent. The temperature fluctuations can
simply be calculated from Fg, Rt and the bandgap energy Egq:

AT = HTEgVaT\TFS,O (521 4)

with the efficiency n accounting for the fact that Fs is only partly
converted into heat. '

A detailed description of the numerical implementation of
the temperature problem and its incorporation into the small sig-
nal models of CLADISS is given elsewhere [5.25]. We only notice
that the thermal cut-off frequency is much lower than 1 MHz and
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that, as a consequence, the temperature fluctuations can not be
treated as white noise.

1/f-noise is another low frequency noise source. It can be ta-
ken into account by the introduction of a new Langevin force F¢, un-
correlated with the other Langevin forces, in the equation (2.3.4).
The exact origin of Ff is not really known, but its autocorrelation
is generally assumed to be [5.26]:

f ] Sl = 2 - ES S2 El # & 1

with Iy being the threshold current and ay (Hooge's constant) being
an empirical constant equal to 2 10-3. Ff also causes temperature
fluctuations and must be included in (5.2.14).

Fig. 5.2.14 shows the spectrum of the FM-noise of laser A at
an output power of 10 mW when the additional 1/f-noise and tem-
perature fluctuations are taken into account. Gain suppression was
neglected to avoid the rebroadening. One can see that both noise
sources only give slowly varying contributions (with a frequency
below 1 MHz). The adiabatic approximation can no longer be applied
when calculating the linewidth and one must use the Fast Fourier
approach.

Fig. 5.2.15 shows the calculated power spectrum. It is clear
that, for the laser under consideration and at the power level of 10
mW, both effects result in an increase of the linewidth by about 1
MHz. It must further be noticed that, due to the 1/f-noise, the
spectrum is no longer Lorentzian, but Gaussian.

The low frequency contribution to the FM-noise is nearly in-
dependent of the power level [5.27]. However, the contribution of
the white noise becomes smaller and smaller with increasing po-
wer level (at least if gain suppression is neglected). The low fre-
quency FM-noise therefore becomes dominant at high bias levels
and it can easily be shown that this results in a saturation of the
linewidth. Though, this low frequency noise is little annoying in
optical communication systems [5.27] and the phenomenon is rahter
of theoretical interest.
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V.2 .4 Reduction of the linewidth

From the previous results, it can be concluded that the at-
tainable minimum linewidth depends on: the stability of the single
mode behaviour, the loss and the photon number, the antiguiding
factor o, the dispersion and the spatial and spectral hole burning.
Minimisation of the linewidth therefore requires the control of
these factors. We already noticed that an increase of the photon
number and a decrease of the loss can be achieved by an increase of
the laser length. The stability of the single mode behaviour can
then be guaranteed by using special laser structures (as described
in chapter 4). The influence of spatial hole burning on the linewidth
is then removed at the same time. We'll briefly discuss the other
factors in the following.

V.2.5.1 The loss

From Henry's formula, it follows that the linewidth is pro-
portional with the threshold gain I'gth, which equals the total loss
(i.e. the sum of mirror loss and absorption loss). The mirror loss
can be reduced by increasing the laser length or the coupling con-
stant. An increased spatial hole burning results in both cases and
the method should therefore only be applied if special laser struc-
tures are used.

The absorption loss ajnt has its origin mainly in the free-

carrier absorption and can be expressed as:
Qint = L0y + (1-T)oig (5.2.16)

with o being the absorption in the active layer and o the absorp-
tion in the cladding layers. Materials research [5.28] indicates that
aca IS much larger than ag for 1.55 um lasers. aint can therefore be
minimised by using a very thin active layer (for which I is

smaller).
V.2.5.2 Tl Giiding §

The linewidth is nearly proportional with the square of the
antiguiding factor og. The value of ag can, for DFB lasers, be redu-
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ced by the choice of a rather short grating period. A shift of the
main mode towards shorter wavelengths then occurs and the value
of ap decreases, as can be seen on fig. 5.2.16 [5.29].
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Fig. 5.2.16: a-factor of a F-P laser for bulk and QW material [5.29]
(the wavelength decreases with the carrier density).

A larger reduction of ag can be obtained by introducing quan-
tum well material. The value of o can even be reduced to below
one if 'Strained Modulation Doped Quantum Well' material is used.
This means a reduction of ag with a factor 3 or 5 and of the line-
width with a factor 10-30, in comparison with bulk material.

i ral hol rnin

The spectral hole burning coefficients are little dependent on
the wavelength and only a small reduction in minimum linewidth
can thus be achieved by detuning. A larger reduction of the spectral
hole burning is possibly achieved if other material is used.
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Losses that decrease with frequency are to be preferred here,
although no (first order) dispersion in the loss suffices to avoid
the dispersion induced rebroadening. A large dispersion is some-
times introduced via an external cavity to obtain very narrow
linewidth, but is must be mentioned that the mode behaviour in
such external cavity lasers is not very stable.

V.3 The intensity noise of DFB lasers

The intensity noise, i.e. fluctuations in the emitted optical
power, is of special importance under the application of analog or
digital AM-communication. Future applications of this can be found
in e.g. optical cable television (CATV) systems. [5.30] The carrier
to noise ratio (CNR) has a large influence on the system perfor-
mance in this case and it is determined by the noise of the receiver
(e.g. shot noise of the photodetector) as well as by the intensity
noise of the laser [5.31].

One must distinct between the noise, which appears in the in-
tensity of a single mode (e.g. the main mode) and the noise which
appears in the total intensity (equal to the sum of the intensities
of all modes). Mode partition noise [5.32], [5.33] e.g. involves large
fluctuations in the intensity of each mode separately, while the
fluctuations in the total intensity remain rather small. The fluctu-
ations in the intensities of the different modes are thereby corre-
lated so that their sum remains very small. Mode partition noise
should nonetheless be avoided in optical communication systems.
Indeed, the correlation between the noise in the modes can be de-
stroyed as a result of the dispersion in the optical fibre (which
makes that all modes propagate with different velocity) and it can
result in large fluctuations of the total intensity, measured by the
photodetector. This noise is easily reduced by working at the wa-
velength (1.3 pm) where minimum fibre dispersion occurs. Noise in
the total intensity of the laser itself is not as easily reduced.
Theoretical and experimental investigation of the factors which
determine the RIN is therefore required.
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V.3.1 Frequency dependence of the RIN in single mode lasers

Fig. 5.3.1. shows a typical spectrum of the RIN of a single mo-
de laser (laser A here). This spectrum is flat for fregencies ranging
from 1 MHz up to a few hundred MHz (or more), where it strongly
increases as a result of the relaxation oscillation. The spectral
density of the RIN again decreases beyond this oscillation.

01
RIN ( 6Hz™1)
001 --=: with spectr. hole burning
— : without spectr. hole burning

.0001
.00001—5‘
1.[‘2—(-3-4ﬂ
1E-?7 T TTTI i T BoR R e LM ek

FREQUENCY ( 6Hz )

Fig. 5.3.1: Frequency dependence of the RIN for laser A
at an output power of 1 mW.

It can no longer be argued, as for the FM-noise, that only the
low frequency value of the RIN has implications on the performance
of a communication system. The relaxation oscillations in the FM-
noise only limit the channel spacing in communication systems.
The fibre bandwidth is nevertheless large enough so that a suffi-
cient number of channels are allowed. The relaxation oscillations
in the RIN on the other hand limit the maximum modulation fre-
quency. A low value of the RIN at these relaxation oscillations
would imply that a larger channel bandwidth can be used.
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The frequency dependence of the RIN can be derived from the
rate equations. For a Fabry-Perot laser, one finds for the intensity
fluctuations at high power levels:

Al A Fs+(jQ +14) Fi/lo

(5.3.1)
lo {jQ +Elg(ANGg=B)HjQ + 74 + AlgV3 } + AlgV3 (ANg-B)

From this expression, it follows that the resonance frequency is
approximately proportional with the square root of the photon
number (or output power). A high resonance frequency can be ob-
tained by biasing at higher output powers, but also by using shorter
lasers or quantum well lasers.

The damping of the relaxation oscillations is mainly caused
by the gain suppression. From (5.3.1), it can be derived that the ma-
ximum value of the RIN, occuring at the resonance frequency, is
proportional with the inverse of the square of £ and with the inver-
se of the third power of the photon number. An increase of the out-
put power, will therefore bring about a considerable decrease of
the RIN.

1/f-noise and temperature fluctuations only contribute to the
intensity noise at low frequencies (below 1 MHz) [5.34]. In practice
however, modulation frequencies are always chosen above 1 MHz
(also in order to reduce the distortion and to guarantee a uniform
FM- or AM-response), and the low frequency noise is of little si-
gnificance.

