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Summary in Dutch 

In de afgelopen jaren zijn aanzienlijke investeringen gemaakt in onderzoek, 

ontwikkeling en industrialisatie van silicium-gebaseerde fotonica. Bijgevolg heeft 

deze technologie zich ontplooid voor optische tele- en datacommunicatie op 1310 

en 1550 nm golflengte. Echter, voor applicaties waar kortere golflengtes 

noodzakelijk zijn, is Si gelimiteerd door de inherente materiaalabsorptie bij 

golflengte korter dan 1.1 µm. Daarentegen kan siliciumnitride (SiN) gebruikt 

worden als een vervanger voor Si, waarbij een gelijkaardige miniaturisatie kan 

bereikt worden door middel van het relatief hoge brekingsindexcontrast tussen 

SiN (n~2) en siliciumdioxide (SiO2, n~1.5). Verder is dit materiaalplatform 

volledig compatibel met dezelfde complementary metal oxide semiconductor 

(CMOS) fabricagetechnologie als diegene die gebruikt wordt voor Si [1]. In het 

bijzonder is SiN relevant voor biomedische toepassingen omdat de 

materiaalabsorptie miniem is in het therapeutische golflengtegebied (van 

zichtbaar licht tot het nabij-infrarood). In dit golflengtedomein zijn de schade aan 

biologische cellen en de absorptie van water beide minimaal. En hoewel er een 

ontwikkeling heeft plaatsgevonden van passieve componenten op het SiN-

platform zoals de realisatie van golfgeleiders [2], spectrometers [3] en andere 

componenten, is het momenteel nog een grote uitdaging om geïntegreerde 

lichtbronnen te maken op SiN. De moeilijkheid ligt in het gebrek aan lichtemissie 

van SiN. Tot dusver zijn de ontwikkelingen op SiN gerealiseerd met externe 

lichtbronnen. Bijgevolg biedt een geïntegreerde on-chip laser als lichtbron een 

enorm potentieel voor point-of-care applicaties of implantaten die 

lichaamsfuncties continu kunnen opmeten zoals continue glucosemetingen of 

sensoren ingebouwd in smartphones. De meest belovende aanpak om 

laserfunctionaliteit op de chip te verwezenlijken op korte termijn is de heterogene 

integratie van III-V materialen door middel van binding van deze materialen met 

een tussenliggend, klevend materiaal zoals benzocyclobuteen (BCB) [4]. 

De vertical cavity surface emitting laser (VCSEL), waarbij het licht uit het 

oppervlak van de structuur schijnt, heeft verschillende unieke voordelen zoals een 

kleinere benodigde oppervlakte op de chip, een efficiënte conversie van 

elektriciteit naar licht, en een laag energieverbruik dat interessant is voor mobiele 

applicaties. De nieuwste en beste VCSEL heeft vandaag een conversie-efficiëntie 

van meer dan 60% [5], een modulatiebandbreedte van meer dan 30 GHz [6], 
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datasnelheden boven 70 Gb/s [7], en een energiedissipatie van minder dan 100 

fJ/bit voor datasnelheden tot 50 Gb/s [6,8] waarbij een elektrische stroom van 

slechts enkele milliampère gebruikt wordt voor de sturing van de VCSEL. Om 

deze redenen zal de integratie van VCSELs op het SiN platform verdere 

ontwikkelingen mogelijk maken van applicaties in de telecommunicatiesector en 

de biomedische sector resulterend in deze meer geïntegreerde oplossingen die 

relevant zijn voor industrieën. Het is dus daarom de doelstelling van dit doctoraat 

om een nieuw GaAs-VCSEL concept voor te stellen, te ontwerpen, te ontwikkelen 

en te karakteriseren op een SiN geïntegreerd fotonisch circuit. 

 

Figuur. 1 Schematische doorsnede van de Gen1-VCSEL (emissie van het 

licht via het topoppervlak). 

Om deze doelstelling te realiseren, hebben we nauw samengewerkt met 

Chalmers University of Technology. Samen hebben wij het design voorgesteld 

van de hybride-caviteit VCSELs (HC-VCSELs), waarbij een epitaxiaal gegroeide 

GaAs half-VCSEL bestaande uit een spiegel, een actieve laag en een 

stroomverdelingslaag in zijn geheel geïntegreerd wordt op een andere 

diëlektrische spiegel (boven op een Si-substraat) met behulp van een 

tussenliggende DVS-BCB-bindingslaag zoals geïllustreerd in figuur 1. In verdere 

ontwikkelingen kunnen we het licht horizontaal uitkoppelen naar een SiN-

fotonisch circuit door een zwakke diffractiekoppelaar te introduceren in de 

VCSEL-caviteit. In de eerste fase van dit doctoraat is de technologie ontwikkeld 

in de vorm van een eerste generatie (Gen1 HC-VCSELs) hybride VCSEL. Deze 

structuren bevatten geen diffractiekoppelaar, waardoor het licht nog langs de 

bovenzijde van de VCSEL uitstraalde. De Gen1-VCSELs dienden als een 

validatiemodel om de prestaties van de hybride half-VCSEL te karakteriseren, 

waarbij onderzocht werd wat de invloed was van de divinylsiloxaan-bis-

benzocyclobuteen (DVS-BCB) bindingslaag en de diëlektrische spiegel op de 

optische karakteristieken van de HC-VCSEL. 
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De GaAs half-VCSEL werd geïntegreerd op een diëlektrische spiegel op Si 

door middel van een dunne laag DVS-BCB. Na de binding werd het GaAs-

substraat verwijderd door middel van een natte, selectieve ets, waarna de VCSEL 

gemaakt werd via een standaard fabricagemethode [9]. 

Met deze technologie hebben we werkende VCSELs aangetoond die licht 

uitstraalden op 850 nm golflengte met een drempelstroom kleiner dan 1 

milliampère. Het vermogen van het uitgestraalde licht was groter dan 2 mW 

(figuur 2-(a)), waarmee een modulatiesnelheid van 25 Gbits/s behaald is (figuur 

2-(b)).  

  

Figuur 2 (a) Het lichtvermogen en de elektrische spanning versus de 

stroom voor een VCSEL met een bindingslaagdikte van ~65 nm en een 

oxide-apertuur van 10 µm, gemeten van 15 tot 100 °C in stappen van 5 °C. 

(b) Een opgemeten bit error rate (BER) tegenover het ontvangen optische 

vermogen voor een VCSEL met een 5 µm oxide-apertuur en eenzelfde 

bindingslaagdikte van ~65 nm, voor snelheden tot 25 Gbit/s bij 25 °C en 

10 Gbit/s bij 85 °C. De inzet toont bijbehorende optische oogdiagrammen, 

schaal 100 mV/div en 20 ps/div. 

Een doorsnede van de VCSEL-structuur is weergegeven in figuur 3-(a), waar 

de diëlektrische spiegel oftewel de diëlektrische Braggreflector (DBR) wordt 

getoond, samen met de bindingsinterface en de III-V half-VCSEL met oxide-

apertuur. Coplanaire grond-signaal-grondelektrodes zijn gemaakt voor de 

hogesnelheidsmetingen, zoals weergegeven in figuur 3-(b). Experimenteel 

hebben we ook vastgesteld dat de dikte van de bindingslaag geoptimaliseerd kon 

worden naar een bepaalde prestatie-indicator, zoals bijvoorbeeld optimale 

werking op een gegeven temperatuur of een minimale variatie van de prestaties 

over een bepaald temperatuursbereik [10]. 

Om vervolgens het verticaal versterkte licht horizontaal uit te koppelen in een 

SiN-golfgeleider hebben we een SiN-golfgeleider met bijbehorende 
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diffractiekoppelaar toegevoegd aan de VCSEL-caviteit, bovenop de onderste 

diëlektrische spiegel. De diffractiekoppelaar is gedefinieerd met een ondiepe ets, 

bovenop de SiN-golfgeleider, voorafgaand aan de binding met de GaAs halve 

VCSEL. Van zodra deze VCSELs geïntegreerd zijn op een SiN-

golfgeleidercircuit, benoemen we deze structuren als Gen2 verticale-caviteit Si-

geïntegreerde lasers (Gen2-VCSILs). De voordelen van een dergelijke intra-

caviteit diffractiekoppelaar zijn veelvoudig [11]: 

 De voorgestelde koppelaar maakt een volledige heterogene integratie 

mogelijk zoals diegene ontwikkeld voor Gen1-componenten.  

 De koppelaar maakt het mogelijk om als een polarisatiefilter te 

werken en zodoende de TM-mode te onderdrukken en de TE-mode 

te ondersteunen. 

 Dit laat ook toe om de transversale mode te controleren. 

 Een hoge koppelingsefficiëntie naar de golfgeleider kan bereikt 

worden. 

 Zoals aangetoond in [9], wordt de alignering bepaald door de 

lithografiestappen in de VCSEL fabricage na het integreren van de 

halve VCSEL.  

 

 

Figuur. 3 SEM-afbeeldingen van een focused ion beam doorsnede (links) 

en een microscoopafbeelding van de bovenzijde (rechts) van een 

gefabriceerde HC-VCSEL. 

Een schematische voorstelling van een Gen2-VCSIL is weergegeven in 

figuur 4. De reflectie en koppelingsefficiëntie (links of rechts) van deze koppelaar 

plus onderste diëlektrisch spiegel hangen af van de grootte van de oxide-apertuur 
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van de GaAs VCSEL. Een VCSEL met oxide-apertuur > 4µm is noodzakelijk om 

polarisatieselectiviteit te bekomen via de intra-caviteit diffractiekoppelaar waarbij 

een voldoende hoge reflectie en koppeling van de TE-mode naar de golfgeleider 

behaald worden.  

Voor de Gen2-VCSIL met een apertuur van 5 µm, is de reflectie en de  

enkelvoudige koppelingsefficiëntie van de koppelaar/spiegel-combinatie, waarbij 

de koppelaar periode 530 nm is met een duty cycle van 50 % (DC, slot-versus-

tandverhouding in een enkelvoudige periode) en een etsdiepte van 50 nm, 

weergegeven in figuur 5. Vanuit de experimentele karakterisatie van de Gen1-

structuren hebben we geleerd dat de VCSELs het best werken op 855 nm bij 

kamertemperatuur op gebied van optisch vermogen en drempelstroom [10]. 

Daarom zijn de Gen2-VCSILs ontworpen om op deze golflengte te werken. 

 

 

Figuur. 4 Schematische doorsnede van de Gen2 VCSIL structuur met 

horizontale uitkoppeling naar een SiN-golfgeleider. 

Uit figuur 5(b) kunnen we afleiden dat de diffractiekoppelaar zodanig 

ontworpen is dat de Bragg-golflengte van de roosterkoppelaar voor de TE-mode 

(waar het elektrisch veld parallel staat met de geëtste lijnen van de koppelaar) ver 

weg staat van de operationele golflengte van de VCSEL (855nm). Doordat de 

TM-mode (waar het elektrisch veld loodrecht staat op de geëtste lijnen van de 

koppelaar) dichter bij de Bragg-conditie werkt dan de TE-mode, zal meer licht 

uitgekoppeld worden, waardoor de totale reflectie van de TM-mode lager is dan 

die van de TE-mode. Als gevolg gaat de TM-mode meer verlies ervaren in de 

VCSIL-caviteit en onderdrukt worden ten opzichte van de TE-mode.  
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Figuur. 5 (a) De gesimuleerde reflectiecoëfficiënt en (b) de enkelvoudige 

koppelingsefficiëntie van de diffractiekoppelaar plus diëlektrische spiegel 

in functie van de golflengte voor TE en TM polarisaties. (koppelaarperiode 

= 530 nm, DC = 50%). 

 

Figuur. 6 Microscoopafbeelding van (a) een set van volledig gefabriceerde 

Gen2-VCSILs en (b) van een enkele Gen2-VCSIL, waarbij de SiN-

golfgeleiders zichtbaar zijn op de chip. 

Wij hebben succesvolle werking gedemonstreerd van Gen2-VCSILs, werkende 

bij een golflengte van 856 nm waarbij het laserlicht in de golfgeleiders opgemeten 

is als zijnde TE-gepolariseerd. Figuur 6 toont microscoopafbeeldingen van de 

volledig gefabriceerde Gen2-VCSILs bovenop de intra-caviteit-diffractie-

koppelaars en golfgeleiders. Een Gen2-VCSIL met 5 µm oxide-apertuur heeft een 

drempelstroom van 1,13 mA en produceert een maximaal uitgangsvermogen van 

ongeveer 73 µW (figuur 7(a)) met een onderdrukking van naburige modes (side 

mode suppression ratio (SMSR)) van 29 dB (figuur 7(b)). 

De prestatie van zowel de Gen1-VCSEL en de Gen2-VCSIL waren in zekere 

mate gelimiteerd door de hoge thermische impedantie van de onderste, 

diëlektrische spiegel. De thermische impedantie van beide componenten met een 

5 µm apertuurdiameter zijn 3 tot 4 keer hoger dan die van standaard VCSELs met 
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een gelijkaardige apertuurgrootte [12]. De Gen1-VCSELs presteren beter dan de 

Gen2-VCSILs door additionele caviteitsverliezen die wij toeschrijven aan een 

onvoorziene ruwheid in de lagenstructuur en materiaalabsorptie van de spiegel. 

Om dit te verbeteren kan in de toekomst een onderste diëlektrische spiegel 

gebruikt worden die een hoger index contrast heeft (bv. Si/SiO2) waardoor een 

kleiner aantal DBR paren nodig zijn in de spiegel en het probleem van ruwheid 

geminimaliseerd wordt. Ook kunnen metallische warmtespreiders geïntegreerd 

worden om de thermische impedantie van de componenten te verbeteren. 

 

Figuur.7 (a) Golfgeleidergekoppelde licht-spanning-stroom karakteristiek 

voor 5 µm oxide apertuur diameter VCSILs met een wisselende intra-

caviteit diffractie-koppelaarperiode van 525 – 545 nm (na goud depositie 

op het bovenste spiegeloppervlak). (b) Spectrum voor de 525nm VCSIL, 

bij 2.5 mA. 

Doorheen dit werk is het ontwerp en de fabricage van het SiN fotonisch 

geïntegreerd circuit (PIC) en het heterogene integratieproces van de GaAs half-

VCSEL met de SiN-PIC uitgevoerd door de auteur. Het ontwerp van de volledige 

VCSEL is gedaan door Johan Gustavsson van Chalmers University of 

Technology. Na de heterogene integratie van de half-VCSELs, is de fabricatie van 

de Gen1- en Gen2-VCSELs uitgevoerd door Emanuel P. Haglund in het kader 

van zijn doctoraatsonderzoek.  
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English summary 

Over the past years, considerable efforts have been invested in research, 

development and industrialization of silicon (Si) photonics. As a result Si 

photonics has emerged as a mature technological platform for optical datacom 

and telecom applications at 1310 and 1550 nm. However, for applications 

requiring shorter wavelengths, Si cannot be used due to the absorption in Si below 

1.1 µm wavelength. Instead silicon nitride (SiN) can be used as a substitute of Si, 

providing similar circuit compactness, resulting from the relatively high refractive 

index contrast between SiN (n~2) and silicon dioxide (SiO2, n~1.5), and it can be 

manufactured using the same complementary metal oxide semiconductor 

(CMOS) fabrication infrastructure as Si [1]. SiN has particular relevance for life 

science applications, because of the therapeutic window at visible and very near-

IR wavelengths for biological media, where the photo-damage of cells is minimal 

and water absorption is negligible. While there has been a rapid development of 

different optical components such as low-loss waveguides [2] and spectrometers 

[3] on the SiN platform, the realization of integrated light sources on SiN is still 

a major challenge. Difficulties arise from the lack of light emission from SiN. So 

far, the research efforts in this field have been realized with external light sources. 

Hence, an integrated laser source in such densely integrated systems would 

provide immense potential for applications such as medical point-of-care devices, 

body implants for monitoring of glucose levels, and sensing devices integrated 

into smartphones. To bring laser functionality to SiN waveguide circuits, the most 

promising short-term approach is the heterogeneous integration of III-V materials 

using adhesive bonding [4].  

Vertical cavity surface emitting lasers (VCSELs) have several unique 

advantages such as small footprint, a possible single mode output, the ease with 

which they can be formed into an array, and their low power consumption. State-

of-the-art discrete VCSELs today have been demonstrated with power conversion 

efficiencies exceeding 60% [5], modulation bandwidths up to 30 GHz [6], data 

rates exceeding 70 Gbit/s [7], and energy dissipation less than 100 fJ/bit at data 

rates up to 50 Gbit/s [6,8] with drive currents of only a few milliamperes. 

Therefore, bringing these distinct features of VCSELs on SiN waveguide circuits 

by heterogeneous integration technology will benefit applications such as on-chip 

short-wavelength optical interconnects and life science applications. Therefore, 

the main goal of this PhD is to propose, design, fabricate and demonstrate a 

heterogeneously integrated GaAs vertical cavity laser source on a SiN waveguide 

circuit.  
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To fulfil this goal we worked in close collaboration with Chalmers University 

of Technology. Together we proposed a design of hybrid-cavity VCSELs (HC-

VCSELs), where an epitaxial GaAs half VCSEL containing a reflector, an active 

region and a current injection layer can be attached to a dielectric DBR deposited 

on a Si substrate, using adhesive bonding. Further, the vertically amplified light 

can be coupled to an in-plane SiN waveguide by placing a weak diffraction grating 

connected to a SiN waveguide inside the cavity. We took the first step towards 

the realization of such a device by developing a technology to demonstrate a 1st 

generation of hybrid-cavity VCSELs (Gen1 HC-VCSELs) on Si without any 

grating inside the cavity [9], see Fig. 1. While these lasers were still surface 

emitting, the purpose was to develop the integration technology and to study the 

impact of the dielectric DBR and divinylsiloxane-bis-benzocyclobutene (DVS-

BCB) bonding layer on the optical performance of the HC-VCSEL.  

 

Fig. 1 Schematic cross-section of the Gen1 VCSEL device (surface 

emission). 

The GaAs half VCSEL was bonded to a dielectric DBR on Si using a thin 

layer of DVS-BCB. After bonding, the GaAs bulk substrate was removed using 

complete wet chemical etching and the GaAs VCSELs were fabricated using 

standard VCSEL processing steps [9]. 