V.32 F | vaitici. $his. V. 1 RIN
V.3.2.1 Multi mode lasers

The RIN appears to be very sensitive to the presence of strong
side modes. This is first of all the case for the noise in the inten-
sity of the main and side mode separately (partition noise), and is
easily explained with the help of the rate equations. The equation
(2.3.7) for the side mode intensity (index 1) gives in the low fre-
quency approximation:
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_ Fr1+14 AIG(Ng,»1) - 11]

{D.3.2)
Y1 = G(No,®1)

I

Both the side mode intensity Iy and the fluctuations in gain and
loss A[G(Np,m1)-y1] are relatively small for a side mode below
threshold. The fluctuations in the carrier density are indeed re-
stricted by the oscillation of the main mode and the resulting gain
clamping, while non-linearities such as spectral and spatial hole
burning can be neglected in first order approximation. The second
term in the numerator of (5.3.2) can thus be neglected. The denomi-
nator of (5.3.2) however is very small when the side mode reaches
the threshold. Its value can be determined from solution of (2.3.7)
in the steady state and one then finds for the low frequency inten-
sity noise of the side mode:

213

Sa11(Q2=0) = < (5.3.3)

The fluctuations in the side mode intensity are proportional with
the 3rd power of the side mode intensity and they can be relatively
large if the side mode approaches the threshold.

By neglecting all other Langevin functions and all non-line-
arities, it follows from the carrier rate equation that the total in-
tensity remains constant. This indicates that the fluctuations in
the side mode intensity and in the main mode intensity are cross
correlated so that large fluctuations in the main mode intensity
will be present. It is as if the photons are just repartitioned over
the 2 modes in a stochastic way, a viewpoint giving rise to the
name 'partition noise'.

The other Langevin functions and the fluctuations in gain and
carrier density are not zero in reality, but their effect is much
smaller than the fluctuations in the side mode intensity. The mode
partition noise is illustrated in fig. 5.3.2, which gives the fluctu-
ations in the main mode intensity for laser B. ‘This figure also
shows that the influence of the partition noise is restricted to low
frequencies (up to 100 MHz). The cut-off frequency is given by
[G(Np,w1)-y1]/2n, as can be seen after solution of the equation
(2.3.7) in the dynamic regime.
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Fig. 5.3.2: RIN of the main mode for laser B and for
different bias levels.

The fluctuations in the intensity of main and side mode be-
come again smaller beyond the threshold of the side mode. The side
mode then consists no longer of amplified spontaneous emission,
but becomes a genuine oscillator mode and the side mode equation
now reduces to the condition that the gain must compensate the
loss for the side mode. An analytical approximation can be found
only if spatial or spectral hole burning are considered.

These non-linearities result furthermore in a strong depen-
dence of the total intensity noise on the side mode strength [5.35],
in contrast with what has been believed for a long time. As has al-
ready been outlined in V.2, the fluctuations in the side mode inten-
sity induce large fluctuations in the gain or loss of the main mode,
which ought to be compensated by large fluctuations in the carrier
density to maintain the oscillation condition. The conservation of
charge (expressed by the carrier rate equation) makes that the lar-
ge fluctuations in carrier density now also require large fluctu-
ations in the total intensity. The influence of the side mode inten-
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sity on the overall RIN is illustrated in fig. 5.3.3 for laser B. Gain
suppression has thereby been neglected. It is clear that the overall
RIN strongly increases as soon as the side mode suppression drops
below 20 dB and that it decreases again beyond the threshold of the
side mode.
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Fig. 5.3.3: Overall RIN for laser B and for different bias levels.

As for the linewidth, the influence of the side modes on the
overall RIN can be approximated analytically. Though, the expres-
sions are too long to write down here.

inale m laser

As long as a strong side mode suppression (more than 30 dB)
exists, the RIN decreases with increasing power, as can be seen
from the expression (5.3.1). Gain suppression and spatial hole bur-
ning only have a very weak influence in this case. The following ex-
pression can be derived if gain suppression is taken into account
accurately:
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Al AFs(-Elp+1g Fylo i Bl
lo (ANg=B)lg {Etrd + A (1 = El)? Vy)

whereby one can notice that:

(ANg—-B)(1 =Elg)=y=cte (65.3.5)

which implies that the minimum in the RIN would occur for lg =
1/2€. The presence of the term E(trg)1 will shift this minimum to-
wards even higher power levels, power levels where the first term
of the numerator becomes dominant. The minimum then disappears.

The dispersion results in a dependence of the RIN on the line-
width. If gain suppression is neglected, one finds:

Ffnd+va'stl 2
(ANg-BY2L = Fo N %
(e (R
oN oN
Fig. 5.3.4 shows the influence of the dispersion on the RIN of lasers
E and E', which, as was shown in V.2.2.2, exhibit an opposite dis-
persion. The influence of dispersion on the RIN is substantially
smaller than its influence on the linewidth; the 2 curves do not de-
viate by more than 5 dB and no increase of the RIN can be observed.
Fig. 5.3.5 further shows the RIN of laser A as a function of
the inverse output power. The RIN decreases as I3 at low power
levels, in agreement with (5.3.4). At higher power levels, the shot
noise becomes more important; the RIN still decreases, but not as
rapidly anymore. It must be noticed however that the observed RIN
at these high power levels is usually dominated by the noise of the
photodetector, noise which has not been taken into account here.
The previous results indicate that a, for practical purposes,
sufficiently low RIN (e.g. -150 dB/Hz) can in general be achieved by
biasing at a sufficiently high power level, provided that a suffi-
cient suppression of the external reflections and of the side modes
can be guaranteed.

{(Tl+AILVY'Y (5.3.6)
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Fig. 5.3.4: Low frequency value of the RIN for the lasers
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V.4 External feedback

External reflections (e.g. originating from an optical fibre or
from lenses) can bring along an enormous increase or decrease of
the linewidth and the RIN. The presence of such external reflec-
tions can be simulated by attaching an extra, passive section to the
actual laser cavity, as is illustrated in fig. 5.4.1. The passive cavi-
ty has a length Le equal to the distance between laser facet and
fibore and the material parameters are those of air if the external
reflection originates form a fibre or a lens surface. In reality, the
reflections can be originating from different surfaces or points in
the fibre or real external cavities (with or without grating) can be
introduced deliberately. The external field reflection r3 and Leg are
not necessarily independent of the wavelength and the intensity in
this case.

Fig. 5.4.1: Schematic view of an external cavity laser.

For a static or low frequency analysis, the effect of the ex-
ternal cavity can be reduced to a modification of the facet reflec-
tivity rz2. If one assumes that an absorption ae and a effective
refractive index ne for the external cavity, one finds the following
expression for the effective facet reflectivity re:

r3' (1= [ra]®)

i rzra'

g ="ro+ (5.4.1)

with:

I'a' =Ty e—aeLe B—j47€n3|_e/7\. (542)
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The implications of the modification in facet reflectivity can
be evaluated with the help of the rate equations. The loss (y =
vg(aint - L"1In|rire])) becomes frequency dependent, while the phase
of re, ¢g, affects the phase resonance condition:

By +¢3—§£n Lyg=2kn ke Z (5.4.3)

with ¢1 being the phase of the facet reflectivity ri, Lq the laser
length and na the effective refractive index of the active section.

The rate equation for the carrier density (in the active re-
gion) remains unchanged, but the other rate equations need to be
modified. For the single mode case and leaving the mode index m
behind, they can be written as [5.36]:

%: [GNg,@)— 1 | + S + 2k, VIO T(t-1)
.€os(mgt + ¢(t) — p(t-1)) + F (5.4.4a)
dp o oG I(t-1)
A= —L = — —— - — s
T eaNo( . N”‘“)+2 A0 I()
- SiN(@oT + ¢(t) — ¢(t-1)) + v4F,, (5.4.4b)

with © being the roundtrip delay of the external cavity, v, wp and
No,th the loss, the emission frequency and the threshold carrier
density without external feedback, | the number of photons in the
active section and Aw the frequency deviation caused by the noise
and the external feedback. The feedback coefficient k¢ is given by:

‘ _1_"'"|":a|2
"

s (5.4.5)

with tp the roundtrip time in the (active) laser cavity. Steady state

solution of (5.4.4) gives the change in threshold gain and emission
frequency Aw caused by the external feedback for Fabry-Perot

lasers [5.37]:
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AGy, = -2k, cos(wt)
Awt= o1 - 0yt =-Csin(wt + tg"1a); C=Kqr 1+0° (5.4.6)
while a small signal analysis yields the linewidth narrowing:
AV =Avy [1 + C cos(wt + tg™ ' a)) 2 (5.4.7)

with Avg denoting the linewidth of the solitary laser diode. ke (and
hence r2 and r3) and C are usually assumed to be real, which is jus-
tified for Fabry-Perot lasers. Formula (5.4.7) predicts that, depen-
ding on the value of wt and of a, both broadening and narrowing of
the linewidth will take place.