With this technology, we successfully demonstrated high performance Gen1 

HC-VCSELs operating at 850 nm with surface emission having sub-mA threshold 

current, >2 mW output power (Fig. 2(a)), and 25 Gbit/s modulation speed (Fig. 

2(b)). A cross-section of the device structure is shown in Fig. 3(a), showing the 

dielectric DBR, the bonding interface and the III-V half VCSEL with oxide 

aperture. Coplanar ground-signal-ground electrodes were defined for high-speed 

characterization as shown in Fig. 3(b). We also saw experimentally that the 

bonding layer thickness can be used to optimize a certain performance parameter 
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at a given temperature or to minimize the variation of performance over 

temperature [10]. 

 

Fig. 2 (a) Output power and voltage versus current for a device with a ~65 

nm bonding layer thickness and 10 µm oxide aperture, measured at ambient 

temperatures ranging from 15 to 100 °C in steps of 5 °C. (b) Measured 

BER versus received optical power for a 5 µm oxide aperture device with 

a ~65 nm bonding layer thickness at data rates up to 25 Gbit/s at 25 °C and 

10 Gbit/s at 85 °C. Insets: corresponding optical eye diagrams (scales: 100 

mV/div and 20 ps/div) 

 

Fig. 3 SEM images of a focused ion beam cross-section (left) and 

microscope top image (right) of a fabricated HC-VCSEL. 

Further, to be able to couple the vertically amplified light into a SiN 

waveguide, the next step is to add a SiN waveguide structure with shallow etched 

grating on top of the dielectric DBR, before adhesively bonding the GaAs half 
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VCSEL. Therefore, we numerically investigated the possibility of coupling the 

output of the HC-VCSEL to an in-plane SiN waveguide using an intra-cavity 

diffraction grating. As these VCSELs are integrated with a SiN waveguide, we 

refer to it as Gen2 vertical cavity Si-integrated lasers (Gen2 VCSILs). We 

proposed a design of an intra-cavity grating/dielectric DBR combination with 

following advantages [11]:  

 It allows the heterogeneous integration of GaAs-based vertical cavity 

light sources on a SiN waveguide circuit,  

 It selects the polarization state of the light generated by the VCSIL, 

 It can provide good transverse mode control 

 High efficiency waveguide coupling can be obtained  

 As demonstrated in [9], the alignment is determined by lithography after 

the heterogeneous integration of the III-V material.  

A schematic of a Gen2 VCSIL is shown in Fig. 4. The reflection (fraction of 

incident light that is reflected) and single-sided coupling coefficient (fraction of 

incident light that is coupled to one side of the SiN waveguide) of these 

grating/dielectric DBR combinations depend on the size of the oxide aperture of 

the GaAs VCSIL and a VCSIL with aperture size > 4µm is required to have a 

polarization selective intra-cavity grating/dielectric DBR combination with 

sufficient reflection and coupling of the fundamental transverse electric (TE) 

mode into the SiN waveguide. 

 

Fig. 4 Schematic cross-section of the Gen2 VCSIL device with in-plane 

out-coupling into a SiN waveguide. 

For a Gen2 VCSIL with aperture size of 5 µm, the reflection and single-sided 

coupling coefficient of the grating/dielectric DBR combination with a grating 

period of 530 nm, 50% duty cycle (DC) and etch depth 30 nm is shown in Fig. 5. 
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From the characterization results of surface emitting Gen1 VCSELs, we found 

that the VCSELs operating at 855 nm have superior room temperature 

performance in terms of optical power and threshold current [10].  Therefore, we 

designed the Gen2 VCSIL to operate at 855nm.   

 

Fig. 5 (a) Simulated reflection coefficient and (b) single-sided coupling 

coefficient of the intra-cavity grating/dielectric DBR combination as a 

function of wavelength for TE and TM polarizations. (grating period = 530 

nm, DC = 50%) 

From Fig. 5 (b) it can be seen that the grating is designed to operate far from 

the center Bragg wavelength for coupling the vertically propagating light into the 

SiN waveguide. In particular the TE mode (electric field parallel to the grating 

lines) operates further away from the Bragg wavelength than the TM mode 

(electric field perpendicular to the grating lines). This results in higher cavity 

losses for the TM mode, which can be used to suppress the TM mode from lasing, 

i.e. set the lasing polarization state of the VCSIL to TE.  

 

Fig. 6 Optical micrographs of (a) an array of fully processed Gen2 VCSILs 

and (b) a single Gen2 VCSIL. 

(a) (b) 

(a) (b) 
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We successfully demonstrated Gen2 VCSILs operating at ~856 nm with TE 

polarized laser output coupled into SiN waveguides. Fig. 6 shows microscope 

images of fully fabricated Gen2 VCSILs on top of intra-cavity gratings and 

waveguide structures. A Gen2 VCSIL with a 5 µm oxide aperture diameter has a 

threshold current of 1.13 mA and produces a maximum single-sided waveguide-

coupled output power of about 73 µW (Fig. 7(a)) with side mode suppression ratio 

(SMSR) of 29 dB (Fig. 7(b)). 

 

Fig. 7 (a) Waveguide-coupled light-current-voltage characteristics for 5 

µm oxide-aperture diameter VCSILs with intra-cavity grating periods 

ranging from 525 - 545 nm (after gold deposition on surface). (b) Spectrum 

for the 525 nm device operated at 2.5 mA. 

The performance of both the Gen1 VCSEL and Gen2 VCSIL was to a large 

extent limited by the high thermal impedance due to the dielectric DBR. The 

thermal impedance of the Gen1 VCSEL and Gen2 VCSIL with 5 µm aperture size 

are 3 and 4 times higher than that of an ordinary VCSEL of the same aperture size 

respectively [12]. Further, the performance of the Gen2 VCSILs is inferior to 

Gen1 VCSELs due to additional unexpected cavity losses, which we attribute to 

surface roughness associated excess scattering. To improve the performance of 

these integrated VCSELs, the dielectric DBR can be replaced by a DBR with high 

index contrast, such as an a-Si/SiO2 DBR, thereby reducing the number of DBR 

pairs required and by integrating a metallic heat spreader to improve the thermal 

impedance of the device. 

Throughout this work, the design and fabrication of SiN photonic integrated 

circuits (PICs) and the heterogeneous integration process to attach GaAs half 

VCSELs to SiN PICs were done by the author. The design of the complete 

VCSEL was done by Johan Gustavsson from Chalmers University of Technology. 

After heterogeneous integration of the GaAs half VCSEL epitaxy, the fabrication 

of the Gen1 VCSEL and Gen2 VCSEL together with its characterization was done 

(a) (b) 
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by Emanuel. P. Haglund, Chalmers University of Technology as part of his PhD 

work. 
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1   

Introduction 

The goal of this thesis is to demonstrate on-chip integrated lasers on a silicon 

nitride (SiN) waveguide circuit, operating in the near-infrared (NIR) wavelength 

range. In general, an ideal light source offers: a wide tuning range, a narrow 

linewidth, high output power, low power consumption, reliable performance over 

a long period, compactness, and low sensitivity to temperature. It is challenging 

to meet all these requirements at once. Different types of lasers such as edge 

emitters (Fabry-Perot laser diodes, distributed feedback (DFB) lasers, external 

cavity lasers) and monolithic vertical cavity surface-emitting lasers (VCSELs), 

exist covering the visible, near-infrared and mid-infrared spectral range. VCSELs, 

compared to edge-emitting lasers, are very suitable as devices for optical 

interconnects on Si platforms. The success of the VCSEL arises from a 

combination of unique properties. The most important are: 

 low threshold currents smaller than 1mA and correspondingly small 

driving currents for required optical output powers in the mW range, thus 

minimizing power consumption and making the design of electronic 

driver circuits easier, 

 excellent digital modulation behavior for data rates nowadays >70 

Gbit/s, 

 high power conversion efficiencies of more than 60% and thus low 

power dissipation, 

 circular beam profiles with small divergence angles, simplifying the 

design of beam-shaping optics, 

 a wide operational temperature range exceeding +125oC that enables 

uncooled operation, even in automobiles, 

https://www.rp-photonics.com/external_cavity_diode_lasers.html
https://www.rp-photonics.com/external_cavity_diode_lasers.html
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 the straightforward formation of homogeneous one- and two-

dimensional laser arrays as the key to compact space division 

multiplexed data transmission, 

 complete testing and device selection on wafer level, yielding enormous 

cost reduction compared to edge-emitting laser diodes, 

 the use of mounting and packaging technology that are well known from 

light-emitting diode (LED) production, and finally 

 very high reliability with projected lifetimes on the order of ten million 

hours at room temperature. 

In this thesis, we limit ourselves to VCSELs, and in particular to GaAs 

VCSELs due to their relevance in the field of biophotonics and short-wavelength 

optical interconnects.  

1.1  Photonic applications of integrated VCSELs 

1.1.1 Optical spectroscopy 

Optical spectroscopy has gained wide acceptance in several fields due to its 

proven effectiveness as a technique for non-destructively analyzing chemical 

content of samples in development or production. The traditional optical 

spectroscopic systems rely on expensive and bulky instrumentation prohibiting 

their dissemination in non-laboratory environments. In recent years, there has 

been a large demand for hand-held devices such as medical point-of-care devices, 

body implants for monitoring of glucose levels, and sensing devices integrated in 

smartphones that are capable of accurate, sensitive, and in situ spectroscopic 

detection of a variety of substances. If key parts of the optical functionality could 

be integrated in the form of a chip, the route would be opened to miniaturized 

low-cost systems, with the potential of massive parallelism and multiplexing [1-

7].  An integrated photonics approach using a high index contrast material can 

provide a compact solution enabling integration and miniaturization of several 

active and passive optical components on a single chip. The most prominent high-

index contrast photonic integration platform is Si photonics. By leveraging the 

well-established CMOS manufacturing infrastructure, Si photonics allows for 

mass-producible, high-yield photonic chips. Fig. 1.1 shows an example of an on-

chip multi-degree of freedom sensor to detect the presence of biological 

substances using micro-ring resonators.  

Currently, the field of on-chip spectroscopy is still very immature as compared 

to free-space spectroscopic systems, but the progress is very rapid. There have 

been reports on various of proof-of-concept on-chip demonstrations for 

absorption [5], fluorescence [6] and Raman spectroscopy [7] using an external 
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light source. In spite of all the promise, there also remain enormous challenges to 

integrate efficient light sources with PICs (e.g., Si photonics) in order to realize 

the dream of on-chip spectroscopic systems. 

 

 

Fig. 1.1 Multi-DoF (degree of freedom) sensor on chip, reproduced from 

[8].   

1.1.2 Optical interconnect 

Another application of integrated laser sources relevant to this thesis, is short-

reach optical interconnects. A brief comparison between electrical and optical 

interconnects is given in [9]. Until recently, interconnects were based on electrical 

copper cables. However, fundamental limitations of copper as an interconnect 

medium in terms of loss, dispersion, and crosstalk are becoming significant as 

interconnect density and speed is rocketing. The ever-growing demand for the 

data has forced the move to optical interconnects, where higher data rates, longer 

reach, and lower power consumption are achieved by optical links [10]. It is 

believed that the optical interconnect has the potential of shortening delays over 

the electrical interconnect [11], as it can provide larger bandwidth density for 

buses and networks than electrical interconnects and an increased data capacity 

can be provided by wavelength division multiplexing [12]. The typical light 

source in such optical interconnects is the directly modulated GaAs-based 

vertical-cavity surface-emitting laser (VCSEL), due to its low-cost fabrication, 

energy-efficient operation, and high bandwidth at low drive currents [13]. 

Commercial VCSELs capable of data rates up to 28 Gbit/s are currently available 

from several manufacturers [14]. However, data rates of 40, 50, and even 100 

Gbit/s are expected in future standards, which will require even faster VCSELs.  

One expected roadmap for optical interconnects is illustrated in Fig. 1.2. It 

shows how optical interconnects are replacing copper interconnects in the 

communication distance versus volume frame. To date, most of the optical 

interconnect range from a few meters up to a few hundred meters, but the majority 

of the links are below 30 m. In the future, it is expected that even shorter links, 

e.g., board-to-board, chip-to-chip, and on-chip interconnects would benefit from 
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the higher speed and efficiency of the optical interconnects. However, this 

requires tighter integration between the electronic and the photonic integrated 

circuits (PICs). Since the material of choice for electronic circuits, Si, cannot be 

used to produce efficient light sources, one possible route is the heterogeneous 

integration of GaAs-based VCSELs on a Si-based platform for PICs, compatible 

with standard CMOS fabrication. 

 

 

Fig. 1.2 Optical interconnects roadmap in data communication networks. 

1.2  Relevance of the NIR wavelength range 

An optical spectroscopic technique employs either the visible (VIS), the 

ultraviolet (UV) or the infrared (IR) electromagnetic spectrum. The most 

prominent among these is the IR wavelength region. The infrared wavelength 

region refers to wavelengths longer than visible but shorter than the microwaves. 

It can be further divided into 5 subsections: near-infrared (NIR, 0.7-1.0 µm), 

short-wave infrared (SWIR, 1.0-3.0 µm), mid-wave infrared (MWIR, 3.0-

5.0 µm), long-wave infrared (LWIR, 8.0-12.0 µm), far infrared (FIR, 12.0-

30.0 µm). These definitions are not strict and the wavelength boundaries can vary 

slightly. Most biological species and processes are probed in the visible and near-

infrared (400-1000 nm wavelength), and of particular interest is the therapeutic 

window in the very-near-infrared (750-930 nm wavelength) where there is 

minimal photo-damage to cells and negligible water absorption. Furthermore, in 

this wavelength range, there is a large availability of light sources with high 

performance and low cost as well as high-performance Si-based photodetectors. 

Therefore, the NIR wavelength range is particularly relevant for Raman 

spectroscopy and fluorescence spectroscopy. 
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For applications in optical data transmission, there are three main wavelength 

windows: (a) 750–900 nm, (b) 1260–1360 nm, and (c) 1460–1625 nm. These 

three wavelength windows have negligible OH absorption in fiber. Therefore, for 

applications in telecommunication, window (b) and (c) are mainly used whereas 

window (a) cannot be used due relatively large Rayleigh scattering. However, 

window (a) can still be used for short-distance data communications where 

scattering loss can be ignored. 

Due to the overlap of interest in optical sensing and short-reach datacom 

applications in the NIR wavelength range, 850 nm wavelength devices integrated 

on a Si-based photonic platform are of particular interest in this thesis. 

1.3  Passive waveguide platform for near-infrared 

(NIR) wavelengths 

Tremendous efforts have been invested in research, development, and 

industrialization of Si photonics over the past decades.  As a result, Si photonics 

has emerged as a mature technological platform for optical datacom and telecom 

applications at 1300 and 1550 nm. Over the past few years, we have witnessed Si 

photonics products finding their way in the market. However, for applications 

requiring shorter wavelengths, Si cannot be used due to the absorption in Si below 

1.1 μm. Instead, silicon nitride (SiN) can be used as a substitute of Si, providing 

similar circuit compactness, resulting from the moderately high refractive index 

contrast between SiN (n ≈ 2) and silicon dioxide (SiO2, n ≈ 1.5). It can also be 

manufactured using the same CMOS fabrication infrastructure as Si. The material 

stack used for SiN-based photonics is similar to SOI-based silicon photonics. The 

only difference is that the guiding Si layer is replaced by a layer of SiN, which 

can either be deposited by Low Pressure Chemical Vapour Deposition (LPCVD) 

at high temperature (>700 °C) or by Plasma Enhanced Chemical Vapour 

Deposition (PECVD) at low temperature (<400 °C) [15]. LPCVD-based SiN is 

typically close to stoichiometric Si3N4. However, it has large internal tensile 

stress.  LPCVD SiN provides an excellent control over the homogeneity of 

material index and thickness. PECVD-based nitride has a composition that 

depends strongly on the deposition conditions and can be Si-rich (higher refractive 

index) or nitrogen-rich (lower refractive index). A review of Si and SiN-based 

PICs for application in spectroscopic sensing can be found in [2] and a detailed 

comparison between the two platforms was published in [4].  

Using PECVD SiN, a waveguide loss of ∼1.5 dB/cm has been demonstrated 

for the visible and the very near IR wavelength range for strip waveguides [15]. 

All the essential passive optical components such as grating couplers [16-18], 

planar concave gratings [19], arrayed waveguide gratings [20], Mach-Zehnder 
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interferometer filters [21,22], ring cavity filters [23] and Bragg gratings [24] have 

also been demonstrated on a SiN-based photonics platform. However, the 

realization of integrated light sources on SiN is still a major challenge.  

The fact that SiN can be deposited by a LPCVD or PECVD deposition 

technique implies that there is a lot more flexibility to combine the SiN 

waveguides with other photonic structures than is the case for SOI waveguides. 

As an example, one can deposit the waveguide layer on top of a DBR-mirror or 

metal mirror and thereby boost the efficiency of standard grating couplers [17], 

[18]. In [17], this approach has led to the demonstration of fiber-chip coupling 

efficiencies of ∼60% for focusing grating couplers operating at 0.66 μm 

wavelength. 

 

Fig. 1. 3 (a) Refractive index and (b) the absorption coefficient of typical 

LPCVD and PECVD SiN for wavelengths ranging from 0.4 μm to 1.68 

μm, reproduced from [4].  

In this thesis, the Si3N4 waveguide circuits are fabricated on top of Ta2O5/SiO2 

dielectric DBRs deposited on 200 mm diameter Si wafers with a thickness of 700 

µm. The Si3N4 as well as the SiO2 are deposited by PECVD and the waveguide 

structures are defined with e-beam lithography and subsequently etched by a 

reactive ion etching process to get the final structure.  

1.4  Integration approaches 

In spite of all the unique advantages that Si photonics has to offer, the indirect 

bandgap of Si and its compatible compounds, such as SiN and SiGe hampers 

efficient light emission. Over the years, many approaches have been proposed to 

bring coherent light onto the Si PIC. Therefore, to couple light into the Si chips 

the following options are available:  
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 through coupling an external light source to the SOI chip, but this is not 

an attractive solution due to the high packaging costs involved. 

 through epitaxial growth of high quality, defect-free films of III-V on a 

Si substrate. Recently an optically pumped epitaxially grown InP DFB 

laser [25] and a quantum dot laser on Si [26] has been demonstrated.  

 through light generation in Si itself by making use of the nonlinear 

effects in Si (e.g., super continuum sources) [27]. 

 through heterogeneous integration of III-V materials such as GaAs, InP, 

etc. that are excellent light emitters [28].  