Formula (5.4.7) is valid only for C<1. For larger values of C,
the feedback induces mode hopping and locking and the feedback
can even become incoherent [5.38], [5.39]. A large signal, time do-
main analysis is required in this case. Five regimes, determined by
the value of C and of |r3|, are therefore usually distincted. Fig. 5.4.2
depicts the linewidth in the first four regimes for a 300 um long,
as-cleaved F-P laser at an output power of 5§ mW [5.38]. The first
regime is defined by the condition C<1 and the linewidth is given by
(5.4.7) in this regime. Different values for the linewidth are found
for the different values of wt and of t. In regime |l (C>1), there
exist two solutions for the phase condition (5.4.6) and it turns out
that the emission frequency will lock to the solution with the lo-
west phase noise. Mode hopping, yielding a linewidth rebroadening,
can therefore occur between modes with a similar amount of phase
noise. With increasing feedback, the frequency splitting of the hop-
ping modes approaches the frequency separation between the ex-
ternal cavity modes and the laser will lock more and more to the
feedback phase that gives maximum linewidth reduction. The mode
hopping disappears and a low linewidth results (regime Ill). For
still higher feedback levels, a dramatic increase of the linewidth
appears and this regime (regime 1V) is referred to. as the coheren-
ce-collapse regime. This coherence collapse is not yet completely
understood. One explanation for it is that the light has lost its co-
herence at the time it is fed back into the laser [5.40]. The line-
width can assume values of several GHz. The last regime (regime V,
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not shown in fig. 5.4.2) again shows a stable, narrow linewidth. The
laser now operates as a long cavity laser.
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Fig. 5.4.2: Linewidth vs. feedback fraction |r3|2 and for an external
cavity length Lg = 10 cm [5.38].

The relative intensity noise is less sensitive to external re-
flections. Fig. 5.4.3 shows the caculated RIN, averaged over the
frequency range from 5 to 500 MHz, for the same F-P laser. The
output power is again 5 mW and different values for the length of
the external cavity are considered. It can be seen that the values of
the RIN are little scattered and they remain small until the cohe-
rence collapse occurs. A strong increase in the RIN is nonetheless
found when the coherence collapse starts. The occurence of the co-
herence collapse depends mainly on the value of a and on the length
of the external cavity. The coherence collapse disappears for a=0
or for short external cavities (i.e. Le < a few mm) [5.41].

The previous results have been obtained after solution of the
rate equations (5.4.4) and they are not really valid for DFB lasers.
No such general calculations for DFB lasers have yet been reported,
but the five regimes have been observed experimentally for DFB la-
sers [5.42]. A large-signal, time-domain model ([5.43]) that solves



V.40

the coupled wave equations would be required to analyse the ef-
fects of external feedback on DFB lasers in detail. Models such as
CLADISS, which rely on solution in the frequency domain, can only
handle the first regime.
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Fig. 5.4.3: RIN vs. feedback fraction Ira]2 and for several
external cavity lengths [5.38].

We illustrate the variation of the linewidth for a 300 um long
DFB laser with xL=2 and with facet reflectivities ri=0.9ei%/2 and
ro=0.1eim/2, We consider the first regime; the external reflection
originates from a distance of 3 cm and r3=16 10-3. We also assume
ae=0 and ng=1. Fig. 5.4.4 shows the variation in the linewidth due to
the external reflection for small variations in the distance Leg. One
can easily check that the variation of the linewidth corresponds
with the formule (5.4.7), at least qualitatively.

The previous results indicate that external,reflections must
be suppressed to any possible degree, unless a control of the dis-
tance Le and of the feedback fraction can be assured. External cavi-
ty lasers, operating in the regime Ill, are sometimes introduced
when narrow linewidth lasers are needed. A carefull design is ob-
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viously required to assure operation in the regime Ill, but even
such lasers are little stable. Undesired external reflections on the
other hand are usually eliminated by the use of one or more (expen-
sive) optical isolators. In addition, special design of laser diodes
might result in a decrease of the feedback sensitivity C. However,
it can be shown that this reduced C-value is obtained at the expen-
se of a reduced efficiency [5.44]
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Fig. 5.4.4: Variation in the linewidth of a DFB laser due to external
reflections, for small changes in external cavity length.

It is also expected that the feedback sensitivity can be redu-
ced substantially by incorporating the laser diode in a ring confi-
guration. A general structure of such a ring laser is shown in fig.
5.4.5. The laser acts as an amplifier and the ring furthermore con-
sists of an isolator and a directional coupler. The analysis of such
a configuration can be based on the introduction of transfer matri-
ces for each element. This matrix can be derived from the coupled
wave equations for the laser amplifier. Multiplication of the diffe-
rent transfer matrices then results in some kind of roundtrip ma-
trix. The emission wavelength can be determined as the wavelength



V.42

for which the eigenvalue of the roundtrip matrix equals one, while
the fields are found from the corresponding eigenvectors.
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Fig. 5.4.5: Structure of a ring laser.

It has been shown [5.45] that a very low reflection sensitivi-
ty can be obtained already for a very weak level of isolation if a
travelling wave amplifier is used. The isolator then just serves to
assure that only one travelling wave (i.e. in one direction) exists in
the ring. The external reflections then give rise to a wave in the
direction for which no oscillation occurs and this wave disappears
after a few roundtrips. This further requires that all reflections
(e.g. on the facets of amplifier, connectors, etc.) be as low as pos-
sible since the required level of isolation is determined by these
reflections. In that case, a low reflection sensitivity and an accep-
table efficiency result at the same time. However, due to the long
feedback loop (e.g. a fibre of a few cm), one needs to include a
strong wavelength selective filter, such as a Moiré Fibre Grating
Resonator [5.46].
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A ndix V.A Influen f in ression _on the linewi

We derive the linewidth form the single mode static rate
equations:

[ G(Np.w)—y] 1+ F(t)=0 (5.A.1a)
J (N G(No,0) | Fy

%=[7‘!+BDN§+ CQI\E’)+-———\;';———FS'O(U+ . (5.A.1b)

Aw= g A ANg + VgF (D) (5.A.1¢)

with the different quantities being defined as in 11.3.1 and where
we have ignored the modeindex. The steady state spontaneous
emission has also been neglected.

a) For a gain suppression of the form:

G(Ng,)=[ANg— B] {1 & 1} (5.A.2)

we find after linearisation of (5.A.1):
AANg(1-El)-E(ANg—-B)Al+F;/1 =0 (5.A.33)
ANO{Va'c,‘J +Al (1 -ED}+ (ANg-B)(1 -2El) Al =V,Fgo—-F  (5.A.3b)

Substitution of Al, as it can be determined from (5.A.3a), in (5.A.3b)
gives an expression for ANg, which, after substitution in (5.A.1¢),
gives the following expression for the linewidth:

2
S 44 = (5.A.4)
EVq
TgA (1 =&l

(1-&h+

b) If the gain suppression is assumed to be of form:

ANo-B

1+E1 S

G(Nﬂsm):
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then the linearisation gives:

A ANy  E(ANg-B)Al .\ F

(5.A.6a)
1+E&l (1 ,{_&f)g |
AN Al AN AN, - B) Al
DNl # P oal L BV (5.A.6b)
Trd 1+El (1 + F,I)E '
and for the linewidth, one finds:
2 2
Ay = S 1 4 oa” (1 +8D0" (5.A.7)
4l £V 2
ey
A Tg

A rebroadening will still occur, but the minimum in the linewidth
is reached for &l = 1.

c) For a gain suppression of the form:

G(N alal (5.A.8)
( Dlm)‘_“\[—;i-‘-l_-—'-gl— A
one finds:
AAN, (ANo-B)EAl F
- + —= (5.A.9a)
VIHET 24?2 |
ANgV, A ANgl (ANy-B)Al [ al]
1+2|=FgqoV,—F 5.A.9b
Trd * Vi +ET * (1 _,_;;|)3f2 * 2 sete— ( )
and for the linewidth:
S o? (1 +El)
Ay=— 1 + (5.A.10)
4xl 2
[1 + &Va J
21,4AVT + El

The gain suppression now only causes an offset (or a weak
rebroadening due to the presence of 1(q).
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Chapter VI

THE MODULATION OF DFB LASERS:
HARMONIC DISTORTION

In this chapter, we address the behaviour of laser diodes
under current modulation. Such a modulation is indispensable for
the transmission of information and the performance of a laser
diode is therefore judged for a great deal on the basis of its
modulation characteristics. In the case of digital coding, only the
linear or the small signal characteristics (i.e. under a small
modulation current) are of importance. Important is to which
degree and over which frequency range these characteristics can be
regarded as being independent of the modulation frequency. The
small signal charac-teristics have already been the subject of an
extensive investiga-tion and a detailed treatment of them has also
been given in ref. [6.4]. They therefore do not really belong to the
topics of this the-sis, although, for the sake of completeness, we
will give a brief review of the recent theories.

In the case of analog modulation, one must also aim at a
small (harmonic and intermodulation) distortion. The responses of
amplitude and frequency do not longer depend linearly on the cur-
rent modulation as a result of this distortion and the intensity and
the frequency of the light are also modulated with frequencies that
differ from the modulation frequency. The total distortion (which
must be minimised) in a system actually depends also on the dis-
tortion of other components such as the detector.

In this chapter, we will mainly focuss on the second and third
order harmonic distortion. The higher order distortions become
smaller and less important if the optical modulation depth (OMD) is
not too large. Moreover, the causes of all harmonic and intermodu-
lation distortions are practically identical, being spectral and spa-
tial hole burning, spontaneous emission at low power levels and
the relaxation oscillations at high modulation frequencies.

We slart here, as in the previous chapter, with an overview of
the literature, and subsequently give a discussion of the linear mo-
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dulation characteristics. We then treat the numerical and analyti-
cal results about the harmonic distortion in more detail.

VI.1 Brief overview of the literature on modulation.

Numerous papers on the modulation of laser diodes have al-
ready been published. The vast majority of these papers are re-
stricted to the small signal modulation and describe both experi-
mental and theoretical results about the low and high frequency
modulation of several types of laser diodes such as F-P, DFB and
DBR lasers, multi-electrode lasers and external-cavity lasers.

Temperature effects, which are only important for modula-
tion frequencies below 1 MHz, are described in e.g. [6.1] and [6.2]. In
both cases, the analysis is restricted to Fabry-Perot lasers and a
good correspondence between experimental and theoretical results
is reported. In [6.2], lateral diffusion of carriers and spontaneous
emission are also taken into account. Both effects mainly cause a
damping of the relaxation oscillations.

The consequences of lateral diffusion were also investigated
in [6.3] for narrow-stripe lasers, for which the diffusion is taken
into account as an effective gain suppression. In this way, one also
finds a contribution to the low frequency FM response, which is not
consistent with experimental or other theoretical results [6.4].

An in-depth analysis of the relaxation oscillationss, i.e. of
the resonance frequency f; and of the damping 9, is given in [6.5].
The existence of a universal relation between f; and © was first
shown there starting from the rate equations, as in 11.3. For not too
low a power level, one can show that:

9 =K (f,)? met K:(En)eﬁ% 6.1.1)

[6.5] in addition also treats the influence of parasitic electrical
elements. :

An - excellent review of the AC-response of Fabry-Perot la-
sers, of the influence of parasitic elements and of the different
non-linearities and of circuit models for the modelling is given in
[6.6].
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DFB lasers must be distincted from Fabry-Perot lasers due to
the extra influence of longitudinal spatial hole burning. Mainly the
low frequency FM-response is affected by this phenomenon. The
contribution of spatial hole burning to the FM is liitle predictable
and can give rise to the presence of a dip in the power or frequency
dependence of the FM. Therefore, a lot of attention has been given
to this phenomenon [6.7], [6.8]. The dip in the frequency dependence
of the FM response can be removed by the use of multi-electrode
lasers, as has been demonstrated in [6.9].

Since analog optical communication systems have attracted
attention only very recently, only a limited number of studies of
the distortion exist. Most of these papers are restricted to Fabry-
Perot lasers. The distortion is then usually calculated from the ra-
te equations (as presented in chapter 2), by the introduction of a
similar (but second or third order) expansion as (2.3.16):

J=Jo + Re{J e/

I =m0+ Re{lm'1ejm + Im,292jm + Im_BEBjm}
NQ - NQQ + HE‘{ND-I Bjnt"i" Nggegjﬂt o Nggesjﬂt}
Op =0 o+ He{mm'1ejm+ mm'EEEiQt ¢ 5 mm_seajnt} (6.1.2)

Only the influence of a small number of non-linearities on the dis-
tortion has been studied so far and only amplitude modulation has
been considerd. Amplitude modulation is currently strongly favou-
red for the design of analog communication systems, partly becau-
se the present television distribution is based on AM-formatting.
First of all it must be mentioned here that distortion can oc-
cur even if the power current relation of a laser is perfectly linear.
This is due to the clipping at threshold [6.10]. This clipping effect
is a consequence of the fact that, at certain moments in time, the
total current can decrease below the threshold current if the num-
ber of channels N and/or the modulation index m; of these channels
are too large. The optical power remains zero if the total current
decreases below the threshold current and, obviously, the linear
relation between small signal power and current is lost therby. The
effect can be avoided by restricting the modulation index m of each
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channel so that m < 1/N. Such a restriction is often regarded as far
too severe and in many cases it is believed that accepting a little
distortion and choosing m larger than 1/N may be more advanta-
geous. The distortion, described above, is often referred to as the
Saleh limit.

It must also be mentioned that the distortion is not only ori-
ginating from the laser diode, but also from e.g. the photodetector
[6.11]. The distortion in an APD diode mainly occurs at high optical
powers or in an state with large amplification and it results from
the sharp increase in amplification with increasing bias voltage.
The distortion in a PIN diode mainly occurs at low bias voltages
where fotovoltaic effects can be observed.

In [6.12] and [6.13], the effect of spontaneous emission and of
relaxation oscillations on the distortion in Fabry-Perot lasers is
described. These effects are only important at low power levels,
resp. at high modulation frequencies. The damping of the relaxation
oscillations due to e.g. spectral hole burning has not been consi-
dered in both papers. Diffusion of carriers has been taken into ac-
count in [6.14], but again no spectral hole burning was taken into
account and the analysis is restricted to Fabry-Perot lasers.

More recent studies also treat DFB-lasers and/or take into
account spectral hole burning. The damping of the relaxation oscil-
lations due to spectral hole burning is described in [6.15] for both
Fabry-Perot and DFB lasers. The influence of spatial hole burning
on the low frequency (LF) distortion in DFB lasers on the other hand
has been studied in [6.16]. The distortion is calculated from the va-
riation of the efficiency with the output power in this case and it
is found that the distortion is minimal for a normalized coupling
constant of about one. [6.17] reports on a dip in the power depen-
dence of the distortion in DFB lasers, which has been explained as
being a result of the leakage currents.

Our study goes beyond that in the sense that relaxation oscil-
lations, spontaneous emission and spectral and spatial hole burning
can be taken into account at the same time and in a more detailed
way. It must indeed be remarked that the different non-linearities
can influence each other mutually. The spatial hole burning fur-
thermore depends on the modulation frequency; the effect becomes
weaker at higher modulation frequencies (e.g. above 500 MHz).
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This approach has led to some interesting results about the
distortion in the AM-response. E.g. it appears that the distortion
caused by the spatial hole burning originates from a non-linear re-
lation between output power and average intracavity power. As the
facet loss is proportional with the output power, it can be con-
cluded that the distortion decreases if the ratio of absorption loss
to facet loss decreases. Our analysis also confirms that the distor-
tion is minimal for xL-values between 1 and 1.5.

It was also found that the presence of a dip in the power de-
pendence of the distortion can also be attributed to an interaction
between spatial and spectral hole burning. Moreover, a dip in the
frequency dependence is sometimes resulting from an interaction
between the spatial hole burning and the relaxation oscillations.

VI.2 Small signal modulation: overview

From now on, we will only consider lasers with good single
mode behaviour and we leave the mode index m behind. In the fol-
lowing we will also use the definition 'low frequent' for modula-
tion frequencies between 1 MHz and a few hundred MHz.

Vl.2.1 The AM-response

The AM-response can, even for DFB lasers, be approximated
very well by the analytical formula (2.3.18). Longitudinal spatial
hole burning merely has an influence on the low frequency AM-re-
sponse and it can only cause a small increase or decrease of the
amplitude of the response. As the cut-off frequency of spatial hole
burning is normally smaller than the resonance frequency, there is
no influence on the damping of the relaxation oscillations either,
This damping is practically identical to the value which can be de-
rived from the formula (2.3.18a). Gain suppression and spontaneous
emission also cause, in addition to the damping, a small variation
in the amplitude of the AM-response.

The actual AM-response however must be calculated from the
relation between the number of photons | and the output power Pgyt.
In general, this relation is non-linear in Fabry-Perot lasers with
small facet reflectivities and in DFB lasers and one can write:

Pout,‘l i (Y =i éspat,z lo) 14 (6.2.1)
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It can be remarked though that the factor between brackets will
practically equal one in normal situations and that the frequency
dependence of &gpat,2 Will not be reflected in the frequency depen-
dence of the AM response.

The AM response remains flat as function of the modulation
frequency until the relaxation oscillations occur. Its amplitude at
low frequencies is furthermore proportional with the ratio of the
facet loss to the total loss. Fig. 6.2.1 shows as an illustration the
AM response of a 300 um long A/4-shifted DFB-laser with xL=1, and
this for different values of the injected current. The laser has a
threshold current of 22.5 mA and a AgL value of 0.7. Spontaneous
emission has been neglected in the calculations, while the respon-
se was calculated both with and without taking into account the
gain suppression (with an e-value of 11 W-1), One can see that the

effect of gain suppression is very small.

=40 -
AM-response ( dB )

Modulation Frequency ( 6Hz )

Fig. 6.2.1: AM response of a 300 |Lm long A/4-shifted laser with
KL=1, (--) with and without (—) gain suppression.
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VI.2.2 The FM response

The behaviour of the FM-response is far more complicated,
especially for DFB lasers. The anomalous behaviour is due to the
relatively large influence of spatial hole burning in this case.