Because of the direct bandgap and high optical gain in III-V materials, it is 

highly appealing to integrate III-V lasers on Si. Directly mounting pre-fabricated 

III-V lasers using flip-chip or pick-and-place technology is currently preferred by 

the industry [29-31]. It allows the pre-selection of known-good lasers, but the 

limited alignment tolerance and the high packaging cost make it unsustainable for 

further scaling. On the other hand, the direct epitaxial growth of III-V materials 

on Si holds promises for high integration density and low cost [25,26] but is not 

yet very mature in terms of yield and device performance. As an intermediate step, 

wafer bonding based heterogeneous integration has been widely explored in the 

past decade and has proven to be the most successful approach up to now for III-

V laser integration on Si. Several bonding techniques, such as direct bonding 

(using Van der Waals forces) and adhesive bonding, have been utilized to 

demonstrate various laser sources on Si. A review of the wide range of 

heterogeneously integrated devices obtained through adhesive bonding is 

presented in [28]. In the past few years, heterogeneously integrated III-V/Si lasers 

have evolved at a rapid pace with considerable enhancement in laser performance.  

A semiconductor laser that is nowadays widely used for data communication, 

sensing, and high power applications is the vertical-cavity surface-emitting laser 

(VCSEL). Its success stems from the small optical mode and gain volume, which 

enables efficient operation and high-speed modulation at low currents. Another 

advantage is the vertical geometry giving surface emission, which enables low-

cost fabrication and testing. This raises the question whether VCSELs, or VCSEL-

like lasers, can be used as light sources for Si photonics, thereby bringing 

advantages of conventional VCSELs in terms of low currents, high efficiency, 

and small footprint to Si photonics. This challenging problem forms the central 

goal of this PhD work.  

1.5  State of the art on Si integrated VCSELs 

One of the hybrid integration approaches is to flip chip commercial VCSELs to a 

Si/SiN PIC. Flip-chip integration of long-wavelength (InP-based) and short-
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wavelength (GaAs-based) VCSELs over optical coupling elements (gratings or 

mirrors) on Si photonic PICs has indeed been explored for light source integration 

[29-31]. To flip chip VCSELs onto Si, the use of vertical grating couplers (VGC), 

where light is coupled in perpendicular to the surface, is the most straightforward 

solution with ease in fabrication. However, a VGC suffers from a second order 

diffraction and limits the maximum coupling efficiency to 50%. A flip chipped 

VCSEL on such a VGC was reported in [29]. A solution to avoid the unwanted 

second order reflection in case of a VGC is to tilt the incident light by a small 

angle with respect to the surface normal direction [32]. This makes the fabrication 

process challenging. To overcome this challenge, a VCSEL was flip-chipped onto 

a polymer micro prism incorporated on top of the grating coupler using laser 

ablation [30] and at a tilted angle [31]. However, the coupling efficiency was still 

low in the above reported integrated VCSELs due to the polarization uncertainty 

of the VCSEL. To further improve the coupling efficiency, a grating with optical 

feedback to control the polarization of the VCSEL can also be used. Another 

hybrid integration was demonstrated in [33] where a commercial VCSEL was 

bonded to an apodized vertical grating coupler (VGC) providing external optical 

feedback (OF) to maintain the polarization state. Despite having an advantage of 

pretesting of lasers prior to assembly with the Si/SiN PIC, these techniques suffer 

from not being wafer scale processes and require accurate and time-consuming 

alignment of individual devices. 

Another integration approach is heterogeneous integration with the advantage 

of being a wafer scale process. A Si-based high-contrast grating (HCG) gained 

interest in order to form a hybrid cavity VCSEL with advantages such as 

polarization selection with transverse mode control, a substantial reduction in 

epitaxial material thickness and larger fabrication tolerance. There have been 

demonstrations of a heterogeneously integrated optically pumped VCSEL with 

output coupled to in-plane Si waveguides using a 1D HCG [34] and a 2D 

polarization independent HCG [35]. Another flip-chipped electrically pumped 

hybrid VCSEL with Si HCG was demonstrated in [36]. In this thesis, we report 

the first demonstration of a heterogeneously integrated electrically-pumped 

VCSEL with coupling to a SiN-based waveguide.  

Table 1.1 shows the comparison of present VCSELs integrated on Si-based 

waveguides by flip-chip and heterogeneous integration in terms of threshold 

current, maximum power, maximum slope efficiency, and side mode suppression 

ratio (SMSR).  
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Table 1.1. Comparison with other VCSEL-on-SiP assemblies.  

 Wavelength 

(nm) 

Threshold 

current 

(mA) 

Max. on-chip 

optical power 

(mW) 

Max. slope 

efficiency 

(W/A) 

SMSR 

(dB) 

Laser 

aperture 

radius 

(μm) 

This work 855 nm 1.1 0.146 at 3mA 0.17 29 5 

VCSEL on Si 

HCG1 [35] 

1570 nm 3 0.013 CW at 

4.4 mA* 

 

NA >40 8 

VCSEL on Si 

HCG2  [36]  

1580 nm 9 1 at 17 mA 0.3 >60 NA 

VCSEL on SiP3 

[29]  

NA 1.6 0.066 at 10 mA NA NA NA 

VCSEL on SiP4  

[30]  

1550 nm 1 NA NA 45 NA 

VCSEL on SiP5  

[31] 

1547 nm 1.25 0.138 at 13.5 

mA 

0.012 35 NA 

VCSEL on SiP6 

[33]  

1333 nm 0.7 0.126 at 3.7 mA 0.064 49 <6 

*power converted from 1.15×106 photon counts at 115 µW optical pulsed pumping. 
1: VCSEL was bonded with Si HCG (optically pumped); 
2: VCSEL was flip-chip bonded with Si HCG; 
3: VCSEL was flip-chip bonded with VGC; 
4: VCSEL was flip-chip bonded with grating coupler using laser-fabricated microprism; 
5: VCSEL was flip-chip bonded with grating coupler at tilted angle; 
6: VCSEL was bonded with a chirped VGC with external optical feedback; 

1.6  Outline of the thesis 

The thesis is organized as follows. Semiconductor lasers, and in particular 

VCSELs, are introduced in Chapter 2, while the design of hybrid-cavity VCSELs 

by attaching a GaAs half VCSEL to SiN PICs on Si-integrated dielectric DBRs is 

presented in Chapter 3. The technologies to realize SiN PICs on Si-integrated 

dielectric DBRs are presented in Chapter 4, while the heterogeneous integration 

technology and the VCSEL fabrication processes are presented in Chapter 5. 

Chapter 6 describes the characterization of the VCSELs, and finally, a future 

outlook is given in Chapter 7. 

1.7  Contributions in this PhD thesis 

The work presented in this thesis was done in collaboration with Chalmers 

University of Technology. The SiN building blocks to integrate GaAs half 

VCSELs to a SiN waveguide on a dielectric DBR mirror on a Si substrate were 

designed and fabricated by the author at UGent. The heterogeneous integration 

process to attach the GaAs VCSEL to the Si-based photonic integrated circuits 

via adhesive bonding was developed and performed by the author at UGent. The 
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process to fabricate GaAs VCSELs and their characterization was carried out at 

Chalmers University of Technology. 
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2   

VCSEL Fundamentals 

2.1 Introduction 

Vertical Cavity Surface Emitting Lasers (VCSELs) are the most power efficient 

low current/low power semiconductor lasers available with demonstrated power 

conversion efficiencies exceeding 60% [1].  The success of the VCSEL arises 

from a combination of unique properties such as the possibility of a single mode 

output, excellent digital modulation with data rates exceeding 70 Gbit/s [2], 

operation over wide ambient temperature range exceeding +125oC, small 

footprint, and inexpensive wafer scale processing and testing. Further, VCSELs 

operating in the NIR wavelength range have their importance in the field of optical 

spectroscopy and short-reach optical interconnects. In this chapter, the 

fundamentals of VCSELs will be presented in detail.  

2.2  Semiconductor lasers 

“Laser” is an acronym for Light Amplification by Stimulated Emission of 

Radiation. In general, every laser system essentially has an active/gain material 

placed between a pair of optically parallel and highly reflecting mirrors with one 

of them partially transmitting, and an energy source to pump the active medium. 

Amplification (or gain) achieved in a gain medium is a quantum mechanical 

process, where an incident photon can stimulate the emission of an identical 

photon (same wavelength, phase, direction) by de-exciting an electron from a high 

energy state to a lower energy state where the energy difference is the same as the 

energy of the incident photon. The emitted photon further oscillates between two 
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mirrors and passes every time through the gain medium attaining considerable 

amplification and emits through one of the transmitting mirrors. To ensure there 

is population inversion in the gain material, electrical or optical pumping of the 

active region must be used.  

Lasers can be categorized in several different ways including wavelength and 

material type (such as gas, liquid, solid-state, and semiconductor lasers). In this 

thesis, we will restrict ourselves to semiconductor lasers. Semiconductor lasers 

are the smallest, cheapest, can be produced in mass, and are easily scalable. The 

gain medium in an electrically pumped semiconductor laser usually consists of a 

thin undoped (intrinsic) direct bandgap semiconductor sandwiched between p-and 

n-doped cladding layers with higher bandgap. These direct bandgap 

semiconductors are typically III-V semiconductor compounds (such as AlGaAs, 

InGaAs, and InGaAsP). The bandgap can be adjusted by varying the material 

composition of the ternary and quaternary compounds, which enables variation in 

the operating wavelength and thereby covers most of the visible, near-infrared and 

mid-infrared spectral range. When this junction is forward biased, electrical 

carriers (electrons and holes) start to accumulate in the active (intrinsic) region 

and radiative transitions can occur. To achieve lasing, the gain must be high 

enough to compensate all losses. At a certain current, referred to as the threshold 

current, the optical gain equals the cavity losses (mirror losses and internal losses), 

and the lasing threshold is reached. The material gain required to reach threshold 

(gth) can be expressed as: 

 
g𝑡ℎ = Γ [𝛼𝑖 +  

1

2𝐿
ln (

1

𝑅1 𝑅2

)] = Γ [𝛼𝑖 + 𝛼𝑚] 
(2.1) 

 

where Γ is the confinement factor, αi is the internal absorption, αm the mirror 

loss, L the cavity length, and R1 and R2 denote the respective mirror power 

reflectivities. Eq. 2.1 is referred to as the amplitude condition since it states that 

the amplitude of the electrical field must be the same after one round-trip in the 

cavity. At current injection levels exceeding the threshold current, all carriers 

injected in excess of the threshold carrier concentration are consumed by 

stimulated emission and contribute to the laser output. This leads to a self-

regulating mechanism in the laser that clamps the carrier concentration and the 

gain at their threshold values and the output power increase rapidly at currents 

beyond the threshold. 

For lasing to occur, the phase of the electric field must also repeat itself after 

one round-trip in the cavity, yielding the resonance condition: 

exp (−𝑗
2𝜋

𝜆0/𝑛𝑒𝑓𝑓

 2𝐿) = 1 ⇒ 𝜆0 =  
2𝐿𝑛𝑒𝑓𝑓

𝑚
 

(2.2) 
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where λ0 is the lasing wavelength (in a vacuum), neff  is the effective refractive 

index of the cavity, L is the length of the cavity and m is an integer number. The 

simplest possible semiconductor laser is the Fabry-Perot (FP) laser, which is an 

edge-emitting laser (EEL) where the cavity is formed in the plane of the active 

layer either by cleaving or etching the semiconductor crystal with the resulting 

semiconductor/air interfaces functioning as mirrors. The reflections at the cleaved 

facets, due to the high refractive index contrast between the semiconductor 

material and air, give enough feedback to achieve lasing together with the high 

gain over a relatively long distance along the cavity.  

 

 

Fig. 2.1 (a) Cut-through VCSEL sketch. (b) Edge-emitting stripe laser. 

Contrary to the EEL, the VCSEL, shown schematically in Fig. 2.1 (a), has a 

resonant cavity formed perpendicular to the plane of the active region layers. 

Feedback is provided by highly reflective DBR mirrors above and below this 

region, resulting in a very short effective resonator length (typically ∼1 μm). 

Because of the short cavity length, VCSELs are fundamentally different from 

their FP EEL counterparts. The separation between the resonance wavelengths of 

an optical cavity (free spectral range) is inversely proportional to the length of the 

optical cavity. EELs with relatively long cavity lengths (100s of λ) have many 

longitudinal cavity modes that fall within the gain spectrum. In contrast, the short 

optical cavity length of a VCSEL (typically a single or few λ) implies that only 

one resonance will overlap with the laser gain bandwidth. However, a VCSEL 

typically has a relatively large cavity diameter (≈ 5-20 µm), which may permit 

numerous transverse spatial modes. Therefore, the VCSEL emission consists of a 

single longitudinal mode, but with possibly multiple transverse optical modes. 

The small volume of the active region and the laser cavity give advantages in 

terms of low threshold and operating currents and high modulation bandwidth at 

low currents. Surface emission allows for a circular output beam cross-section and 

efficient coupling to an optical fiber. Even though the epitaxial growth of VCSELs 
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is complicated with low tolerances for error, the small footprint allows a large 

number of components to be fabricated on a single wafer (up to 6") in one single 

process run. Combined with the possibility of on-wafer testing before dicing and 

packaging, this can reduce high-volume fabrication costs dramatically compared 

to EELs. Surface emission also allows for simple integration of components into 

1D or 2D arrays, making e.g., compact multi-channel data transmission [3] or 

power scaling from a typical ~10mW in a single VCSEL to well above 100W [4] 

possible for 2D arrays. 

2.3  Bragg reflectors 

Because of the short gain length, VCSEL mirrors must have a high reflection 

coefficient (>99%). Mirrors that can provide these levels of reflectivity are DBRs 

and high contrast gratings (HCGs). A DBR consists of an alternating sequence of 

high and low refractive index layers with thicknesses of one-quarter of the 

material wavelength. Multiple reflections at the interfaces of the DBR and 

constructive interference of multiple reflected waves increases the reflectivity 

with increasing number of pairs. The reflectivity of a DBR with m quarter wave 

pairs at the Bragg wavelength is given by  

 

𝑅𝐷𝐵𝑅 = |𝑟𝐷𝐵𝑅 |2 = (
(

𝑛1

𝑛2
)

2𝑚

−  (
𝑛1

2

𝑛0𝑛𝑡
)

(
𝑛2

𝑛1
)

2𝑚

+  (
𝑛1

2

𝑛0𝑛𝑡
)

)

2

 

 

(2.3) 

where 𝑛0 , 𝑛1 , 𝑛2  and 𝑛𝑡  are the respective refractive indices of the originating 

medium, the two alternating layer in DBR, and the terminating medium. The high-

reflectivity bandwidth or stop-band of a DBR depends on the difference in 

refractive index of the two constituent materials, Δn. The spectral width of the 

stop band is given by  

 
𝛥𝜆𝑠𝑡𝑜𝑝 𝑏𝑎𝑛𝑑 =  

2𝜆𝐵𝑟𝑎𝑔𝑔𝛥𝑛

𝜋𝑛𝑒𝑓𝑓

 , 

 

(2.4) 

where 𝑛𝑒𝑓𝑓 is the effective refractive index of the mirror, given by 

  

 
𝑛𝑒𝑓𝑓 =  (

1

𝑛1

+
1

𝑛2

)
−1

, 
(2.5) 

 

Typically DBRs for VCSELs are either epitaxially grown semiconductors or 

consist of dielectric materials. The materials available for epitaxial DBRs have 
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relatively low refractive index contrast, which requires 20–30 DBR pairs for 

sufficient reflectivity, while dielectric materials have the possibility for much 

larger refractive index contrast and typically require less than 20 DBR pairs for 

sufficient reflectivity. Current transport through the semiconductor DBR mirror 

is an important issue. Although the hetero interfaces providing a large index 

difference are necessary for high DBR reflectivity, they also imply that many 

large energy band offsets are present. These discontinuities in the conduction and 

valence energy bands form potential barriers that impede current flow and can 

lead to high resistance. To avoid this problem, the hetero-interfaces between the 

DBR layers can be modified using composition grading along with specific 

doping profiles. A variety of compositional profiles between the DBR layers have 

been reported, including staircase [5], linear [6, 7] and parabolic [8] hetero-

interface grading. 

2.4  Matrix method and standing-wave pattern 

 

Fig. 2.2 Transmission matrices for a stack consisting of three media 1, 2 

and 3 and two interfaces. 

For the design of high-performance VCSELs, it is important to know the 

reflectivity spectra of the Bragg mirrors and the electric field distribution in the 

resonator. A commonly used model for one-dimensional calculations is the 

transmission or transfer matrix method [9]. The transfer matrix formalism handles 

plane waves and uses the fact that each interface between two isotropic dielectric 

media as well as each layer can be represented by 2 x 2 matrices, which are called 

transmission or transfer matrices T. Each transmission matrix relates forward and 

backward propagating field amplitudes E1,f and E1,b on one side of the interface or 

layer with the forward and backward propagating fields E2,f and E2,b on the other 

side: 

1 2 3 

E
1,f

 E
2,f

 E
3,f

 

E
1,b
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(

𝐸1,𝑓

𝐸1,𝑏
) = (

𝑇1,1 𝑇1,2

𝑇2,1 𝑇2,2
) (

𝐸2,𝑓

𝐸2,𝑏
) = 𝑇 (

𝐸2,𝑓

𝐸2,𝑏
) 

 

(2.6) 

The great advantage comes into play by using the transfer matrix method for 

multi-layered structures. For the complete stack of layers, one can simple multiply 

the corresponding Ti matrices of each individual layer and interface and so get the 

TS matrix for the whole stack: 

 𝑇𝑠 =  𝑇1 . 𝑇2 … … 𝑇𝑖 … … 𝑇𝑁−1. 𝑇𝑁  

 

(2.7) 

where N is the total number of  layers and interfaces. This idea together with the 

definitions of the forward and backward directions is illustrated in Fig. 2.2. The 

transmission matrices can be easily calculated for plane waves and for the case of 

normal incidence for an interface between two media with refractive indices 𝑛1 , 

and 𝑛2, and also for a layer with thickness L according to Equations 2.8 and 2.9, 

respectively, 

 
𝑇𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 =

1

𝑡1,2

(
1 𝑟1,2

𝑟1,2 1
) 

(2.8) 

 

 
𝑇𝑙𝑎𝑦𝑒𝑟 = (𝑒−𝑗𝛽𝐿 0

0 𝑒𝑗𝛽𝐿
) 

(2.9) 

 

with r1,2 and t1,2 given by the following equations: 

 𝑟1,2 =
𝑛1 − 𝑛2

𝑛1 + 𝑛2

 (2.10) 

 

 
𝑡1,2 =

2𝑛1

𝑛1 + 𝑛2

 

 

(2.11) 

The transfer matrix method is very simple to use and does not require noticeable 

computational power. Using this formalism in the present work 1D-simulations 

for DBR reflectivity spectra, cavity dip positions and field distributions inside of 

the cavity were carried out. One of the first tasks while designing a VCSEL is to 

decide how many DBR pairs for the top and the bottom mirror should be grown. 