Spatial hole burning has no influence on the FM response of F-
P lasers. The low frequency FM in this case is determined by spon-
taneous emission (at low power levels) and by gain suppression and
the analytical expression (2.3.18b) is an excellent approximation in
this case. The resonance frequency and the damping of the relaxa-
tion oscillations are identical as in the case of the AM response
and they can easily be derived analytically. As a first example of
the FM response of DFB lasers, we have given the FM response of
the 300 pm long A/4-shifted laser with xL=1 in fig. 6.2.2. Fig. 6.2.2a
shows the influence of spatial hole burning and fig. 6.2.2b the in-
fluence of gain suppression. The last phenomenon is dominating,
but this may not be generalized. Spatial hole burning as well as
gain suppression give rise to contributions with phase zero. The
contribution of gain suppression always has a phase zero, but we
will see furtheron that this is not the case for the contribution of
spatial hole burning. The contribution of the gain suppression can
again be approximated very well from a rate equation analysis.

The contribution of spatial hole burning can be estimated
from the earlier calculations of the gain and loss suppression cau-
sed by the spatial hole burning. If we denote by &spat,1, resp. &spat,2
the gain, resp. the loss suppression (see 11.3.3.1) and if we neglect
the phase ¢R, we find:

G= [A NU_ B] {1 i ‘E.'spat,1 l}
Y="Yfac,0 {1~ F:spat,z 1} + Yint (6.2.2)

and for the contribution to the FM response:

nJ
A {Espat, 17— Espat,2 Yrac) ‘aal

1, 1
AvVa' + 74 {Espat,1 Y~ Espat,2 Yrac}

o= g A Ng; = (6.2.3)

nie
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Fig. 6.2.2a: FM response of a 300 um long A/4-shifted laser with
kL=1, no gain suppression taken into account.
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Fig. 6.2.2b: FM response of a 300 um long A/4-shifted laser with
KL=1, gain suppression is taken into account.
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For the laser under consideration one has: yfac = 7.62 1011 s-1 and
Yint = 3.75 1011 g1, Espat,1 = 0.266 10-6 and Egpat,2 = 0.618 106,
Substitution of these values in the formula (6.2.3) shows that an
FM response with a phase n can be expected. The fact that fig. 6.2.a
shows that this phase equals zero indicates that the influence of
the term ¢r can be decisive, even for lasers such as A/4-shifted la-
sers. This thesis is supported also by numerical calculations with
CLADISS. For the laser under consideration, it is found that the a-
verage electron density No decreases with a rate of 2700 pum-3/mA
at a current of 25 mA.

It can therefore be concluded that spatial hole burning not on-
ly comes to expression in a power dependence of gain and loss but
also through the reflection phase ¢Rr, and that one of these aspects
cannot be neglected a priori. It can be noticed that this also holds
for the influence of spatial hole burning on the linewidth, although
it was not explicitly mentioned in chapter 5.

In fig. 6.2.2a, a dip occurs in the FM response at 40 mA and at
a modulation frequency of + 1 GHz. The cause of this dip can be
found in the weakening of the spatial hole burning beyond the cut-
off frequency. The phase of the spatial hole burning contribution to
the FM thereby gradually decreases to the value -n/2. The contribu-
tion of the relaxation oscillation on the other hand has a phase =n/2,
and, under appropriate conditions, this can lead to a destructive in-
terference between the two contributions, which in turn causes a
decrease of the FM-amplitude and a dip. Whether such a minimum
will occur depends on the cut-off frequency of the spatial hole
burning (which is mainly determined by 1rg at low power levels)
and on the resonance frequency f;. E.g., the resonance frequency at
25 and 30 mA is far too small and the amplitude of the contri-
bution of the relaxation oscillation is already too large near the
cut-off frequency of the spatial hole burning; the minimum is not
present or at least not visible.

As a second example we have shown the FM response of a
300pum long DFB-laser with xL=2 and with facet reflectivities pf =
0.566 el®r/4 and pp = 0 in fig. 6.2.3. The threshold current of this
laser is 16.5 mA and one finds the value 0.32 for AgL. Fig. 6..2.3a,
resp.b shows the FM response of this laser if gain suppression
(with e = 11 W-1) is not taken into account, resp. is taken into
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account. From fig. 6.2.3a, it follows that spatial hole burning now
gives a contribution with a phase n at low frequencies. A minimum
in the frequency dependence of the FM response is now longer pre-
sent. The contributions from spatial hole burning and from the
relaxation oscillations now both have a phase =n/2 beyond the cut-
off frequency of the spatial hole burning and they interfere con-
structively in stead of destructively.

The influence of the spatial hole burning is again expressed
through the reflection phase ¢r. Numerical calculations indeed
show that the average carrier density increases as a function of
the injected current, with a rate of 815 um-3/mA at 20 mA. This
increase of the carrier density induces a decrease of the average
effective refractive n and, as a result of the resonance condition
on = cte, an increase of the frequency. The phase n of the FM
response in fig. 6.2.3a thus indicates a dominant influence of ¢R.
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Fig. 6.2.3a: FM response of a 300 um long DFB laser (see text)
with xL=2, no gain suppression taken into account.

As the gain suppression always gives a contribution to the FM
response with a phase zero, destructive interference between the
contributions of spatial and spectral hole burning can occur for the
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laser under consideration. However, the contribution of the gain
suppression depends little on the power level, while the contribu-
ion of the spatial hole burning generally becomes weaker with
increasing bias level (see fig. 6.2.3a). A minimum in the bias de-
pendence of the low frequency FM response will therefore often oc-
cur. The typical course can be seen on fig. 6.2.3b. The contribution
of spatial hole burning is usually dominant at low power levels and
the FM response then has a phase n. With increasing bias level, the
contribution of spatial hole burning decreases and more and more
destructive interference occurs, until, at a certain power level, the
contributions of spatial and spectral hole burning have identical
amplitudes. Both effects then cancel each other and a minimal va-
lue for the low frequency FM is found. The FM response is then so-
lely caused by the relaxation oscillations and has a phase equal to
n/2. At even higher power levels, one finds that the contribution of
the spatial hole burning still decreases and that the gain suppres-
sion becomes more and more dominant. The low frequency FM re-
sponse then has a phase zero.
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Fig. 6.2.3b: FM response of a 300 um long DFB laser (see text)
with kL=2, gain suppression is taken into account.
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VI.3 Harmonic distortion in Fabry-Perot lasers

In order to be able to eliminate spatial hole burning and dis-
persion completely, we first investigate the distortion in Fabry-
Perot lasers. We will apply a single mode analysis, although such
lasers are seldom single mode. This allows us to assess the in-
fluence of spontaneous emission, gain suppression and of the rela-
xation oscillations. Since it can be assumed that these effects will
have similar influence on the distortion in DFB lasers, a study of F-
P lasers might be interesting in the investigation of DFB lasers and
might contribute to a better understanding of the non-linear beha-
viour of DFB lasers.

We will also show how the spatial hole burning in long F-P
lasers with small facet reflectivities gives rise to a non-linear
power current relation and which quantities are of special impor-
tance for this phenomenon. Mainly the distortion in the AM response
will be covered here. In the case of F-P lasers, a good approxima-
tion can always be obtained from the rate equations and therefore
the distortion will in general be described with the help of analy-
tical formulas here.

We first investigate the influence of the different non-linea-
rities separately here. Although the superposition principle can not
be applied for non-linear systems, we will see that in many cases
one of the non-linearities has a dominant influence. This also ma-
kes the analysis a lot easier. Indeed, taking into account different
non-linearities leads immediately to very complex, unpractical
formulas. Sometimes however, we will consider the combined ef-
fect of 2 non-linearities if it is of special importance.

Before considering the distortion in the AM response, we will
briefly discuss the distortion in the FM response. With the help of
an analytical small signal approximation, we will show that this
distortion in the FM response can be relatively large, so that our
small signal analysis is not really justified anymore. The dominant
contribution to this large distortion has its origin «in the relaxation
oscillations, even at relatively small modulation frequencies.

On the other hand, from the relatively good linearity of the
static power current relation, it can be concluded that the distor-
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tion in the AM response will be rather small and that a small signal
approximation is justified in this case.

VI.3.1 Distortion in the FM response

It can be shown that the low frequency, n-th order distortion
in the FM response due to the relaxation oscillations is given by:

n-1

it —(—1—'—‘] (6.3.1)

o | 21,

This formula is easily derived from the static rate equation for the
number of photons. If we assume that no other non-linearities
exist, it follows that the power current relation will be perfectly
linear so that under modulation I3=0 for n>1. Furthermore, the loss
is constant in this case and the gain depends only and linearly on
the carrier density. The rate equation for the number of photons re-
duces to:

{(ANg-B)I = vI} =0 (6.3.2)

And after substitution of the expansions (6.1.2), one can easily de-
rive the following recursive relation:

_—- ] (6.3.3)

The expression (6.3.1) immediately follows from this relation af-
ter introduction of a factor 1/2, which takes into account the fact
that: cosM(x) = 2-" cos(nx) + ...

From (6.3.1) it follows that especially the 2nd order distor-
tion can become relatively large if a large OMD is persuited. For an
OMD of 20 % e.g., one finds a 2nd order distortion of 10 %, which
appears to be too large to justify the use of a small signal ana-
lysis.

It can be remarked here that this contribution of the relaxa-
tion oscillations disappears if | is left behind as a common factor
in (6.3.2). If, on the other hand, one takes into account the derivati-
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ve with respect to the time, one again finds the contribution
(6.3.1). The inclusion of | also makes the equation (6.3.2) more phy-
sical since the different term then describe the creation and the
annihilation of photons (or power). Leaving | behind only leaves a
mathematically deduced condition for oscillation. The author the-
refore believes that the relaxation oscillations constitute a real
source of low frequency distortion.

VL istortion in AM

V1321 Infl 4 - | of 1
— o

The variations in the optical power are mainly caused by va-
riations in the gain (which is not yet clamped) and in the carrier
density for those bias points where the spontaneous emission has a
substantial influence (i.e. in the vicinity of the threshold current).
The stimulated emission can then still be neglected in the rate
equation for the carriers, while the number of photons is determi-
ned by:

S S

.S _ (6.3.4)
'Y—'G 'Y”"(AND- B)

The distortion in the AM response can be derived from this equation
after introduction of the series expansion:

| = .,.§_{1 el oo +[A (N°_N°°)]2+ } (6.3.5)
7= Go Y- Go Y- Go
with Go being the gain under static injection. One finds:
S AN Y
lo Z'Y—Go en l =1 ('Y—GOJ ,n>0 (6.3.6)

It has been assumed that the laser is biased above threshold so
that the difference between gain and loss is relatively small. The
influence of the higher order carrier density can be neglected in
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this case and only the dominating term must be retained in (6.3.6).
One finds for the distortion:

n-1

I, 21, o

An expression which, however, is only valid if the laser is biased
sufficiently close to the threshold.

A more accurate expression for the 2nd order distortion,
which also takes into account the dynamics, is given by:

2
: S 1 1 a (1. S
jQ+ —J (EJQ + -—) - —(—] [;Q + -—)
P =l[ lo Trd/ 2A V5 dNg\ Trd lo I_1 (6.3.8)

2 Al Al |
! 210 o 2 2jn+-1—+——°J+G0-—°- .

in which the derivative of the dynamic carrier lifetime 1,q is de-
termined by the bimolecular and the Auger recombination. One can
see from (6.3.8) that the static distortion caused by the sponta-
neous emission strongly depends on the spontaneous carrier recom-
bination (via 1rq). For small values of lp and in the static case,
(6.3.8) reduces to (6.3.7).

This is illustrated in fig. 6.3.11 for a 300 um long, symmetric
Fabry-Perot laser with an 80 % facet reflectivity (laser FP1). The
threshold current of this laser is 10.8 mA. Fig. 6.3.1 shows the 2nd
order distortion caused by the spontaneous emission and the rela-
xation oscillations for a bias current of 15 mA and a modulation
current of 1 mA. One can see that the effect of the spontaneous
emission is already very small at the power level considered in fig.
6:3.11;

The relaxation oscillations dominate already for modulation
frequencies above a few MHz. Resonance peaks (n peaks in the n-th
order distortion) can be observed at even higher modulation fre-
quencies (+ 1GHz) and the distortion rapidly decreases beyond the-
se resonances. It must be remarked that this decrease of the dis-
tortion is due to the decrease of the OMD.

The distortion caused by the spontaneous emission has a pha-
se zero. The contribution of the relaxation oscillations has a phase
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which equals n/2 at low frequencies, but which gradually increases
to the value = in the vicinity of the resonance frequency.

Fig. 6.3.2 shows the 3rd order distortion caused by the spon-
taneous emission and the relaxation oscillations for the same laser
and under identical circumstances. The contribution of the sponta-
neous emission at static frequencies, which, sufficiently far above
threshold can be approximated by:

13 .
ls 1 %dlo (h} (6.3.9)
T a Al U

0y,

is also very small and now has a phase n. The contribution of the
relaxation oscillations has a phase -n/2 at low frequencies and a
phase 0 near the resonance frequency.

Formuli (6.3.8) and (6.3.9) illustrate that the n-th order dis-
tortion is generally proportional with the (n-1)-th power of the
OMD. This property is found both theoretically and experimentally.
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Fig. 6.3.1: 2nd order distortion in the AM response due to spontaneous
emission and relaxation oscillations for laser FP1; OMD=0.24,
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Fig. 6.3.2: 3rd order distortion in the AM response due to spontaneous
emission and relaxation oscillations for laser FP1; OMD=0.24.

V1.3.2.2 Infl f th in r

The gain suppression has no influence on the actual value of
the gain, but it results in an increase of the carrier density, which
is required to obtain this value of the gain, with increasing power.
The distortion in the AM response caused by this gain suppression
therefore has its origin in the increase of the spontaneous carrier
recombination, which makes that an increase in injected current is
not completely transferred into an increase of the stimulated e-
mission. A similar effect can be expected to result from the pre-
sence of leakage currents (an effect which we do not consider he-
re). Both effects will result in a sublinear P/l-curve and the 2nd
order distortion will have a phase n at low modulation frequencies.

After manipulation of the rate equations, one finds the fol-
lowing expressions for the 2nd and 3rd order distortion at low mo-
dulation frequencies:
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The 2nd order distortion is proportional with the square of £ and
always has a phase n. The distortion increases with increasing po-
wer level if a constant OMD is used. The 3rd order distortion con-
sists of a term with phase =, which is proportional with the 3rd
power of & and which is normally dominant and a term with phase 0
and proportional with 4th power of £. The 3rd order distortion also
increases with increasing bias level if the OMD is kept constant. It
can easily be shown that these properties remain valid if another
form for the gain suppression (see (5.2.10)) is assumed.

Fig. 6.3.3 and 6.3.4 illustrate the influence of gain suppres-
sion on the distortion of the laser FP1. The modulation current is
again 1 mA and different values (15, 20, 25 en 30 mA) for the sta-
tic current have been considered. It is clear that the low frequen-
cy distortion is practically independent of the static power and
that the phase of 2nd and 3rd order distortion equals =. The relaxa-
tion resonances are again strongly damped as a result of this gain
suppression.

The presence of a dip in the frequency range from 100 MHz to
1 GHz can be observed in fig. 6.3.4. This dip can be attributed to the
interference between the contribution of the gain suppression
(with phase n) and the contribution of the relaxation oscillations
(the phase of which approaches the value 0 in the frequency region
under consideration). The contribution of the relaxation oscilla-
tions increases with increasing modulation frequency, while the
contribution of the gain suppression is rather constant. At a cer-
tain, well-determined modulation frequency, both contributions
cancel each other and only a component with a phase -rn/2, stem-
ming from the relaxation oscillations, remains. The contribution of
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the relaxation oscillations still increases beyond this frequency
and it dominates the contribution of the gain suppression.
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Fig. 6.3.3: 2nd order distortion in the AM due to gain suppression

for laser FP1 at 15 (1), 20 (2), 25 (3) and 30 mA (4).
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Fig. 6.3.4: 3rd order distortion in the AM due to gain suppression

for laser FP1 at 15 (1), 20 (2), 25 (3) and 30 mA (4).
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VI1.3.2.3 Influen i | rnin

It was shown in chapter Il (11.3.31) how, even in Fabry-Perot
lasers, the longitudinal variation of the optical power results in a
non-linear relation between output power and the number of pho-
tons. The gain and the loss are both suppressed as a result of this
effect, but the carrier density still remains clamped and is inde-
pendent of the power level. If all other non-linearities are disre-
garded, there will be no influence on the FM response. There exists
however an influence of the spatial hole burning on the distortion
in the AM response. From the rate equation for the carrier density
it follows that the quantity I(1-Espatl) will vary proportionally
with the injected current, since no variations in the carrier densi-
ty occur. The distortion in the output power can then be derived
from the relation (2.3.34):

P ~ {(ANp = B) (1 - Egpatl) — tintVg} | (6.3.11)

For a laser of length L with facetreflectivities R1 and Rz, one
finds:

Pn _ Eﬂ.iml_ II"I

Tn_ (6.3.12)
Py In(RyR2) Iy

and hence:

E _ ®intlk Espatlo Ej_ (6.3.13a)
P1 In(H1H2) PQ

Py ok E2l2 (P}

s . int &spat 0 (__1“] (6.3.13b)
Py In(RyRz) \Pg .

The value of &spat has been depicted in fig. 2.3.1 for 300 um long
lasers. For the laser FP1, &gpat is too small to have any visible
effect. &spat is also relatively small for e.g. as-cleaved lasers. The
distortion in F-P lasers will therefore usually be dominated by the
spectral hole burning.