This determines the reflectivity of both mirrors. Fig. 2.3(a) shows the reflectivity 

and phase spectra for the top Al0.12Ga0.88As/Al0.90Ga0.10As DBR with 24 pairs used 

in the 845 nm QW-VCSELs. The second important task for a proper VCSEL 

design is to match the cavity wavelength to the desired value. For the VCSEL 

fabricated in this work, it was 845 nm. For this purpose, the position of the cavity 

dip was calculated with the transfer matrix method. Therefore, the reflection from 



VCSEL Fundamentals 21 

 

 

the complete VCSEL structure was simulated. If necessary, the thickness of the 

cavity should be adjusted in order to match the dip position to the desired 

wavelength. Fig. 2.3(b) shows the calculated cavity dip position for the 845 nm 

QW-VCSEL. 

 

 

Fig. 2.3 (a) Reflectivity and phase as a function of the wavelength for 24 

pairs of an Al0.12Ga0.88As/Al0.90Ga0.10As DBR with air interface, (b) full 

VCSEL cavity dip position at 845 nm. The single narrow longitudinal 

resonance is seen at 845 nm. 

2.5 Transverse confinement 

As discussed above the VCSEL emission consists of a single longitudinal mode 

due to the short cavity length, but with possibly multiple transverse optical modes. 

To suppress higher order transverse optical modes in a VCSEL, the optical field 

needs to be confined in the transverse direction. Furthermore, the electrical current 

must be confined to pump only active material overlapping with the lasing mode. 

In most VCSEL designs the electrical and optical confinement originate from the 

same feature. Some examples of standard transverse confinement schemes are: 

etched air posts [10], the regrown buried mesa, ion implantation [11], buried 

tunnel junction (BTJ) [12], and oxide aperture [13], as illustrated in Fig. 2.4. Early 

VCSELs used the simple etched air-post structure shown in Fig. 2.4 (a) where the 

large refractive index difference at the semiconductor/air interface results in a 

strong index guiding of the optical field in the transverse direction. However, 

mesa etching incurs scattering losses for the optical field and may cause reliability 

problems from carrier recombination at the semiconductor-air interface. A further 

development from this basic structure is the regrown buried mesa VCSEL seen in 

Fig. 2.4 (b). By regrowing semi-insulating semiconductor material around the 

etched mesa, problems associated with the semiconductor/air interface can be 

eliminated, but the regrowth process is challenging.  
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Proton implantation has been the first method employed to fabricate 

commercial VCSELs with an excellent life time, reproducibility, and reliability 

[14,15]. By selectively implanting ions into the semiconductor material, it can be 

rendered electrically isolating, and the flow of the injected current can be 

controlled. Different ion species have been used, but protons (H+) are the most 

common choice. The proton implant confines the current, but it does not provide 

any inherent index guiding of the optical field. Instead, optical confinement is 

provided by gain guiding and thermal lensing (the temperature rise associated 

with the drive current produces a refractive index difference which gives rise to 

index guiding of the optical mode). However, this guiding is relatively weak and 

results in drive current dependent mode behavior [16]. Oxide-confined GaAs-

based VCSELs (Fig. 2.4 (d)) utilize selective oxidation of high Al-content 

AlGaAs-layers to form the oxide apertures, which provides both electrical and 

optical confinement since the resulting oxide is isolating and has lower refractive 

index than the non-oxidized material. The selective oxidation introduces lower 

optical losses in the cavity and has led to a leap in VCSEL performance [17-20]. 

The vast majority of commercial VCSELs nowadays relies on oxide confinement.  

 

Fig. 2.4: Different electrical and optical confinement methods: (a) etched 

air post, (b) regrown mesa, (c) proton implantation, (d) oxide aperture, and 

(e) buried tunnel-junction. 

For long wavelength InP-based VCSELs emitting at 1.3 and 1.55 μm, a buried 

tunnel junction is used for electrical and optical confinement since no high-quality 

oxide exists in this material system, see Fig. 2.4 (e) [12]. This technique is not 
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commonly used for electrical and optical confinement in GaAs-based VCSELs 

because of the difficulty to design effective tunnel junctions, the complex 

regrowth process required, and the excellent properties of oxide-confined 

VCSELs. 

2.6  Thermal effects 

Caused by the short optical resonator, the emission wavelength λ of a VCSEL is 

determined by the cavity resonance and not by the gain peak as in conventional 

EELs. Hence, the spectral alignment between the cavity resonance and the laser 

gain peak profoundly influences the performance of the VCSEL. Note that as 

temperature increases both the cavity resonance and the laser gain peak shifts to 

longer wavelengths. The thermal shift in cavity resonance is governed by a change 

in refractive index in the resonator due to resistive Joule heating by injected 

carriers. Consequently, the shift in cavity resonance depends on the material 

composition of the Bragg reflectors and the inner cavity. For a GaAs-based 

VCSEL, the thermal shift in the cavity resonance is typically found to be ∂λ/∂T 

≈0.06–0.09 nm/K [21]. On the other hand, the active QWs show a shift of the gain 

peak wavelength λp according to ∂λp/∂T ≈0.32 nm/K mainly due to bandgap 

shrinkage [21].  

 

 

Fig. 2.5: Resonance/gain peak detuning with increasing temperature. 

The best situation arises when the cavity resonance is aligned with the gain 

peak, where the lowest threshold current is obtained, but the differing shift rates 

with increasing current (and thus device temperature) leads to a spectral 

misalignment between the cavity resonance and the gain peak, leading to 

degradation of laser performance. Therefore, the cavity resonance is often 

intentionally designed to be at a slightly longer wavelength relative to the laser 

gain peak at room temperature, so that at higher current injection and thus, higher 

operating temperature, the laser gain peak shifts into alignment with the cavity 

resonance to yield optimal VCSEL performance [22]. Therefore, during epitaxial 

growth of the VCSEL, the cavity resonance/gain alignment can be designed to 

obtain low threshold or high output power at a particular temperature or to 
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produce relatively invariant threshold properties over a wide range of operating 

temperatures. 

2.7 Dynamic effects 

The intrinsic dynamics of semiconductor lasers is governed by the resonant 

interaction between the photons in the lasing modes and the injected electron-hole 

pairs in the active region. Therefore, for analyzing the intrinsic dynamic behavior 

of semiconductor lasers, a set of two coupled rate equations is formulated 

(Equations 2.12 & 2.13); one for the carrier density in the active region, and one 

for the photon density of the lasing mode in the cavity [9]. While these equations 

hold for a single mode laser, for a multimode laser one needs to introduce a rate 

equation for every lasing mode. However, with regards to total output power, the 

dynamic behavior of index guided multimode VCSELs with highly overlapping 

transverse intensity fields have uniform transverse carrier and photon densities 

[23]. Also, they exhibit a single resonance frequency very similar to a single mode 

VCSEL. This means that, in good approximation,  it is sufficient to use only two 

rate equations, which are [9] 

 

 𝑑𝑁

𝑑𝑡
=

𝜂𝑖𝐼

𝑞𝑉𝑎

− (𝐴𝑁 + 𝐵𝑁2 + 𝐶𝑁3) − 𝑣𝑔𝐺𝑆, 
(2.12) 

 

 𝑑𝑆

𝑑𝑡
= Γ𝑣𝑔𝐺𝑆 −

𝑆

𝜏𝑝

+ Γ𝛽B𝑁2 
(2.13) 

where N is the carrier density in the active region, 𝜂𝑖  the internal quantum 

efficiency, I is the injected current, q is the elementary charge, 𝑉𝑎 is the active 

region volume, which is equal to the oxide aperture area times the total thickness 

of the QWs, AN+BN2+CN3 is the recombination rate from spontaneous and non-

radiative recombination, where A is the Shockley-Read-Hall recombination 

coefficient (Defect-related non-radiative recombination.), B is the radiative 

recombination coefficient, and C is the Auger recombination coefficient, 𝑣𝑔 is the 

group velocity of the lasing mode, G the material gain, S is the photon density of 

the lasing mode, 𝜏𝑝 is the photon lifetime which is related to the cavity losses 

through 𝜏𝑝 = 𝑣𝑔 . [𝛼𝑖 + 𝛼𝑚] , and 𝛽  is the fraction of photons generated by 

spontaneous emission that goes into the lasing mode. 

2.7.1 Small signal frequency response 

From the standard coupled rate equations (Equations 2.12 and 2.13), the intrinsic 

small signal modulation response of a single mode laser is a damped second order 
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system, which can be conveniently described in terms of a modulation transfer 

function: 

 
𝐻𝑖(𝑓) = 𝜂𝑑

ℎ𝑐

𝜆0𝑞
.

𝑓𝑟
2

𝑓𝑟
2 − 𝑓2 + 𝑗

𝑓

2𝜋
𝛾

 
1

1 + 𝑗
𝑓

𝑓𝑝

 
(2.14) 

where 𝜂𝑑is the differential quantum efficiency. 

Further, the electrical parasitics can be accounted for by an RC-filter modeled as 

an extra pole with cut-off frequency 𝑓𝑝 [9]. The total modulation transfer function 

(intrinsic modulation response combined with electrical parasitics) can therefore 

be written as [9]:  

 
𝐻(𝑓) = 𝑐𝑜𝑛𝑠𝑡.

𝑓𝑟
2

𝑓𝑟
2 − 𝑓2 + 𝑗

𝑓

2𝜋
𝛾

 
1

1 + 𝑗
𝑓

𝑓𝑝

 
(2.15) 

The relaxation resonance frequency is given by 

 

𝑓𝑟 =
1

2𝜋
√

𝑣𝑔 . (𝜕𝑔/𝜕𝑛). 𝑆

𝜏𝑝. (1 + 𝜀𝑆)
 

(2.16) 

Where 𝜕𝑔/𝜕𝑛 is the differential gain and 𝜀 is the gain compression factor. The 

increase of the resonance frequency with the current is typically quantified by the 

D-factor defined as 

 
𝐷 ≡

𝑓𝑟

√𝐼 − 𝐼𝑡ℎ

 
(2.17) 

where 𝐼 − 𝐼𝑡ℎ is the injected current above the threshold.  

The damping factor in (2.14) is given by [9] 

 𝛾 = 𝐾. 𝑓𝑟
2 + 𝛾0  (2.18) 

where 𝛾0 is the damping offset and the K-factor is given by.   

 
𝐾 = 4𝜋2 (𝜏𝑝 +

𝜀

𝑣𝑔 . (𝜕𝑔/𝜕𝑛)
) 

(2.19) 
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2.7.2 Bandwidth limitations 

The total modulation transfer function (2.15) has three parameters: the relaxation 

resonance frequency 𝑓𝑟 , the damping factor 𝛾  and the cut-off frequency of 

electrical parasitics 𝑓𝑝. Accordingly, there are three types of limitations for the 

high-speed operation of a semiconductor laser. The damping limited 3dB intrinsic 

bandwidth (without parasitics and thermal effects) is limited by the K-factor [9] 

through: 

𝑓−3𝑑𝐵,𝑑𝑎𝑚𝑝𝑖𝑛𝑔 =
2𝜋√2

𝐾
≈

8.89

𝐾
 

(2.20) 

This limits the speed from the fact that the damping factor increases with the 

squared relaxation resonance frequency (2.18), while the bandwidth increases 

only approximately linear to it. Starting from some point, an increase in the 

damping factor overcomes the increase in the relaxation resonance frequency, and 

the bandwidth of the laser begins to decrease.  

The second limitation is caused by the thermal effects, in fact by the internal 

laser heating, leading to an increase of the temperature of the active region. This 

is the so-called thermal limitation. Because temperature affects nearly each of the 

laser parameters used in the rate equations, the relaxation resonance frequency 

saturates at some current and starts to decrease at larger currents. Looking at 

(2.17) one can say that the D-factor and the threshold current are temperature 

dependent, and the D-factor decreases with temperature, while the threshold 

current increases. Thus there is a limit for the relaxation resonance frequency, and 

it becomes limited by a maximum value 𝑓𝑅,𝑚𝑎𝑥. The thermally limited bandwidth 

( 𝑓−3𝑑𝐵,𝑡ℎ𝑒𝑟𝑚𝑎𝑙), estimated from [9] is: 

 
𝑓−3𝑑𝐵,𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ≈ √1 + √2 × 𝑓𝑅,𝑚𝑎𝑥 ≈ 1.55𝑓𝑅,𝑚𝑎𝑥 

(2.21) 

The third type of limitations is caused by the presence of electrical parasitic 

elements inside of the laser, mostly parasitic resistances and capacitances. These 

electrical parasitics build a low pass filter, preventing high-speed operation. With 

a given cut-off frequency of the electrical parasitics fp, the maximum achievable 

bandwidth limited by electrical parasitic elements, estimated from [24] is: 

 𝑓−3𝑑𝐵,𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 = (2 + √3)𝑓𝑝 ≈ 3.73𝑓𝑝 (2.22) 
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Fig. 2.6  shows the results of a typical near- 30 GHz VCSEL from [25], where 

the intrinsic bandwidth exceeds 60 GHz while it is reduced to less than 30 GHz 

after adding the effects of self-heating and electrical parasitic effects. Clearly, the 

speed of the VCSEL is largely limited by a combination of thermal effects and 

parasitic effects. 

 

 

Fig. 2.6: Impact of thermal effects and parasitics on the VCSEL 

modulation response. Reproduced from [25]. 

2.8 VCSEL Modal Characteristics  

The development of VCSELs has brought attention to the possibility of using it 

in integrated circuits. As a result, VCSELs are already an established transmitter 

in applications such as data communication and sensing. A single mode VCSEL  

with a polarization stable output power coupled into a waveguide is highly 

desirable in these fields. Unfortunately, VCSELs are surface emitting devices and 

they inherently have multiple-transverse modes due to their large lateral extent 

and an unpredictable polarization state as a result of the symmetric device layout 

and material isotropy. Below we will elaborate on various techniques that have 

been implemented for achieving single-mode, polarization-stable, and 

waveguide- coupled VCSELs.  

2.8.1 Large area single-mode VCSELs 

For a VCSEL to be referred to as single mode, a side-mode suppression ratio 

(SMSR) larger than 30 dB is typically required. As discussed in section 2.5, the 

lateral transverse mode confinement of GaAs VCSELs is done by a standard 

selective oxidation technique. However, higher order modes still exists when the 

waveguiding structure allows for it, generally above 3µm oxide aperture size. 

These higher order modes lase at slightly different wavelengths than the 
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fundamental mode, compromising the spectral purity of the laser, which is 

detrimental in sensing applications or mid and long distance optical 

communications links. Additionally, under modulation, the output power  

switches between the various modes, which is problematic for high-speed 

modulation in a dispersive environment. Thus, to achieve single mode devices for 

these applications, a small aperture size is typically used, precluding higher order 

modes. The drawback is that this also limits the maximum output power to a much 

lower value than could be achieved with a larger aperture. A small oxide aperture 

can also increase the diffraction losses, leading to higher threshold current, 

increase in differential resistance and lower output power. Further fabrication of 

small oxide aperture VCSELs requires a reproducible and uniform oxidation 

process. Since the oxidation rate is exponentially dependent on the temperature, a 

temperature variation across the wafer below 0.5°C is required [26]. Thus, there 

has been a search for ways to increase the size of the oxide aperture in a VCSEL, 

also increasing the power output, without losing the single mode optical 

characteristic.  

One approach to engineer the waveguiding of the structure is by etching holes 

in the structure similar to a photonic crystal fiber [27] to force larger apertures to 

be single mode. This tends to also increase resistance and threshold of the device 

as well as add fabrication complexity. The use of an extended cavity also allows 

for single-mode emission from oxide-confined VCSELs with a large oxide 

aperture because of increased diffraction losses for higher-order modes with 

larger diffraction angles [28]. The large aperture reduces the electrical resistance 

which delays thermal roll-over and enables high single-mode power. However, 

such VCSELs are not truly single-mode since higher-order modes appear at high 

currents. With the thick cavity spacer needed for high single-mode power, such 

VCSELs are also susceptible to longitudinal mode switching because of the 

reduced longitudinal mode spacing. An alternative approach to eliminate the 

higher order modes is to add some differentiation in the loss seen by the 

fundamental and higher order modes. This can be achieved by etching of a shallow 

surface structure, called a mode filter, in the top layer of the VCSEL structure 

[29]. With this technique, single-mode operation can be achieved for devices with 

oxide aperture diameters as large as 7 μm.  

Another approach to achieve a large area single mode device is to design a 

mirror for which the reflection is dependent on the angle of the incoming light. 

This can be achieved by using a one-dimensional (1D) subwavelength grating 

made of materials with a large refractive index contrast, hence named a high-

contrast grating (HCG), [30]. The reflectivity for waves propagating in the 

surface-normal direction to the plane of an HCG can be designed to vary with 

incident angle, which has been shown to be effective in transverse mode control 
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[31]. Further, an HCG is capable of providing an extraordinarily broad bandwidth 

of high reflectivity for waves propagating in the surface-normal direction to the 

plane of gratings. Therefore, in an extreme case, the complete Bragg mirror of a 

VCSEL can be replaced by just a single layer HCG. 