From the expressions (6.3.13), it can be concluded that the
distortion, resulting from spatial hole burning, varies strongly as a



VI.21

function of the internal absorption. This is illustrated in fig. 6.3.5
and 6.3.6, which give the 2nd and 3rd order distortion in the AM
response of a 300um long F-P laser with cleaved facets for dif-
ferent values of the internal absorption. The distortion has been
calculated at an output power of 1 mW and for an OMD of 20 % in
both cases and the spontaneous emission and the spectral hole bur-
ning have been neglected.

The 2nd order distortion has a phase n at low modulation fre-
quencies, in agreement with the expression (6.3.13). The phase of
the 3rd order distortion equals 0, which is different than what can
be expected from (6.3.13). A possible explanation for this deviation
could perhaps be found in the power dependence of Espat (see for-
mula (2.3.31)), which was not taken into account in the derivation
of (6.3.13). The spatial hole burning is taken into account in a more
detailed way in the numerical model. {spat furthermore decreases
with increasing modulation frequency and its value is already suf-
ficiently low at the relaxation resonance, so that any influence on
the damping of this resonance is not very likely.
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Fig. 6.3.5: 2nd order distortion due to spatial hole burning for laser FP2
aint=50 cm™! (1), tint=25 cm"! (2) en atjnt=0 cm*! (3).
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Fig. 6.3.6: 3rd order distortion due to spatial hole burning for laser FP2
aint=50 cm-1 (1), aint =25 em'! (2) en ajpy = 0 em™! ().

VI.4 Distortion in DFB lasers

DFB lasers distinct themselves from F-P lasers by the more
pronounced spatial hole burning and by their sometimes strong dis-
persion. Here, we first discuss A/4-shifted or similar lasers for
which the dispersion can be disregarded. Since the cut-off frequen-
cy of the spatial hole burning is normally far below the resonance
frequency f; of the relaxation oscillations, we can afford to refer
to the previous paragraph (VI1.3) for what concerns the distortion at
such high modulation frequencies.

Spectral hole burning can be taken into account simultane-
ously with the spatial hole burning in the derivation of the analyti-
cal formuli. Both effects lead to gain suppressions, which can be
superposed. One must nonetheless keep in mind that the spectral
hole burning is independent of the power and the' frequency, while
the spatial hole burning certainly depends on power and frequency.
Here, we will mainly focuss on the interferences between contri-
butions from spatial hole burning, spectral hole burning and rela-
xation oscillations.



VI.23

Vi4. h ial_hol ‘

The effect of spatial hole burning on the distortion is again a
consequence of the non-linear relation between the output power
and the average power inside the cavity. This non-linearity is, in
lasers which emit at the Bragg wavelength (such as A/4-shifted

lasers) and at low power levels, mainly caused by the longitudinal
variation of the gain and one can show analytically that in this ca-
se, the modal gain and the loss can be expressed as:

G= (ANo-B) (1 - &spam ) =Go(1 - r;spam )]
Y= Ytac + Yint = Yrac,0(1 — Espat,2!) + Yint (6.4.1)

Both &spat,1 and &spat,2 decrease with increasing power level, but, in
contrast with the case of F-P lasers, Espat,2 can now be positive as
well as negative. The values of &gpat,i are also substantially larger
now. The inclusion of spectral hole burning does not require a mo-
dification of the expression (6.4.1) and one can write:

G=Go(1 —&11 : &1 =Espat,1 + Espectr
) iz 'Yfac,()“ = &21) ) z::2 = &spat,E (6.4.2)

Typical values for the coefficients £gpat,i at the threshold of 300
um long A/4-shifted lasers have already been given in chapter 2
(fig. 2.3.2). Both coefficients are minimal for xL = 1.25, a value
which is known to result in minimal spatial hole burning for A/4-
shifted lasers.

The output power can again be expressed as:

P~1(1-E&l) (6.4.3)

With the help of the expressions (6.4.2) and (6.4.3), one finds
for the low frequency 2nd and 3'd order distortion:
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Po Yint VaP1 | AE (&2Yint + AEGo) 9 (1 )

B~ £2P o (&2Yint+ AEGo) A | T + 5k Ne\Trg

Ps_, (P2) VaP? a2

L - e A e LD,

P1 (P1) (gE'YJnt"‘ E.\ 0) 4'YA Trd
V,P? E¥intAEGo) 92 ( 1

(E¥in+AEGg)*— ; Ag : (;LJJF AL 3. 2(1—) (6.4.4)

4yA dNg\%rd 6A N3\ *rd

with AE = &4- Ea.

We first consider the effect of spatial hole burning on the
2nd order distortion. By substitution of typical numerical values in
the expression (6.4.4) it can easily be checked that the first term
will dominate at low power levels, except for those xlL-values in
the vicinity of 1.25 for which &2 is very small. Since 2 can assume
positive as well as negative values, it follows that the 2nd order
distortion can have a phase n as well as a phase 0.

The 2nd order distortion induced by spatial hole burning is il-
lustrated in fig. 6.4.1, resp. 6.4.2 for 300 um long A/4-shifted la-
sers with xL = 1 (laser L1, with a threshold current of 22.5 mA),
resp. xL = 2 (laser L2, with a threshold current of 15 mA) for a sta-
tic OMD of 20 %.

It can be seen that the low frequency distortion has a phase xn
for the case xL=1 and a phase 0 for the case xL=2. This agrees with
the expression (6.4.4), since, in the limit of low power levels, one
finds for xL = 1 the values &1 = 8.35 W-1 and &2 = 19.4 W-1 and for
kL = 2 the values &1 = 47.4 W-1 and &2 = -18.9 W-1, According to the
expression (6.4.4), it can also be expected that the distortion in-
creases with increasing static output power if the OMD is kept
constant. In fig. 6.4.1 and 6.4.2, such a behaviour can only be ob-
served at low power levels, while the distortion at high power
levels decreases monotonically with increasing power level. This
deviation could again be explained by taking into account the power
dependence of &1 and &p. ,

As for Fabry-Perot lasers and for the same reasons, the dis-
tortion induced by the spatial hole burning strongly depends on the
ratio of absorption loss to facet loss. The distortion diminishes as
the absorption decreases or as the reflection loss increases (e.g. if
lower xL-values are being used).
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Fig. 6.4.1: 2nd order distortion due to spatial hole burning for laser L1

at 25 mA (1), 30 mA (2), 40 mA (3) and 50 mA (4).
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Fig. 6.4.2: 2nd order distortion due to spatial hole burning for laser L2

at 16 mA (1), 20 mA (2), 30 mA (3) and 50 mA (4).
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For modulation frequencies above + 100 MHz, the relaxation
oscillations (giving a contribution with a phase n/2 and a contribu-
tion with a phase n) become important as well. The contribution of
the relaxation oscillations then interferes with the contribution of
the spatial hole burning, which already starts decreasing at these
high frequencies. Destructive interference can occur if the distor-
tion caused by the spatial hole burning has a phase 0. The inter-
ference results in a dip in this case, as can be seen in fig. 6.4.2.
This dip shifts towards higher frequencies with increasing static
output power, since both the relaxation oscillations as well as the
cut-off frequency of the spatial hole burning are located at higher
frequencies. Such a dip may be interesting and it can lead to a dis-
tortion that is small even for frequencies of e.g. 1 GHz. It can be
noticed that the distortion at 1 GHz has increased by 10 dB with
respect to the low frequency value in fig. 6.4.1, while both values
are almost identical in fig. 6.4.2.

The third order distortion consists of two contributions with
opposite sign (see (6.4.4)). The first term is equal to twice the
square of the second order distortion, its phase is zero and its
magnitude can be derived immediately from the second order dis-
tortion. The second contribution, which is related to the variation
of the spontaneous carrier recombination due to spatial and spec-
tral hole burning, may have a phase zero as well as a phase n. Which
one of the two contributions dominates is hard to predict and de-
pends on the modulation depth, on the bias point and on the laser
structure. We will discuss this distortion here with the help of a
few numerical examples. It will become clear that the third order
distortion is usually a lot smaller than the second order distortion.

The third order distortion as a function of the modulation
frequency is depicted in fig. 6.4.3 for the laser L1 and in fig. 6.4.4
for the laser L2. The OMD and the bias points have been chosen as in
fig. 6.4.1, resp. 6.4.2, so that the magnitude of the first contribu-
tion can be estimated from these figures. Since the second order
distortion of the laser L1 (for &spec=0) varies between -60 and -55
dBc, it follows that the first term in formule (6.4.4b) will vary be-
tween -124 and -104 dBc. The second order distortion of the laser
L1 varies between +-56 and +-37 dBc and the first term in (6.4.4b)
will assume a value between -106 and -68 dBc.
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The second contribution always seems to dominate for the
case klL=1 and the third order distortion always has a phase zero. It
can be noticed that AE is negative in this case (at least at low po-
wer levels where AE = -11 W-1) and that Go » vint so that the phase
of the second contribution is zero indeed. However, both contribu-
tions are very small (approximately -110 dBc) for very low power
levels (the curve (1) in fig. 6.4.3); mainly as a result of the small
value of Py. The influence of the relaxation oscillations already be-
comes visible at very low modulation frequencies (e.g. 10 MHz). The
phase of the distortion then approaches the value -n/2.