2.8.2 Polarization-stable VCSELs 

Due to the complete isotropic nature of the gain material in the plane of the gain 

layer and the circularly symmetric resonator transverse geometry, the polarization 

direction of emitted light is random and is easily switched due to stress [32], 

injected current [33], or reflections [34]. Since a stable polarization is required for 

almost all sensing and some datacom applications, extensive and in-depth 

investigations have been undertaken during the last twenty years in order to 

stabilize the polarization of VCSELs without affecting their favourable operation 

parameters. Polarization control of VCSELs can be achieved by introducing a 

polarization-dependent gain, an asymmetric resonator, or mirrors with a 

polarization-dependent reflectivity.  

The in-plane isotropy of the quantum well gain can be broken by introducing 

material gain anisotropy by growing VCSELs on GaAs (113) A and (113) B 

planes [35-39]. An active medium consisting of quantum wires [40] or structurally 

anisotropic quantum dots [41] can also provide a polarization-dependent gain 

under certain circumstances. However, the drawback is the rather difficult 

processing. Introducing a transverse anisotropy into the VCSEL cavity can also 

induce polarization dependent loss. Dumbbell-shaped [42], rectangular [43], or 

elliptical [44] mesas were the first representatives of this technique. They all 

aimed at polarization dependent scattering losses inside the laser cavity. However, 

these polarization dependent losses are weak. 

Besides anisotropic gain and transverse anisotropy in a mesa structure, a 

mirror with a polarization-dependent reflectivity is also an attractive approach to 

control the polarization of VCSELs. Over the last few years, reliable polarization 

control of VCSELs by utilizing surface gratings has been proven not only in 

academic research [45] but has found its way into high-volume commercial 

products [46]. A polarization dependent reflectivity can be realized by patterning 

a properly designed grating with wavelength scale period [47] or a subwavelength 

grating on the top layer of a DBR [48]. This causes one polarization to see much 

higher loss within the structure, effectively preventing it from lasing. This concept 

has been demonstrated over the past few years. However, a grating with 

wavelength scale period has the drawback of diffraction losses introduced by the 

grating. Consequently, the threshold current is increased and the maximum output 

power are decreased. A subwavelength grating, on the other hand, is very 

attractive as it only allows the zeroth transmitted and reflected order to propagate. 



30 CHAPTER 2 

 

 

Consequently, these gratings do not cause any diffraction (and therefore laser 

losses). However, the fabrication of gratings with such a small period is more 

challenging. Such subwavelength grating polarization stable VCSELs have been 

realized in [48]. Another subwavelength grating that can be used to realize a 

polarization stable VCSEL is an HCG grating which can provide an inherent 

reflectivity difference between TM and TE polarized light. This results in a largly 

polarization-dependent modal loss in the VCSEL cavity. Besides controlling the 

polarization and transverse mode of the VCSEL output, such gratings (HCGs) can 

also be used to realize tunable VCSELs [30]. 

2.8.3 Waveguide-coupled VCSELs 

Gratings are an essential component for an integrated photonic circuit. They are 

often used to couple light in and out of an optical waveguide. Therefore, a grating 

can also be used to tap off the vertically amplified output of the VCSEL into an 

in-plane waveguide. There have been reports on flip-chipped VCSELs on a Si 

grating coupler to couple the vertical emission from a VCSEL to an in-plane Si 

waveguide [49-52].  As discussed in previous sections, the use of a grating can 

also control the polarization and transverse mode of the VCSEL. Recently a 

hybrid cavity vertical-cavity laser (VCL) with single-mode output coupled to an 

in-plane Si waveguide using a high contrast grating (HCG) has been demonstrated 

[53-55]. The heterogeneously integrated VCSELs presented in [53,54] were 

optically pumped with an output coupled to in-plane Si waveguides using a 2D 

polarization independent HCG [53] and a polarization dependent 1D HCG [54]. 

In [55] a flip chipped electrically pumped single-mode, polarization stable, hybrid 

cavity VCL with 1D Si HCG was demonstrated. The coupling between the 

vertical cavity and the in-plane waveguide is enabled by having a hybrid cavity, 

i.e. that the standing wave optical field extends over both the III-V material, 

containing the gain region, and the Si-based structure, containing the waveguide. 

A Si-based HCG gives an advantage of polarization selection with transverse 

mode control with a substantial reduction in epitaxial material thickness and large 

fabrication tolerance [56]. However, to operate at NIR wavelength, SiN is 

required [57]. SiN provides relatively low index contrast compared to Si, which 

requires the SiN high contrast grating to be free standing. This makes such a 

hybrid cavity approach very complicated in terms of fabrication [57].  

In this thesis, we use an approach where a weak diffraction grating placed 

inside the VCSEL cavity can be used to tap off the vertically amplified output into 

an in-plane waveguide. This approach requires fabricating a grating within the 

cavity itself though, which enables integration of GaAs half VCSEL with SiN 

waveguide circuits using a hybrid integration approach. A similar approach has 

previously been explored for an all III-V semiconductor based design [58]. A brief 
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discussion on the design of such hybrid cavity VCSELs will be presented in 

Chapter 3.   

2.9 Conclusion 

In this chapter, a brief introduction to semiconductor lasers, in particular, 

VCSEL was presented. The optical, thermal, and dynamic effects in a VCSEL 

were also presented. We also addressed the issue of multimode VCSEL output 

and unstable VCSEL polarization with a review on various methods to overcome 

this. A review on techniques to integrate VCSELs with in-plane waveguides with 

polarization and transverse mode control were presented. A grating placed inside 

the cavity to control the polarization and transverse mode of the VCSEL is found 

to be an attractive route for heterogeneous integration of VCSELs and thus will 

be used in this thesis.  
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3 
Design of Si-integrated Hybrid 

Cavity VCSELs 
3.1 Introduction 

To facilitate a Si-based platform with an energy efficient laser source such as a 

VCSEL, a hybrid integration approach is required. In this chapter, we will 

describe the concept and design of such hybrid-cavity lasers. The chapter starts 

with a description of hybrid-cavity vertical cavity lasers followed by a design, 

where a GaAs half VCSEL is attached to a dielectric distributed Bragg reflector 

(DBR) on Si substrate, providing a surface emitting output. Further, this design is 

modified by implementing a weak diffraction grating in the hybrid cavity to tap 

off power to an in-plane SiN waveguide. The epitaxial layers of the GaAs half 

VCSEL and the VCSEL cavities were designed at Chalmers University of 

Technology using a home built software based on the conventional transfer matrix 

method, whereas the SiN PICs were designed at UGent using a commercially 

available finite-difference-time-domain (FDTD) software, Lumerical.

3.2  Hybrid-cavity vertical cavity laser (HC-VCL) 

As discussed in Chapter 2, a hybrid-cavity VCL can be formed by attaching a 

GaAs half VCSEL to an optical reflector on the Si wafer.  

Our approach to form a hybrid cavity laser is to bond an epitaxial half-VCSEL 

structure onto a dielectric distributed Bragg reflector (DBR) on a Si substrate, 

forming a hybrid cavity. By placing a waveguide with a weak diffraction grating 
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inside the cavity, between the dielectric DBR and the half-VCSEL, it is possible 

to tap off light into in-plane waveguides. As a first step in this direction, we 

designed a short wavelength VCSEL on Si, where a GaAs-based “half-VCSEL” 

is attached to a dielectric DBR on Si using ultra-thin divinylsiloxane-bis-

benzocyclobutene (DVS-BCB). These VCSELs are still surface emitting, and the 

sole purpose of such a design is to demonstrate a hybrid vertical-cavity laser 

suitable for development and implementation of the integration technique. It also 

allows for evaluating the impact of the high thermal impedance dielectric reflector 

on Si on the performance of heterogeneously integrated hybrid cavity VCSELs. 

We refer to this device as a Gen1: Hybrid-cavity Vertical Cavity Surface Emitting 

Laser (HC-VCSEL). The Gen1: HC-VCSEL was further modified by 

implementing a weak diffraction grating in the hybrid cavity to tap off power to 

an in-plane SiN waveguide. As these lasers were not surface emitting, we refer to 

it as a Gen2: Vertical-Cavity Si-Integrated Laser (VCSIL).  

3.3 Gen1: Hybrid-cavity Vertical Cavity Surface 

Emitting Laser (HC-VCSEL)  

3.3.1 Laser structure 

The schematic of the Gen1 hybrid-cavity VCSEL is shown in Fig. 3.1. The 

structure comprises two distinct parts referred to as the top half-structure and the 

bottom half-structure. The top half-structure is a GaAs-based half-VCSEL, and 

the bottom half structure is the dielectric DBR on Si. A divinylsiloxane-bis-

benzocyclobutene (DVS-BCB) adhesive bonding layer is used to attach the top 

half-structure to the bottom-half structure. 

3.3.2 GaAs half VCSEL 

A GaAs-based half-VCSEL consists of a III-V active region with multiple 

quantum wells (MQWs), sandwiched between a III-V top DBR and a III-V current 

spreading layer (CSL). A layer to form an oxide aperture is also positioned in the 

top DBR mirror pair closest to the active region to provide current confinement 

and optical confinement in the VCSEL.  

Therefore, the epitaxial device layers of GaAs half-VCSEL are as follows: 

 The top GaAs p-contact layer has a thickness of λ/2, thereby producing 

an anti-phase reflection at the surface to facilitate post process tuning of 

the photon lifetime. 

 The top DBR has 23 mirror pairs of p-doped 

Al0.12Ga0.88As/Al0.90Ga0.10As layers with linearly graded interfaces and 

modulation doping.  
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 The III-V active region is a 1-λ-thick separate confinement 

heterostructure (SCH) containing a gain region with five 4 nm thick 

In0.10Ga0.90As quantum wells (QWs) separated by 6 nm Al0.37Ga0.63As 

barriers. The room temperature photoluminescence (PL) peak from the 

QWs is at 840 nm.  

 The CSL is a 1-λ-thick n-doped Al0.12Ga0.88As layer. 

 The layer positioned in the top DBR mirror pair closest to the active 

region to form an oxide aperture via selective oxidation is a 30-nm-thick 

layer of Al0.98Ga0.02As. 

Apart from the device layers, the epitaxial layers also contained etch stop and 

sacrificial layers, included at both sides of the device layers to ensure a clean 

surface prior to bonding and to enable substrate removal after bonding. More 

discussion about these layers will be presented in chapter 5. 

 

 

Fig. 3.1 Schematic cross section of the 845-nm-wavelength Gen1 HC 

VCSEL. 

3.3.3 Dielectric DBR on Si 

In this thesis, we used dielectric DBR layers on Si to replace the bottom III-V 

DBR. As discussed in chapter 2, VCSELs require DBRs with R >99 %. Therefore, 

a number of strict requirementss are placed on the material to be used. For 

example, the contrast in refractive index in the DBR layer must be high enough, 

there must be low optical loss in the materials, and the DBR interface must be 
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abrupt. In addition, the DBR materials should be able to be easily incorporated 

into existing processing technology. 

A higher index contrast between the DBR layers results in higher reflectance 

and wider stopband with less DBR pairs. In comparison to semiconductor DBRs 

where losses arise from the free carrier absorption, dielectric DBRs are 

electrically insulating providing negligible extinction coefficient.  

Table 3.1 List of dielectric materials transparent at 850nm 

Material Refractive index (n) at 

λ= 850 nm 

a-Si 3.6 

TiO2 2.488 

Ta2O5 2.12 

SiN 1.93 

SiO2 1.47 

 

 

Fig. 3.2 Simulated (red) and measured (black) spectral reflectance for the 

20-pair SiO2 /Ta2O5 dielectric DBR on Si substrate, reproduced from [1]. 

For the low index material in the dielectric DBR, SiO2 is a natural choice due 

to its extensive use in the CMOS industry. The refractive index of the SiO2 used 

in this case is 1.47. As a higher index material in the DBR, few dielectric materials 

were explored and are listed in table 3.1. After careful analysis of the availability 

of the dielectric material to us, we proceeded with a Ta2O5/SiO2 DBR. The DBR 

wafer with 20 pairs of Ta2O5/SiO2 DBR layers deposited on polished Si was 

purchased from JDS Uniphase Corporation.  

Fig 3.2 shows a comparison of simulated and measured reflectance spectra of 

the dielectric DBR with good agreement in terms of the width of the stopband 
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(~200 nm) and a slight blue-shift of the measured centre wavelength (~20 nm) 

relative to simulations. 

3.3.4 VCSEL design 

As can be seen from Fig 3.1, the GaAs half VCSEL and dielectric DBR pairs on 

Si substrate can be attached via adhesive bonding using a DVS-BCB layer, to 

form a hybrid VCSEL. An important task for a proper VCSEL design is to match 

the resonance wavelength of the cavity to the desired value. For the VCSEL 

fabricated in this work it is 845 nm. For lasing oscillation, the round trip phase 

must be an integral multiple of 2π. Therefore, the cavity length is adjusted by 

varying the thickness of the DVS-BCB such that the phase condition is fulfilled 

at 845 nm. The optical cavity properties are analysed using a 1D effective index 

model at 845 nm and are listed in table 3.2.  

Table 3.2 Cavity parameters at a resonance wavelength of 845 nm, 

reproduced from [1]. 

Optical confinement factor 0.0173 

Cold cavity Q 16200 

Total loss (ps-1) 0.138 

Top DBR transmission loss (ps-1) 0.053 

Bottom DBR transmission loss (ps-1) 3×10-5 

Intra-cavity loss (ps-1) 0.085 

Threshold QW gain (cm-1) 609 

Photon lifetime (ps) 7.25 

The intra-cavity loss is due to free-carrier absorption in the n-contact layer and 

the p-DBR. The variations of the real part of the refractive index and the intensity 

of the optical standing wave along the optical axis of the cavity are presented in 

Fig. 3.3. To the left of the bonding interface is the III-V “half-VCSEL” and to the 

right of the interface is the dielectric DBR on the Si substrate.  As can be seen 

from Fig. 3.3, the active medium is placed at the anti-node of the optical field, in 

order to increase the interaction of the active material with the optical field. The 

oxide aperture is placed between a node and an anti-node for just enough index 

guiding. 

The variation of the QW threshold gain and cavity resonance wavelength with 

the thickness of the bonding interface are shown in Fig. 3.4. It indicates that, over 

~35 nm wavelength span (830–865 nm), the threshold gain is below 1000 cm−1, 

which should allow for low threshold currents. 
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Fig. 3.3 Simulated standing-wave optical field intensity along the optical 

axis of the HC-VCSEL (red), together with the real refractive index profile 

(black), reproduced from [1]. 

 

Fig. 3.4 Simulated dependence of resonance wavelength and threshold gain 

on bonding interface thickness, reproduced from [1]. 

3.4 Gen2: Hybrid-cavity Vertical Cavity Si-Integrated 

Laser (HC-VCSIL)  

3.4.1 Laser structure 

The schematic of the Gen2 hybrid-cavity VCSIL is shown in Fig. 3.5 (a). The 

structure again comprises of two distinct parts referred to as the top half-structure 

and the bottom half-structure.  
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Fig. 3.5 (a) Schematic cross-section of the 855-nm-wavelength Gen2 HC-

VCSIL with in-plane out-coupling. (b) Top view of the intra-cavity SiN 

grating with a waveguide and the grating coupler. 

The top half-structure is the same GaAs-based half-VCSEL used in Gen1 

VCSELs whereas the bottom half structure contains a weak diffraction grating 

etched in an intra-cavity SiN waveguide placed on top of the dielectric DBR used 

in the Gen1 VCSEL. The top and bottom SiO2 cladding layers prevent the 

waveguide mode from leaking into the high index GaAs half-VCSEL and the high 

index dielectric DBR and Si substrate. A 50-nm-thick divinylsiloxane-bis-

benzocyclobutene (DVS-BCB) adhesive bonding layer is used to attach the top 

half-structure to the bottom-half structure, and a 200-nm-thick gold layer is placed 

on top of the p-doped DBR to avoid surface emission from the VCSIL and to 

reduce cavity loss. It also provides a more uniform lateral current injection into 

the QWs. As the arrows in Fig. 3.5 (a) illustrate, light is amplified vertically 

between the III-V top DBR and the intra-cavity grating/dielectric bottom DBR 

combination, and a fraction of this light energy is coupled out into a SiN 

waveguide. The intra-cavity grating is designed in such a way that the 

combination of the grating and the DBR reflects most of the light and couples a 
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small fraction of the light into the SiN waveguide (this is the designed dominant 

(useful) loss).  

From our demonstrated Gen1 VCSEL devices, a VCSEL with resonance 

wavelength of 852 nm corresponding to a gain-to-resonance detuning of the -1 nm 

had superior performance at room temperature [1]. Therefore, the design of intra-

cavity grating and hence the Gen2 VCSIL device to operate around that 

wavelength (855 nm) will be presented in the next section. 

3.4.2 Intra-cavity grating design 

The first challenge in this design is to prevent light guided by the SiN waveguide 

to leak away into the high index III-V material or bottom dielectric DBR and Si 

substrate. Therefore, the thicknesses of the top and bottom SiO2 cladding layers, 

TSiO2,Top respective TSiO2,Bottom need to be sufficiently large to minimize this 

leakage loss. This leakage loss is estimated using commercially available software 

(FIMMWAVE, an optical mode solver from Photon Design).  

 

Fig. 3.6 Oxide cladded 5.5 μm × 300 nm SiN waveguide leakage loss as a 

function of (a) bottom oxide cladding layer thickness (855 nm wavelength, 

TE polarization), and (b) top oxide cladding layer thickness (855 nm 

wavelength, TE polarization). 

The width of the SiN waveguide core is chosen in such a way that it is ~ 1 µm 

larger than the size of the fundamental transverse mode of the VCSIL to provide 

tolerance in misalignment of the VCSIL, which in turn is determined by the 

diameter of the oxide aperture. Therefore, for a VCSIL with oxide aperture 

diameter of 5 µm, the SiN waveguide core has the width set to 5.5 μm. An 

optimization of the oxide aperture will be presented in a next section. Fig. 3.6 (a) 

shows the leakage loss into the top half high index III-V material at 855 nm 

wavelength as a function of TSiO2,Top for the fundamental TE mode in a 300 nm 
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thick SiN waveguide core. A minimum thickness of 600 nm for TSiO2,Top is 

required to minimize the leakage loss. Moreover, the light guided by this 

waveguide should not leak into the bottom dielectric DBR and high index Si 

substrate either. Fig. 3.6 (b) shows the leakage loss into the bottom half of the 

structure at 855 nm wavelength as a function of TSiO2,Bottom for the fundamental TE 

mode. As can be seen from Fig. 3.6 (b), a minimum thickness of 600 nm for 

TSiO2,Bottom is required to minimize the leakage loss. In case the waveguide is 

tapered to a single mode SiN waveguide, TSiO2,Bottom needs to be > 800 nm to 

minimize leakage of the fundamental TE mode into the bottom dielectric DBR 

and high index Si substrate [4].  

Next, numerical calculations for optimizing the intra-cavity grating design 

were performed using Lumerical, a commercial simulator based on the finite 

difference time-domain (FDTD) method. A 2D-simulation was performed on the 

bottom half structure of the Gen2 VCSIL shown in Fig. 3.7 (a). The bottom half 

structure of the VCSIL cavity contained the SiN (refractive index, n = 1.93) 

waveguide core with an integrated intra-cavity grating, the bottom SiO2 cladding 

layer, and the 20 mirror pair Ta2O5/SiO2 dielectric DBR. The quarter-wavelength-

layers of Ta2O5 (n = 2.12) and SiO2 (n = 1.45) have a thickness of 100 and 144 

nm respectively. A Gaussian beam was launched from inside the top SiO2 

cladding layer (100 nm above the intra-cavity grating layer) perpendicular to the 

bottom half structure of the VCSIL cavity. Since the grating is placed inside the 

VCSIL cavity, the fraction of the light energy that is coupled to the SiN waveguide 

in a single cavity round trip must be made small, in order to maintain a low laser 

threshold gain. At the same time, the in-plane coupling should be the useful 

dominant cavity loss term in the laser in order to maximize the slope efficiency 

for the light coupled to the SiN waveguide. This means that other cavity losses 

from free-carrier absorption, oxide aperture scattering, and grating diffraction are 

to be minimized in the VCSIL design.  

The main objective of the simulation was to design a weak coupling grating at 

855 nm wavelength, for light polarized parallel to the grating lines (transverse 

electric, TE, mode). It should provide coupling of a small fraction of light into the 

SiN waveguide, and at the same time, it should introduce strong grating 

diffraction loss for light polarized perpendicular to the grating lines (transverse 

magnetic, TM, mode). This results in higher cavity loss for the TM mode, which 

can favorably be used to suppress the TM mode from lasing, i.e., set the TE 

polarization state for the light generated by the VCSIL. 
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Fig. 3.7 Schematic cross-section of the 2-D FDTD simulation setup for the 

intra-cavity grating/dielectric DBR combination. 

At first, the grating period, grating groove depth, and TSiO2,Bottom were 

simultaneously optimized using a particle swarm optimization algorithm [2]. The 

SiN waveguide core thickness was kept fixed at 300 nm, and a grating duty cycle 

of 50% was chosen to offer a simpler fabrication. A Gaussian beam with 

wavelength span of 10 nm, from λ1 = 850 nm to λ2 = 860 nm, and 1/e2 power 

diameter (2w) of 4.7 μm was used for the simulation. The lateral extent of the 

grating, i.e., the size of the grating region, was fixed to 10 grating periods, in order 

to match the diameter of the fundamental mode in the VCSIL. For the incident 

Gaussian beam, an average power reflection coefficient (Ravg) from 

grating/bottom dielectric DBR combination and power coupling coefficient 

(single-sided) into the SiN waveguide (Tavg) was defined by Equation (3.1). In the 

optimization algorithm, we assume that a minimum reflection coefficient, Rmin of 

0.995 was necessary to achieve a low threshold gain for the laser. When the 

conditions Ravg,TE-mode > Rmin and (Ravg,TE-mode - Ravg,TM-mode) > 0 were fulfilled, 

Tavg,TE-mode was calculated, and the single-sided coupling efficiency defined by the 

ratio Tavg,TE-mode/(1 - Ravg,TE-mode) was used as a figure of merit function for the 

optimization algorithm.   
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Fig. 3.8 (a) Reflection coefficient as a function of wavelength for TE and 

TM polarization. (b) Single-sided coupling coefficient as a function of 

wavelength for TE and TM polarization. (c) Phase of the reflected wave 

for TE polarization. Parameters of the simulations are 2w = 4.7 μm, grating 

period = 530 nm, SiN waveguide core thickness = 300 nm, TSiO2,Bottom 

thickness = 610 nm, grating groove depth = 30 nm, and grating duty cycle 

= 50%. 

Simulation results for the optimized intra-cavity grating design are plotted in 

Fig. 3.8, where the grating period is 530 nm, the grating groove depth is 30 nm, 

and TSiO2,Bottom is 610 nm. Fig. 3.8 (a) shows the reflection coefficient spectrum. 

Fig. 3.8 (b) shows the single-sided coupling coefficient spectrum, for both the TE 

and TM polarized Gaussian beam and Fig. 3.8 (c) shows the phase of the reflected 

wave.  As can be seen from Fig. 3.8 (b), at the VCSIL design wavelength of 855 

nm, the grating operates away from the grating Bragg wavelength, and in 

particular for the TE-mode, the wavelength of the operation resides in the tail of 

the coupling coefficient spectrum. For the TE-mode, this provides coupling into 

the SiN waveguide, while maintaining a high reflection coefficient (>Rmin) for 

lasing. For the TM-mode, the grating operates closer to the Bragg wavelength, 
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resulting in a higher coupling coefficient but the reflection coefficient is much 

lower than what is typically needed for lasing. Thus, the intra-cavity grating 

provides both the functionality of in-plane output coupling and pinning the 

polarization state of the light generated by the VCSIL at 855 nm wavelength. 

Next, we assess the fabrication tolerance on the intra-cavity waveguide with an 

integrated grating.  

 Effect of change in grating parameters on 

reflection and single-sided coupling coefficient 

spectrum 

In 1st order approximation, a relative change in grating period results in an equal 

relative change of peak wavelength. As an effect, a 10 nm increase in grating 

period is found to result in a 15 nm red-shift of the reflection/coupling coefficient 

spectrum. But the grating period can be controlled down to 1 nm using advanced 

patterning techniques, so this should not be an issue. Moreover, the change in 

peak wavelength due to a change in grating duty cycle and SiN waveguide core 

thickness is the result of the change in the average effective index of the grating. 

A 20% change in grating duty cycle gives a minor 8 nm red-shift of the 

reflection/coupling coefficient spectrum, and a 10 nm increase in SiN waveguide 

core thickness results in a 3 nm red-shift in the reflection/coupling coefficient 

spectrum.  

 

Fig. 3.9 (a) Reflection and (b) single-sided coupling coefficient as a 

function of intra-cavity grating period for TE and TM polarizations at a 

resonance wavelength of 855 nm. Parameters of the simulations are 2w = 

4.7 μm, SiN waveguide core thickness = 300 nm, TSiO2,Bottom thickness = 

610 nm, grating groove depth = 30 nm, and grating duty cycle = 50%. 

Figure 3.9 shows the simulated reflection and single-sided coupling 

coefficient as a function of the grating period at a resonance wavelength of 855 
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nm for the two polarizations. As can be seen from Figure 3.9 (a) the intra-cavity 

grating is capable of pinning the polarization of the generated output to TE mode 

for a grating period ranging from 520 - 550 nm, while also providing coupling 

into the SiN waveguide, see Figure 3.9 (b). 

 Effect of bottom SiO2 cladding thickness and 

VCSEL aperture size on reflection and single-

sided coupling coefficient 

A more critical parameter in the design is the bottom SiO2 cladding thickness 

(TSiO2,Bottom), as will be discussed below. The reflection/coupling coefficient 

spectrum is also affected by the width of the incident Gaussian beam. The next 

step is, therefore, to optimize the diameter of the oxide aperture in the VCSIL, 

which will approximately correspond to the 1/e2 power diameter of the incident 

Gaussian beam. The reflection/coupling coefficient spectrum for two VCSILs 

with oxide aperture diameters of 4 and 6 μm were compared as a function of 

TSiO2,Bottom. The diameter of the fundamental transverse mode in these two VCSILs 

was estimated using an effective index analysis [3].  It was found that the 4 μm 

and 6 μm oxide aperture VCSILs correspond to a Gaussian beam with 4 and 5.4 

μm 1/e2 power diameter respectively. Fig. 3.10 (a), (c) and (e) show simulation 

results for a Gaussian beam with a 4 μm 1/e2 power diameter (grating period = 

539 nm, grating region width = 8 grating lines), and 3.10 (b), (d) and (f) show 

corresponding results for a Gaussian beam with a 5.4 μm 1/e2 power diameter 

(grating period = 525 nm, grating region width = 11 grating lines). Note that the 

double-sided coupling efficiency (=2*single-sided coupling efficiency) is plotted 

in Fig. 3.10 (e) and (f). As can be seen in Fig. 3.10 (a), (b), (c), and (d) the 

grating/bottom dielectric DBR combination reflects stronger for TE polarization 

than for TM polarization at 855 nm wavelength when TSiO2,Bottom is in the range 

between 580 and 660 nm, providing TE polarization selectivity in the VCSIL. By 

comparing Fig. 3.10 (a) and (b), we can conclude that a Gaussian beam with 4 μm 

1/e2 power diameter has a somewhat lower reflection coefficient than with 6 μm 

diameter. Since a smaller oxide aperture diameter implies a wider angular spread 

of the optical field inside the VCSIL, it results in a penalty in the coupling 

efficiency for smaller oxide apertures, comparing Fig. 3.10 (e) and (f). Therefore, 

a VCSIL with large oxide aperture is preferred for optimal grating performance. 
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Fig 3.10 Reflection coefficient as a function of TSiO2,Bottom for (a) TE 

polarization, 2w = 4 μm and grating period = 542 nm (b) TE polarization 

for 2w = 5.4 μm and period = 530 nm (c) TM polarization, 2w = 4 μm and 

period = 542 nm. (d) TM polarization, 2w = 5.4 μm and period = 530 nm. 

(e) Double-sided coupling efficiency as a function of TSiO2,Bottom  for TE 

polarization, 2w = 4 μm and period = 542 nm. (f) Double-sided coupling 

efficiency as a function of TSiO2,Bottom for TE polarization for 2w = 5.4 μm 

and period = 530 nm. Other parameters are fixed such as SiN waveguide 

core thickness = 300 nm, grating groove depth = 30 nm, and grating duty 

cycle = 50%. 
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 Effect of misalignment on reflection and single-

sided coupling coefficient 

Finally, the dependence of the reflection coefficient and coupling efficiency on 

the possible lateral misalignment between the Gaussian beam (i.e., oxide aperture) 

and the grating region, in the direction perpendicular to the grating lines (x-axis 

in Fig. 3.7) is plotted in Fig. 3.11. At 855 nm wavelength, a misalignment of 1 μm  

leads to a 0.02% drop in reflection coefficient, and a misalignment of +1 μm gives 

a 6% drop in coupling efficiency for the right-hand-side waveguide. 

 

Fig. 3.11 (a) Reflection coefficient and (b) right-hand-side waveguide 

coupling efficiency, as a function of alignment between the Gaussian beam 

center relative to the grating region center, in the direction perpendicular 

to the grating lines. The grating region center is considered as the beam 

position = 0. Parameters of the simulations are 2w = 4.7 μm, grating period 

= 530 nm, SiN waveguide core thickness = 300 nm, grating groove 

depth  =  30 nm, and grating duty cycle = 50%. 

 

3.4.3 Vertical-Cavity Si-Integrated Laser design 

In spite of all advantages of the transfer matrix formalism, this method remains 

limited to one-dimensional problems and plane waves and cannot give a deeper 

understanding of the optical processes inside of a complex three-dimensional 

structure, where some dimensions become comparable to the wavelength of the 

emitting light. Therefore to analyse the resonant optical field properties of the 

VCSIL cavity using a 1D wave transfer matrix method (TMM), the grating and 

bottom dielectric DBR combination is replaced by an artificial interface (blue 

dotted line in Fig. 3.12) having the spectral reflection coefficient, single-sided 

coupling coefficient and phase of the reflected wave obtained from the 2D FDTD 

simulations in Fig 3.8. From this 1D TMM model, the resonance wavelength and 
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optical field distribution along the optical z-axis above the grating are extracted, 

an example of which is shown in Fig. 3.12. 

 

Fig. 3.12 Refractive index distribution (black line) and simulated resonant 

optical field intensity (red line) along the z-axis of a 855-nm-wavelength 

VCSIL. 

The simulations also provide information on threshold gain and power 

incident on the artificial interface. From the latter, we can estimate the slope 

efficiency for the light coupled to the SiN waveguide, via the coupling coefficient 

obtained from the 2D FDTD simulations in Fig. 3.8. As found in Fig 3.6 (a), the 

thickness of the top SiO2 cladding layer (TSiO2,Top) needs to be around 600 nm or 

larger to minimize the SiN waveguide leakage loss. Also, since it is an intra-cavity 

layer, the thickness sets the VCSIL resonance wavelength. A TSiO2,Top thickness of 

766 nm gives a resonance wavelength of 855 for a 5 μm oxide aperture diameter 

VCSIL. As observed in [5] a variation of 5 nm in the TSiO2,Top thickness shifts the 

resonance wavelength by approximately 0.65 nm, indicating a good fabrication 

tolerance. Since DVS-BCB has a refractive index similar to SiO2, any change in 

the thickness of the DVS-BCB layer translates into a similar shift in resonance 

wavelength as for the SiO2 layer. The threshold gain and single-sided slope 

efficiency at the resonance wavelength of 855 nm for a 5 µm oxide aperture 

diameter VCSIL are 821 cm-1 and 0.3 mW/mA respectively. When computing the 

slope efficiency, an internal quantum efficiency of 85% was assumed.  

The calculated threshold gain and single-sided slope efficiency as a function 

of the grating period at a resonance wavelength of 855 nm are shown in Figure 

3.13. While the VCSILs with the smallest grating period provide high single-sided 

slope efficiency, the threshold gain required for lasing is large. This shows that 

the selection of an optimal intra-cavity grating period sets a trade-off between the 

threshold gain and single-sided slope efficiency. 
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Fig. 3.13 (a) Simulated threshold gain and (b) single-sided slope efficiency 

as a function of the intra-cavity grating period at a resonance wavelength 

of 855 nm (TE polarization).  

3.4.4 Grating coupler design 

To be able to couple light in the SiN waveguide to an optical fiber, a grating 

coupler was designed (shown in Fig. 3.5(b)). In contrast to the intra-cavity grating, 

the grating coupler operates at the Bragg wavelength and has an etch depth of 300 

nm, grating period of 683 nm and DC of 50%. The grating teeth are tilted by 20o 

to avoid the back reflection into the VCSEL.  

A 3D simulation is performed to estimate the coupling efficiency and the angle 

of diffraction of the grating to couple the diffracted light in and out of the optical 

fiber. Fig 3.14 (a) shows the schematic cross-section view of the simulation setup 

in xz-plane whereas Fig 3.14 (b) shows the refractive index profile of the SiN 

grating with the waveguide in xy-plane. A waveguide mode with TE polarization 

is launched into the SiN waveguide. This mode is then diffracted by the grating 

coupler. A frequency monitor is placed above the grating to project the far-field 

distribution of the diffracted beam. A far-field projection of the beam diffracted 

by the grating coupler at 855 nm wavelength is plotted in Fig 3.14 (c). As can be 

seen from Fig. 3.14 (c), the diffracted beam is propagating at 40 degrees to the z-

axis with a horizontal angle of 315 degrees. The theoretical coupling efficiency 

provided by such a grating coupler is -4.2 dB at 855 nm. The tilt of the grating 

teeth can be further optimized to get better coupling efficiency. 

(a) (b) 
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Fig. 3.14 (a) Cross-section view (xz-plane) of simulation setup (b) Index 

profile of SiN grating with waveguide (xy-plane) (grating teeth are tilted at 

an angle of 20 degree) (c) Far field projection of the beam diffracted by the 

grating coupler 

3.5  Conclusion 

In summary, the design of a hybrid cavity Gen1 VCSEL is presented where a 

GaAs half VCSEL is attached to a dielectric DBR on Si using DVS-BCB bonding. 

This design will benefit in the development of the heterogeneous integration 

technology. Further, a numerical investigation of a Gen2 VCSIL with an intra-

cavity grating placed inside the cavity is presented. We show that a weak 

diffraction grating placed inside an oxide-confined 855 nm wavelength VCSIL 

cavity is able to provide a high in-plane coupling efficiency to a connected SiN 

waveguide while maintaining a low lasing threshold gain.  The proposed design 

of an intra-cavity grating/dielectric DBR combination has following advantages:  

Waveguide 
mode 

Frequency monitor to project the far-field distribution of 
beam diffracted by grating coupler. 

x 

y 

z 

(a) (b) 

(c) 
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 It allows the heterogeneous integration of GaAs-based vertical cavity 

light sources on a SiN waveguide circuit. 

 It selects the polarization state of the light generated by the VCSIL. 

 It can provide good transverse mode control. 

 High-efficiency waveguide coupling can be obtained. 

 As demonstrated in [4], the alignment is determined by lithography after 

the heterogeneous integration of the III-V material.  