The phase of the third order distortion is for xL=2 always
equal to m, from which it can be concluded that the second contri-
bution again dominates. The value of A is positive now and larger,
AE = 66.3 W-1, while the value of y also has become smaller. The se-
cond contribution therefore can have an amplitude that is a lot lar-
ger than the -80 dBc which was found for kL=1 and it can dominate
the relatively large contribution of the first term. Again, the value
of Py is so small at low power levels that the relaxation oscilla-
tions can be visible already at low modulation frequencies. This
can be seen from the phase corresponding with the curve (1) in fig.
6.4.4.

It must finally be remarked that destructive interference oc-
curs between contributions from the relaxation oscillations (with
phase 0) and from the spatial hole burning, if the latter contri-
bution has a phase n. This leads to a dip in the frequency region
between 100 MHz and 1 GHz, as can be observed in fig. 6.4.4. We al-
so notice that the presence of a dip in the frequency dependence of
the 2nd order distortion implies here a dip in the frequency depen-
dence of the 3rd order distortion and vice versa. We suspect that
this phenomenon is related with the sign of £2, which determines
the phase of the first term in (6.4.4a) (and thus of the 2nd order
distortion), but also the sign of AE and of the second contribution in
(6.4.4b) and of the 3rd order distortion.
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Fig. 6.4.3: 37d order distorton due to spatial hole burning for laser L1

at 25 mA (1), 30 mA (2), 40 mA (3) and 50 mA (4).
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Fig. 6.4.4: 3'd order distortion due to spatial hole burning for laser L2

at 16 mA (1), 20 mA (2), 30 mA (3) and 50 mA (4).
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Taking into account spectral hole burning does not require a
modification of the analytical approximations (6.4.4), though the
value of Espectr must be added to &1. At very high power levels, spa-
tial hole burning can be neglected and one again finds the approxi-
mations (6.3.10). At high power levels, one therefore always finds
a 2nd and 3'd order distortion with a phase .

On the other hand, it may be possible that spatial hole burning
dominates at low power levels and that the phase of the 2nd and 3rd
order distortion is zero in this case. The transition from a phase 0
at low power levels to a phase n at high power levels then assures
the existence of a bias point for which the distortion is minimum
and for which the phase equals n/2. The contributions of spectral
and spatial hole burning interfere destructively at this point and
only the contribution of the relaxation oscillations (with phase n/2
at low modulation frequencies) remains.

An example of this phenomenon is shown in fig. 6.4.5. Fig.
6.4.5 shows the 2nd order distortion of the laser L2 for the case
Espectr = 11 W-1, It can be seen how the spatial hole burning domi-
nates at low power levels and how the spectral hole burning domi-
nates at high power levels. Both effects almost cancel each other
for the 3rd bias point (the curve labeled (3)), the low frequency
distortion is very small and the relaxation oscillations start domi-
nating already at 10 MHz. Such a minimum can not be observed for
the laser L1, where both the contributions from spatial and spec-
tral hole burning have a phase =.

Such a minimum in the bias dependence of the 3rd order dis-
tortion can be observed for laser L1, although this is not shown he-
re. The minimum in the 3'd order distortion can now not be ob-
served for the laser L2, for which the contributions of spatial and
spectral hole burning both have a phase =.
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Fig. 6.4.5: 2Nd order distortion due to spatial and spectral hole burning
for laser L2 at 20 (1), 40 (2), 60 (3) and 80 mA (4).

VI.5 The system dependent quantities CSO and CTB

A system design usually imposes no restriction on the har-
monic distortion, but rather on the, on the system depending, quan-
tities such as the CSO ('Composite Second Order') and the CTB
('Composite Triple Beat'). For mutual harmonic carriers, the CSO,
resp. the CTB can be defined as the ratio of the peak power in the
carrier to the peak power in the second order, resp. the third order
intermodulation tone. The relation between the system dependent
quantities CSO and CTB and the laser dependent quantities, 2"d and
3rd order harmonic distortion, will only be addressed briefly here.
We refer-to the literature (e.g. [6.18] and [6.19]) for a more detailed
account.

We first show how the intermodulation distortion is related
to the harmonic distortion. We assume for the sake of simplicity
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that only 3 carriers (with frequencies fq, f2 and fz3 and with an
identical OMD) are used and that the current injection is therefore

given by:

J=Jy { 1+ % [cos(Q241) + cos(Qst) + cos(Q3h)] } (6.5.1)

m is the total modulation depth. We also assume that the harmonic

distortion is nearly flat in the frequency region that contains fy, f2
and fa. The optical output power can then be approximated as:

P-=a+bJ+cJ2+dJ? (6.5.2)

After substitution of (6.5.1) into (6.5.2) one finds that the light in-
tensity not only consists of components with frequency fi (linear
response), 2f;i (2¢ order harmonic distortion) and 3f; (3¢ order har-
monic distortion), but also components at the frequencies fitf; and
at the frequenties fifj+fx. Moreover, it can easily be checked that
the amplitude of the components at the frequencies fitfj (i#j) is a
factor 2 (6 dB) larger than the amplitude of the components at the
frequencies 2fi. The amplitude of the components at the frequen-
cies fitfjtfx (i#j=k) is a factor 6 (15.5 dB) larger than the amplitu-
de of the components at frequencies 3fi and a factor 2 (6 dB) larger
than the amplitude of the componens at frequencies 2fitfj (i#j).
The intermodulation distortion can simply be derived from the har-
monic distortion with the help of these relations.

The CSO and the CTB for a given carrier can then be obtained
as the sum of all possible intermodulation products with a fre-
quency in this channel. We now assume that all carrier frequencies
are given by fi=if, i = Nmin...Nmax. The number of second order in-
termodulation products is maximum for the channel with the lo-
west frequency in this case and this maximum is equal to Nmax -2
Nmin. The number of third order intermodulation products is maxi-
mum in the centre of the band and this maximum equals 3/8 N2,
with N being the number of channels.
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Chapter VIi

CONCLUSION

In this doctorate, we have attempted to give a contribution to
the theoretical description of DFB laser diodes and to improve the
understanding of the operation of such lasers. To this end, we have
paid relatively much attention on a rigourous derivation of the
coupled wave equations and on the inclusion of spontaneous
emission. For the same reason, we have derived several analytical
approximations and illustrated how the coupled wave equations can
be manipulated in several ways e.g. to derive rate equations or to
derive structures with axially uniform power.

One nevertheless needs a numerical solution of the longitu-
dinal equations to obtain accurate results. An existing computer-
model has been extended in several ways. The original version of
this model, named CLADISS (Compound LAser Dlode Simulation
Software), was restricted to a single mode static analysis and a
single mode, small signal AC-analysis. It is now a multi mode mo-
del that also allows to analyze the harmonic distortion and the
influence of the noise.

In the doctorate, by far most of the attention is paid to a
physical description of the behaviour of diode lasers. In chapter 4,
where the static behaviour is treated, we first show how
longitudinal spatial hole burning at higher power levels can give
rise to the onset of side modes and how this phenomenon depends
on parameters such as the laserlength, the coupling constant, the
internal absorption, the carrier lifetime and the linewidth enhan-
cement factor. Subsequently, we show how in general terms how an
axially uniform power can be obtained by varying the coupling
constant, the net gain or the Bragg deviation in the axial direction.
Several structures that can be realized in practice ‘are then derived
and discussed.

The study of the noise in DFB lasers is mainly concentrated
on the linewidth and its rebroadening at high power levels, a phe-
nomenon that was not yet fully understood. We have shown that
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this rebroadening can be the result of a side mode onset and that
the side mode can thereby influence the noise in the main mode via
spectral or spatial hole burning. Possible explanations have also
been found for single mode lasers. The rebroadening of the line-
width in this case can be attributed to a power dependence of the
linewidth enhancement factor or, in a limited number of cases, to
the power and frequency dependence of the reflection loss.

The last chapter treats the distortion in the AM-response of
DFB lasers, a quantity that is of interest for analog communication.
We particularly illustrate the influence of spatial and spectral
hole burning and of the relaxation oscillations, and how the inter-
ference of the different non-linearities can lead to the presence of
dips in the frequency and/or the power dependence of the distor-
tion. The knowledge of these influences allows to minimize the
distortion, somehow by choosing the appropriate laser structure
as function of the frequency allocation and of the desired bias
level.

To conclude, we remark however that this study is far from
complete. In particular the influence of the temperature, of leakage
currents and of the carrier dependence of the absorption on the
static, dynamic and noise behaviour must still be investigated.
Furthermore, the study can be extended to the behaviour of quantum
well lasers, where the gain is a non-linear function of the carrier
density, which results in other interesting effects.

In addition, a model for laser amplifiers can be developed
starting from CLADISS and can then be followed by a detailed study
of the behaviour of such amplifiers.
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