For a Gen2 VCSIL with smaller oxide aperture diameters, the grating coupling 

coefficient is reduced by the wider angular spread of the optical field inside the 

VCSIL. Therefore, an oxide aperture diameter >4 μm is required to give optimal 

performance. We also showed that the selection of the grating period sets a 

tradeoff between the threshold gain and single-sided slope efficiency. Such a 

VCSIL design with integrated SiN waveguide can offer a low cost, energy 

efficient, scalable solution for SiN photonic integrated circuits. 
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4   

Fabrication and 

characterization of photonic 

integrated circuits on SiN 

4.1  Introduction 

In the previous chapter, we discussed the design of a hybrid-cavity GaAs VCSEL 

integrated onto a SiN waveguide platform. We presented two different variants of 

the hybrid VCSEL referred to as Gen1 vertical cavity surface emitting laser 

(VCSEL) and Gen2 vertical cavity Si-integrated laser (VCSIL) devices, where the 

standing wave optical field extended over the III-V material and Si-integrated 

part. As shown in Fig4.1 (a), Gen 1 VCSELs were equivalent to a typical III-V 

VCSEL with the difference that the bottom III-V DBR is replaced by a 20 pair 

Ta2O5/SiO2 DBR on Si. These devices were still surface emitting and thus acted 

as a stepping-stone in the development of the integration technique for the more 

complex Gen2 VCSILs. We purchased a customized DBR wafer with 20 pairs of 

Ta2O5/SiO2 DBR layers deposited on Si from JDS Uniphase Corporation. As 

discussed previously, the GaAs half-VCSEL can be attached to these dielectric 

DBR wafers using a divinylsiloxane-bis-benzocyclobutene (DVS-BCB) adhesive 

bonding to form the hybrid-cavity Gen1 VCSEL. Thus no post-processing on the 

Si wafer is required and the important process to be developed in this case is the 

heterogeneous integration technology, which will be briefly explained in the next 

chapter. Fig 4.1(b) represents the Gen2 VCSIL device which is an advanced 
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version of Gen1 VCSELs, where an intra-cavity SiN waveguide with a shallow 

etched grating is placed inside the cavity, to tap off the vertically amplified light 

into the SiN waveguide. In order to make use of the same dielectric DBRs for the 

Gen2 VCSIL, several new fabrication steps needed to be developed.  

In this chapter, a complete description of the fabrication process required to 

define an intra-cavity waveguide and grating on top of the dielectric DBR is 

provided. All the fabrication steps required were carried out using conventional 

fabrication tools available in our clean room, including deposition, patterning, and 

etching. Since the performance of a photonic device is very sensitive to geometry, 

especially when the feature size of the structure is reduced to a few hundred 

nanometers, fabrication with very high accuracy and reproducibility is desired to 

minimize the discrepancy between designed and fabricated devices. Therefore, all 

the processes were optimized for optimal device performance. 

 

Fig. 4.1 Schematic cross-section of (a) Gen1 VCSEL and (b) Gen2 VCSIL 

device.  

Finally, the vertical measurement technique for optical characterization of the 

defined waveguides and grating couplers is also explained. 

4.2  Deposition 

The first step towards the fabrication of the SiN intra-cavity waveguide and 

grating on the dielectric DBR is the deposition of a 610 nm thick bottom SiO2 

cladding layer and a 300 nm thick SiN waveguide layer (see Fig 4.1 (b)), using 

plasma enhanced chemical vapor deposition (PECVD). The PECVD deposition 

tool available in our cleanroom is “Advanced Vacuum Vision 310” equipped with 

different RF frequency sources which can operate at high frequency (H-f) mode 

of 13.56 MHz, low frequency (L-f) mode of 100−460 kHz and a  mixed (high and 

low) frequency (M-f) mode. The temperature of the chamber plate can be varied 



Fabrication and Characterization of SiN PICs 59 

 

from 120−270 °C. The same deposition tool can be used to deposit both SiN and 

SiO2 thin films. The deposition of standard PECVD SiO2 is a well-optimized 

process with the refractive index close to 1.45 and negligible absorption in the 

VIS-NIR wavelength range, whereas the quality of the SiN film, its refractive 

index, and its absorption depends heavily on the chamber condition during 

deposition. A thin film of SiN can be deposited using a mixture of precursor 

gasses like SiH4, NH3, and N2 with optimal ratio, at certain RF power and chamber 

pressure. A low loss PECVD SiN waveguide layer operating in the NIR 

wavelength range is highly desirable in this thesis. Various investigations have 

been carried out concerning the loss of thin SiN layers, as briefly explained in 

chapter 2 pp. 26 of Weiqiang Xie's PhD thesis [1]. SiN thin films deposited with 

two different frequency modes (L-f, and H-F) and two different temperatures of 

120 and 270 °C were characterized using ellipsometry. The deposition rate of the 

SiN thin film was found to be 10-15 nm/min depending on the operating condition 

of the chamber. Fig 4.2 shows the real and imaginary part of the refractive index 

of SiN films for 4 different combinations of frequency and temperature. As can 

be seen from Fig 4.2(a) the real part of the refractive index is dependent on the 

temperature of the chamber. For instance, the SiN thin film deposited at high 

temperatures results in a higher index than the low-temperature-deposited SiN, 

thus indicating a reduction in the material density due to higher hydrogen content. 

From Fig 4.2(b) it can be seen that the RF frequency has a dramatic effect on the 

extinction coefficient with values for L-f SiN over two orders of magnitude lower 

than for H-f SiN, implying higher optical loss in H-f SiN films. The waveguides 

losses for all these SiN films were also examined to find the best material for 

photonic integrated circuits, detailed in chapter 2 pp. 48-50 of Weiqiang Xie's 

PhD thesis [1]. The waveguides with the same width were fabricated on different 

SiN films using the same process recipe (resist, patterning and etching). For a 2.0 

μm-wide waveguide where the absorption loss is dominant over the scattering 

loss, it was found that H-f-SiN gives ~5.7 dB/cm higher loss at a wavelength of 

900 nm compared to L-f SiN. A waveguide loss of 0.94 dB/cm and 1.88 dB/cm 

was achieved for 2.0 µm wide waveguides with 200 nm thickness, for L-f SiN 

waveguide deposited at 270°C and 120°C respectively at a wavelength of 900 nm 

(see chapter 2 pp. 54 of Weiqiang Xie's PhD thesis) [1]. Therefore, a L-f SiN 

deposited at 270°C is of particular interest in this thesis due to low material loss.  

A 610 nm thick standard PECVD SiO2 layer and 300 nm thick low-frequency 

(L-f) PECVD SiN layer was deposited at 270°C on a quarter of a 200 mm 

dielectric DBR wafer. The thickness of the deposited SiO2 and SiN films were 

accurately monitored using ellipsometry. The next step is to pattern the intra-

cavity grating, interconnecting waveguide and grating coupler on the deposited 

SiN waveguide layer using lithography. 

http://photonics.intec.ugent.be/contact/people.asp?ID=309
http://photonics.intec.ugent.be/contact/people.asp?ID=309
http://photonics.intec.ugent.be/contact/people.asp?ID=309
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Fig. 4.2 Measured (a) refractive index n and (b) extinction coefficient k, of 

SiN films deposited under different conditions. Reproduced from [1] 

4.3 Lithography 

Lithography is a process of transferring information from design to a substrate. In 

order to do that, a form of radiation is delivered at specific locations on a material, 

which is designed to be sensitive to that radiation. Several techniques have been 

invented for patterning and among them, optical lithography is the most common 

technique utilized for mass fabrication in CMOS manufacturing. Deep-UV 

lithography is a well-established technique where a pre-defined mask is used in 

combination with 193 nm or 248 nm exposure wavelengths. [2] The advantages 

of such a technique are: large field size (many devices can be patterned on the 

mask at the same time), high throughput and the capability of handling complexity 

very well compared to other methods [2]. On the downside, optical lithography is 

diffraction limited by the exposure wavelength (λexp) and optics (i.e., the 

numerical aperture NA of the projection lens). The resolution is roughly 

proportional to λexp/NA.  

In general, standard SiN chips are fabricated on 200 mm diameter Si wafers 

with a thickness of 700 µm, using a deep-UV lithography process. These wafers 

comprise a stack of 300 nm/220 nm/150 nm thick SiN on ~2-4 µm thick SiO2, 

deposited by PECVD/LPCVD on top of the Si wafer. The PICs are defined with 

193 nm optical lithography and etched by a fluorine-based inductively coupled 

plasma (ICP) reactive ion etch process to get the final structure. However, as 

discussed earlier, a customized dielectric DBR on Si, purchased from a 

commercial supplier is used in this thesis, which is quite different from a standard 

Si wafer. These dielectric DBR wafers were not acceptable for the front end of 

line of the CMOS fab due to potential contamination. Therefore, we cannot use 

the standard 193 nm optical lithography to define waveguide circuits on these 
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wafers. Instead, an e-beam lithography is used in this thesis to define the SiN 

waveguide structures on the deposited PECVD SiN waveguide layer. 

4.3.1 E-beam lithography  

Electron-beam lithography (EBL) is another common modality of lithography. It 

allows the direct writing of structures by exposing a sample coated with a thin 

layer of e-beam sensitive resist (in analogy with photoresist we use the word e-

beam resist), with a focused electron beam such that the resist under exposure gets 

chemically modified. After the exposure, the sample is immersed in a developing 

solution where the exposed (non-exposed) areas will dissolve in case of positive 

(negative) e-beam resist. This process is called development (in analogy with the 

development of photographic films). Therefore, after a given amount of 

development time, the sample is dried leaving the designed pattern in the resist. 

There are two main EBL strategies: projection printing and direct writing. In 

projection printing, a large e-beam pattern is projected through a mask onto a 

resist-coated substrate. In direct writing, a small e-beam spot is moved with 

respect to the wafer to expose the wafer one pixel at a time. This eliminates the 

expensive and time-consuming production of masks [3-5], but also reveals the 

inherent drawback of direct writing, being the low throughput as a result of the 

serial way of writing structures. The patterning of intra-cavity grating, grating 

coupler, and waveguide described in chapter 3 relies on direct writing.  

In our clean room, the electron beam lithography system available is a Raith-

VOYAGER that can be used for the patterning and measurement of various 

samples, masks and wafers. The important system features include operation with 

acceleration voltages up to 50 KV, maximum write field size of 500 µm and 

automatic system setup (autofocus/autostigmator/automatic stage adjustment with 

mark recognition/automatic write-field alignment). The system can be used to 

pattern complex structures on masks of up to 7-inch diameter and wafers of up to 

8-inch diameter, using direct-write procedures with ultra-high resolution in the 

nanometer range [6]. The resolution in electron beam lithography depends on the 

type of the resist used, the thickness of the resist, the type of substrate, the 

acceleration voltage (1 - 50 kV), and the operating conditions. Just like other 

lithographic processes, electron-beam lithography also has an optimum dose, 

which represents the dose at which the measured linewidth after development is 

equal to the designed linewidth, defined as an electron dose. An electron dose 

(usually expressed in µC/cm2) is the charge per unit area required to achieve the 

desired chemical response in the resist. The required electron dose for exposure 

of structures mainly depends on the resist being used, its thickness, the developer, 

and the desired minimum structure size. Another important key factor in the 

patterning is the dwell time. The dwell time determines the writing time of the 
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beam at each defined position on the sample and relates with the electron dose as 

follows: 

 
𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝐷𝑜𝑠𝑒 =  

𝐵𝑒𝑎𝑚 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × 𝐴𝑟𝑒𝑎 𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒

𝑆𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 × 𝐿𝑖𝑛𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔
 

 

(4.1) 

 

The beam current can be measured directly from the instrument via the Beam 

Current module. The geometric parameters that affect the patterning of a structure 

are the step size, which is the distance between dots, and the line spacing, which 

is the distance between each line of dots. The minimum step size, also known as 

the pixel width, is hardware dependent and is proportional to the (18 bit) digital 

to analog converter (DAC) step resolution. The smallest step size can be 

calculated as: 

 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 =

𝑊𝑟𝑖𝑡𝑒𝑓𝑖𝑒𝑙𝑑 𝑠𝑖𝑧𝑒

218
 

(4.2) 

 

So, for example, for a 100 μm write field, the smallest step, or pixel width is 

0.4 nm. Several complex processes that affect the reliability of the e-beam process 

are the delocalization of electrons due to forward and backscattering (proximity 

effects), collapse of the pattern due to swelling and capillary forces, fluctuations 

in the sizes of features (line edge roughness) and the field stitching. The 

explanation of each process involved in e-beam is out of the scope of this thesis. 

A brief explanation of these processes can be found in [3-5]. One of the problems 

that is of interest to us is field stitching, which is one of the limitations when 

writing a structure of several cm long. This problem is overcome in the voyager 

EBL system with a new continuous patterning mode compared to conventional 

EBL systems.  

 Conventional e-beam writing 

In conventional e-beam writing mode, the stage is fixed and the beam is moving. 

The size of the write field is defined by the maximum deflection range of the 

electron beam. In the Voyager system, the size of the maximum write field is 

500 µm. Any structure longer than the size of the writing field is fractured into 

shorter structures that fit into a single write field. Each boundary between write 

fields is therefore subject to some amount of stitching error. The operation 

principle of the conventional stitching technique is illustrated in Fig 4.3 (a) [7]. 
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Fig. 4.3 (a) Illustration of conventional e-beam writing mode. The beam is 

deflected while the stage is stationary, resulting in a stitching error of 

several nm. (b) FBMS mode. The beam is fixed while the stage is moving. 

Reproduced from [7] 

 

Fig. 4.4 SEM image of stitching boundary in three different samples. 

(a) (b) 

Stitching boundary Stitching boundary 

Stitching boundary 

(a) (b) 

(c) 
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When writing long waveguides (with lengths of the order of several cm), this 

can result in kinks in the waveguide. To check the occurrence of stitching errors 

while writing structures longer than the e-beam writing field, long SiN 

waveguides were written in conventional e-beam writing mode. The typical 

stitching errors are shown in Fig 4.4. As can be seen from fig 4.4, the stitching 

errors for 3 different samples written by e-beam with the same process are very 

different from each other. With the conventional e-beam writing mode, it was 

found that the stitching errors are not reproducible, varying from 30 nm - 70 nm 

and sometimes even result in a discontinuity in the waveguide. These stitching 

errors can influence the device performance significantly; e.g., significant 

increase in optical waveguide losses in elongated optical waveguides. Hence, it is 

important to limit the amount of stitching borders in order to avoid unwanted 

device deterioration as a result of stitching errors. Raith meets this challenge with 

a new continuous patterning mode. This “zero-stitching error” approach called 

“Fixed Beam Moving Stage” (FBMS) guarantees the fabrication of up to several 

cm long, thin, and smooth paths of arbitrary curvature, including tapered paths 

[7]. The FBMS writing mode is briefly explained in the next section. 

 FBMS writing 

The FBMS technology allows exposing smooth and stitching-error free paths of 

arbitrary curvature of any length, even up to several cm long, by maintaining the 

beam at a fixed position and then continuously moving the stage (and thus the 

sample) with respect to the beam [6]. Fig 4.3 (b) illustrates the operating principle 

of the FBMS mode. Hence, FBMS is the ideal choice to fabricate optical devices 

like waveguides, where reproducibility of the fabrication process is very 

important. Two structures that can be written using FBMS writing mode are:   

• FBMS lines - FBMS lines are paths with a width of zero. In “line mode”, the 

beam is kept at a fixed position while the sample is moving laterally with constant 

speed. Like for single pixel lines, there is a strong correlation between beam 

current, speed, and the resulting line widths. The resulting dose is calculated by 

the following formula:  

 
𝐿𝑖𝑛𝑒 𝑑𝑜𝑠𝑒 =  

𝑏𝑒𝑎𝑚 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑠𝑡𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑
 

(4.3) 

 

FBMS lines with less than 20 nm line width can be written in line mode.  

• FBMS areas – FBMS areas are paths with a width larger than zero. In “area 

mode”, an increase in linewidth up to several tens of microns is achieved by a 

repetitive and continuous lateral deflection of the beam in a circle generator 

pattern (see Fig. 4.5), which is defined such that the applied dose is constant over 

the designed line width. Moreover, its circular symmetry guarantees the same line 
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width regardless of the direction of the sample motion. In addition to the beam 

deflection, the sample is simultaneously moving along the designed path as in line 

mode. The area dose can be calculated by the following formula: 

 

 
𝐴𝑟𝑒𝑎 𝑑𝑜𝑠𝑒 =  

𝑏𝑒𝑎𝑚 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑠𝑡𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 × 𝑙𝑖𝑛𝑒 𝑤𝑖𝑑𝑡ℎ
 

(4.4) 

 

The speed of the stage for FBMS writing depends on the width and the step 

size, which is a user-defined value. The stage speed is automatically adjusted 

whenever another dose factor than 1.0 is applied, and when the width of the FBMS 

area element differs from the calculation width chosen in the patterning parameter 

calculator window. Thus the real stage speed during the patterning can differ from 

the specified stage speed.    

The user should always enter a calculation width value as close as possible to 

the thinnest expected line in the GDSII pattern, in order to estimate accurately 

how fast the stage must move when writing the thinnest lines in the structure. The 

calculation width is simply a reference value, which relates width, stage speed, 

and dose. Stage speed will be automatically adjusted by the software depending 

on the patterning being carried out. There are three different kinds of beam 

deflection patterns related to the FBMS:  

 Spot pattern for FBMS lines,  

 Circle generator pattern for FBMS areas, and  

 User-defined beam deflection  

 

Fig. 4.5 Circle generator pattern for FBMS area.  

In the spot pattern, the beam is simply kept at a fixed position in the center. 

The circle generator pattern is applied for FBMS area elements in order to achieve 
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uniform area dosing for any possible direction of stage movement for the given 

width of the element. A single filled circle cannot be used for this purpose since 

this would lead to a higher dose towards the center of the path. On the other hand, 

a single circle circumference is also not suitable, since this would lead to a higher 

dose towards the boundary. For this reason, a special circle symmetric pattern is 

calculated by the software, where the distance between inner circles is greater than 

the distance between outer circles. The pattern results in an average step size 

perpendicular to the stage movement, which can be defined in the enhanced 

parameters for FBMS. Using the FBMS mode in combination with the 

conventional stitching lithography enables the researcher with a whole new 

dimension in nano-device fabrication [4].  

4.3.2 Patterning intra-cavity grating and waveguide 

on SiN 

 Process flow 

As discussed in chapter 3, the intra-cavity grating has an etch depth of 30 nm 

whereas the interconnecting waveguides and grating couplers are etched 300 nm 

deep. Therefore, two different e-beam steps are required to achieve two different 

etch depths. Further, to pattern the second e-beam structure relative to first e-beam 

structure on SiN, gold alignment marks are required, which are written with an 

additional e-beam step. Thus, in total 3 e-beam steps are required to pattern the 

alignment marks, intra-cavity gratings, waveguides and grating couplers. The 

process of alignment in electron beam lithography is called overlay. There are 

different overlay techniques available in e-beam, either by manual detection of 

the alignment marks or by automatic recognition of alignment marks. The overlay 

accuracy is strongly dependent on the quality of the alignment marks and the mark 

detection techniques. With manual detection, an overlay accuracy of 100-200 nm 

can be achieved whereas by automatic recognition technique usually 10s of nm 

overlay accuracy is achievable. As discussed in chapter 3, the intra-cavity grating 

has good alignment tolerance (±1 µm) therefore, the overlay was done by manual 

detection of the alignment marks. Next, the selection of a positive or negative tone 

resist for writing these structures needs to be done. As can be seen from Fig 4.1 

(b), a GaAs half VCSEL is attached to the processed dielectric DBR samples via 

adhesive DVS-BCB bonding. Hence, a uniform sample where the exposed areas 

are removed during development (positive tone resist) is of more interest, as the 

BCB can fill the etched gaps and the planarization of the surface is achieved, 

which helps in adhesive bonding. Depending on the type of resist used (in this 

case a positive resist), the GDSII mask with 3 different layers was designed using 

the mask design software IPKISS to perform 3 different EBL steps. Layer 1 

consisted of the alignment marks for overlay and III-V post-processing. Layer 2 
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consisted of intra-cavity gratings with five different periods, varying from 525 - 

545 nm, and three different DCs, varying from 45 - 55%. Layer 3 consisted of an 

interconnecting waveguide with width of 5.5 µm and trench of 3 µm and grating 

couplers at both ends of the waveguide with a period of 683 nm and 50% DC.  

 

Fig. 4.6 Schematic for ebeam writing of SiN PIC: (a) SiN and SiO2 

cladding layer on dielectric DBR (b) Ti/Au alignment marks (c) SiN intra-

cavity grating and (d) SiN grating coupler and interconnecting waveguides. 

Fig. 4.6 shows the schematic for writing the SiN PIC structures using e-beam. 

Step1 is to define the Titanium/Gold (Ti/Au) (10nm/30nm) alignment marks with 

lift-off process, providing good contrast, which is written in conventional e-beam 

writing mode (Fig. 4.6 (b)). Step 2 is to define the intra-cavity grating with 30nm 

etch depth again written by conventional e-beam writing mode (Fig. 4.6 (c)) and 

finally step 3 is to define the interconnecting waveguide and the grating coupler 

with 300 nm etch depth written by the combination of conventional (grating 

couplers) and FBMS (interconnecting waveguide) e-beam writing mode (Fig. 4.6 

(c)). Between each e-beam writing step the sample was cleaned thoroughly by 

removing e-beam resist in AR 600-71 in ultrasonic bath followed by 10 min O2 

plasma in a Tepla barrel etcher. 

 E-Beam resist AR-P 6200 (CSAR 62) 

AR-P 6200 (CSAR 62) is a new positive tone electron beam resist designed by 

Allresist after intensive development work to have similar performance to 

ZEP520A (a popular positive tone e-beam resist) in resolution, speed, and etch 

resistance [8]. The acronym CSAR is deducted from the mechanism used: 

Chemical Semi Amplified Resist. There are a variety of developers offered by 

Allresist, i.e., AR 600-546, 600-548 and 600-549 with different pros and cons. A 

Dielectric DBR 

(a) (b) 

(c) (d) 

Si substrate 

Ti/Au alignment mark SiN  

Bottom SiO
2 

cladding  

SiN Intra-cavity grating 
SiN grating coupler 

SiN Interconnecting 
 waveguide 
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comparison study between ZEP 520A in the corresponding developer ZED-N50 

and CSAR 62 in developers AR 600-546 and 600- 549 showed that both CSAR 

and ZEP has excellent structural resolution and comparable broad process 

windows and CSAR 62 has even superior performance in terms of contrast and 

sensitivity when developed in AR 600-546. Thus CSAR-62 is an attractive 

cheaper alternative to ZEP. In conclusion, the CSAR 62 resist is characterized by 

the following features: 

 high sensitivity which can be adjusted via the developer  

 highest resolution (< 10 nm) and very high contrast  

 highly process-stable, high plasma etching resistance  

 easy fabrication of lift-off structures  

Fig. 4.7 shows the thickness of the CSAR 62 resist at different spin speed. In 

this thesis the AR-P 6200.09 resist was spin coated on the SiN waveguide layer 

on the dielectric DBR at 2000 rpm. While writing the structures using e-beam on 

an insulating layer (SiN on dielectric DBR), there are no pathways for the 

electrons to dissipate and charge builds up and defocuses the electron beam. This 

can largely affect the pattern which will further degrade the device performance. 

Therefore, a water-soluble conductive polymer Electra 92 (AR-PC 5090) [9], 

which is compatible with CSAR 62 was also spin coated on top of the AR-P 

6200.09 layer to reduce the effect of charging. It is also important to apply the 

conductive polymer on these samples to improve the contrast of the Ti/Au marks 

for overlay. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 CSAR 62 resist film thickness as a function of spin speed, 

Reproduced from [8] 
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Once the choice of e-beam resist is made, a preliminary test exposure, referred 

to as a dose test is performed on the sample. In this test, the pattern to be written 

is exposed at different electron doses and after development the optimum dose 

can be determined with a suitable inspection tool (such as a scanning electron 

microscope SEM, atomic force microscope AFM, optical microscope, etc.). The 

required electron dose for exposure of a structure depends on several factors such 

as the resist, its thickness, the developer, development time, and the desired 

structure size. After the dose test, it was found that an optimal electron dose of 

140 µC/cm2 is required to write the intra-cavity gratings and grating couplers 

using conventional EBL mode. As discussed above the long interconnecting SiN 

waveguides are written with FBMS mode. An optimal setting of the FBMS mode 

is also very important, which again can be determined by the dose test. An optimal 

electron dose and stage speed is required to write the structures with good sidewall 

roughness. An optimal electron dose of 100 µC/cm2, a step size of 10 nm and 

stage speed of 0.138 mm/s was fixed to write the 3 um wide trenches of the 

waveguide. 

4.4 Etching 

After e-beam lithography and development, the pattern is transferred to the resist 

on top of the semiconductor substrate. To transfer this pattern into the dielectric 

layer, etching is used. There are two important aspects of etching. The first is the 

selectivity towards the mask. A good etch process will etch the material at a rapid 

rate as compared to the mask. The second is the directionality of the etch which 

is decided by the type of etching used.  Etching can be accomplished in either a 

"wet" or a "dry" environment. Wet etching involves the use of liquid etchants to 

remove the material through chemical processes. A wet chemical etching can 

often provide good selectivity. However, wet etching is hard to control accurately 

and will not result in vertical sidewalls as anisotropic etching is difficult to 

achieve. The dry etching is done in a plasma reactor. Briefly, for a plasma etching 

process, a plasma generator creates etchant species (atoms, molecular radicals, 

and ions), and the material to be etched is removed by chemical reactions of those 

reactive radicals along with the generation of volatile by-products (chemical 

etching), and/or by direct physical sputtering due to ion bombardment on the 

material (physical etching). In general, physical etching is directional and shows 

less material dependence, while chemical etching is sensitive to material 

properties and usually nondirectional. All plasma conditions including RF power, 

pressure, and gas chemistry can affect the etching process and results. In this 

thesis, dry etching, more specifically reactive-ion etching (RIE), is used to etch 

the SiN layers. An Advanced Vacuum Vison 320 RIE tool equipped with 13.56 

MHz RF excitation and a cooling system to maintain the sample plate temperature 



70 CHAPTER 4  

 

at ~20 °C is used. An optimization of dry etching process parameters to etch SiN 

thin films is again briefly explained in chapter 2 of Weiqiang Xie's PhD thesis [1]. 

An optimal process with 210 W power, 20 mTorr pressure, and a gas mixture of 

CF4, H2, and SF6 with ratio 80 sccm, 7 sccm, and 3 sccm respectively was used to 

provide vertical and smooth sidewalls. An etch rate of 90 nm/min for a L-f SiN 

layer was achieved with optimal etching parameters. Once etching is done the e-

beam resist is stripped off in resist remover AR 600-71, and the sample is cleaned 

in an oxygen plasma for 10 min. 

 

Fig. 4.8 Sidewall of the waveguide after dry etching and removal of the e-

beam resist (A thin gold layer is deposited to reduce the charging during 

SEM imaging). 

Fig 4.8 shows the SEM image of the sidewall of the SiN waveguide after dry 

etching. The sidewall roughness depends on the etching technique and 

irregularities introduced by e-beam writing. As the dry etch process used in the 

fabrication of waveguides has a proven record of providing SiN waveguide loss 

< 1dB/cm, (see chapter 2 of Weiqiang Xie's PhD) the source of the roughness is 

e-beam lithography. As can be seen from Fig 4.8, the roughness on the sidewall 

of the waveguide is periodic also indicating that the cause of the roughness is e-

beam writing.   

Further, for improvement in the sidewall roughness, resist reflow can be 

applied before the SiN etch step. By choosing a suitable temperature and time, 

this reflow process can greatly reduce imperfections in the resist patterns and 

harden the edge of the resist. Too low of a temperature will not cause the resist to 

reflow, while too high of a temperature will cause deformation in the resist. From 

the product datasheet of CSAR- 62 resist it can be found that a post bake of 130°C 

for 1 min on a hotplate can enhance the plasma etching resistance. Temperatures 

http://photonics.intec.ugent.be/contact/people.asp?ID=309
http://photonics.intec.ugent.be/contact/people.asp?ID=309
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above 130°C were investigated for the resist reflow, and the sidewall roughness 

was inspected with SEM imaging.  

 

Fig. 4.9 Sidewall roughness of the waveguide after dry etching and 

removal of the e-beam resist at (a) a reflow temperature of 143°C for 2 min 

and (b) a reflow temperature of 150°C for 2 min (A thin gold layer is 

deposited on the top surface to reduce the charging during SEM imaging). 

Fig 4.9 shows the SEM pictures of the waveguide sidewalls after resist reflow 

and etching for (a) a reflow temperature of 143°C for 2 min and  (b) a reflow 

temperature of 150°C for 2 min. We can clearly see from Fig. 4.9(a) that the 

roughness on the sidewall of the waveguide is improved and almost vertical 

sidewalls can be achieved. However, in Fig. 4.9(b), the sidewall of the waveguide 

is rounded. This indicates that the reflow temperature of 150°C is too high, 

resulting in deformation of the resist. As a result, the resist at the edge of the 

waveguide is not thick enough for the RIE process. After a number of 

experiments, the appropriate resist reflowing temperature and time duration was 

set at 143°C for 2 min. Further, the etching directionality was inspected by cross-

sectioning (CS) of the waveguide using focused ion beam (FIB). Fig 4.10 shows 

the FIB CS image of the waveguide after resist reflow at 143°C for 2 min on a 

hotplate and etching. As can be seen from Fig 4.10 vertical sidewalls were 

achieved using RIE. 

Fig 4.11 shows the microscope image of a fully processed sample where the 

inset shows the Ti/Au alignment marks for overlay in e-beam surrounded by big 

alignment marks. The size of the alignment marks for overlay is 500 nm in width 

and 8 µm in length, therefore the surrounding big marks help in scanning the small 

marker. The next step is to deposit 780 nm thick top SiO2 cladding layer using 

PECVD and to bond the III-V material on top of SiO2, which is discussed in the 

(a) (b) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368304/figure/g001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368304/figure/g001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368304/figure/g001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368304/figure/g001/
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next chapter. To allow the bonding, SiN PICs were written in the center of the 

sample and enough margin was left around the edge for handling of the sample 

after bonding III-V material on top. To align the VCSELs relative to the intra-

cavity grating underneath, the Ti/Au alignment marks were written 5 mm away 

from the SiN PICs. 

 

 

Fig. 4.10 FIB CS image of the waveguide after reflow at 143°C for 2 min.  

 

 

Fig. 4.11 Microscope image of a SiN PIC. 
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4.5  Optical characterization 

It is also important to characterize the grating coupler and the waveguide losses. 

Waveguide losses are typically measured using a vertical coupling setup as shown 

in Fig. 4.12. The vertical coupling setup consist of a rotation stage to place the 

sample and to provide the angular rotation in horizontal direction. Optical fibers 

are placed above the sample under a certain angle. A grating coupler on the sample 

then allows to redirect the light from the fiber into the guided mode of the 

waveguide. A tunable Ti:sapphire laser is connected to an input fiber. The input 

fiber is connected to a polarization rotator (PR), which can be used to rotate the 

polarization and to optimize the transmission since the grating couplers are 

designed for a specific polarization. Next, the fiber is aligned with the input 

grating coupler on the sample by monitoring through a CMOS camera and the 

light is launched into the fundamental (TE) mode of the waveguide. The light is 

finally coupled out of the waveguide through another angled optical fiber and is 

sent to a power meter (PM) for quantitative measurement. 

A SiN waveguide with length 1.6 mm and width 8 µm is written with e-beam 

FBMS mode. Two grating couplers with a period of 683 nm and DC of 50% are 

also written at both ends of the waveguide to couple the light in and out of the 

waveguide. The grating coupler teeth are tilted 20 degrees to avoid the back 

reflection to the VCSEL. The measurements are done using the vertical coupling 

set-up shown in Fig 4.12. The grating coupler loss is determined from the 

measured insertion loss of two such couplers connected to a 1.6 mm long 

waveguide. As discussed in Chapter 3, the grating coupler diffracts the beam at 

40 degrees with respect to the z axis and 305 degree with respect to the horizontal 

axis. Therefore, the optical fiber is tilted with respect to the z-axis as shown in 

Fig. 4.12 and the horizontal angle was provided by rotating the sample (see Fig 

4.12). Fig. 4.13 shows the sample with SiN waveguide rotated in horizontal 

direction. To couple the light into the SiN waveguide, a single mode fiber (SMJ-

3A3A-780-5/125-3-2) with core size of 5 µm and cladding of 125 µm is used. For 

ease in alignment, a multimode fiber (MMJ-3A3A-IRVIS-62.5/125-3-2) with 

core size of 62.5 µm and cladding of 125 µm is used for outcoupling. The insertion 

loss of the grating coupler is measured for the combination of angles (in vertical 

and horizontal direction) close to the estimated value. A maximum peak 

transmission of -15.5 dB is achieved at a wavelength of 855 nm. To estimate the 

coupling loss to single mode and multimode fiber, the multimode fiber for out-

coupling is then replaced by another single mode fiber. For such a configuration, 

a maximum peak transmission of -19.5 dB was achieved at a wavelength of 855 

nm providing - 9.75 dB loss from the grating coupler for single mode fiber. This 

implies a loss of  5.75 dB for coupling to a multimode fiber. 
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Fig. 4.12 Vertical setup to measure waveguide losses. 

 

Fig. 4.13 Sample rotated at 305 degree and an optical fiber rotated at 36 

degree to couple the light into the SiN waveguide. 

4.6 Conclusion 

In summary, we optimized the fabrication steps required to write the intra-cavity 

grating, interconnecting waveguide and grating coupler on a dielectric DBR. A L-

f SiN film deposited at 270°C was found to have the lowest loss at 850 nm. The 

waveguides were written using FBMS writing mode to avoid stitching errors 

whereas intra-cavity grating and grating couplers were written using conventional 
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writing mode. An optimal electron dose of 140 µC/cm2 was used to write the 

grating and 100 µC/cm2  to write the waveguide. 

The final e-beam procedure for high-resolution CSAR 62 resist is as follows: 

1) Clean sample and bake at 150 °C for 3 min on hotplate 

2) Spin coat AR-P 6200.09 (e-beam resist) at 2000 rpm for 60 sec, giving resist 

thickness of 200nm. 

3) Bake at 150°C for 60 sec on hotplate. 

4) Spin coat Electra-92 (conductive polymer) at 2000 rpm for 60 sec, giving a 

film thickness of 60 nm. 

5) Bake at 90°C for 2 min on hotplate. 

6) Expose the pattern with optimal electron dose (depending on structure) and 

writing mode. 

7) Rinse the sample in DI water for 30 sec, to remove Electra-92. 

8) Develop by immersing the sample in n-amino acid for ~90 sec 

9) Immerse in stopper (IPA) for 30 sec 

10) Rinse the sample in DI water for 30 sec. 

11) Reflow the resist by baking it at 143°C for 2 min on a hotplate. 

Finally, the SiN patterns were etched using RIE with the following optimal 

process parameters: 210 W power, 20 mTorr pressure, using a gas mixture of CF4, 

H2, and SF6 with ratio 80 sccm, 7 sccm, and 3 sccm respectively. 
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5   

Heterogeneous Integration and 

Fabrication Technology  

5.1  Introduction 

In the previous chapter, we moved towards realizing an important building block 

i.e., the optical reflector on Si by integrating intra-cavity SiN waveguides, and 

gratings on a dielectric DBR mirror. The next step is to integrate the GaAs half 

VCSEL on these optical reflectors via adhesive bonding and thus fabricating an 

integrated Gen1 VCSEL/Gen2 VCSIL. A complete discussion of the different 

technologies utilized for the heterogeneous integration process is presented in this 

chapter. This includes techniques involved in adhesive bonding and fabrication 

techniques used to realize integrated Gen1 and Gen2 devices. The process of 

adhesive bonding was developed and performed in the clean room of UGent. Once 

the GaAs device layers were bonded on the Si substrates, the fabrication of Gen1 

and Gen 2 lasers was performed at Chalmers University of Technology, Sweden. 

5.2  Heterogeneous Integration 

A widely used heterogeneous integration technology, adhesive bonding is used in 

this thesis to transfer the III-V epitaxial device layer onto Si substrate. The 

adhesive bonding technique consists three stages: (a) surface preparation of both 

the GaAs half VCSEL and Si photonics chip, (b) spin coating of a BCB layer on 

the Si chip to perform bonding, and (c) removal of the GaAs substrate post 
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bonding.  The GaAs half VCSEL structure used in this thesis is homoepitaxially 

grown on a 3 inch GaAs wafer (750 µm thick) using metal organic chemical vapor 

phase deposition (MOCVD) by IQE Europe Ltd. The epitaxial layer stack of the 

GaAs half VCSEL is discussed in chapter 3, and a schematic is presented in Fig 

5.1. As can be seen from Fig 5.1, etch stop layers and sacrificial layers are 

incorporated at both sides of the epitaxial layer stack. The two etch stop layers 

grown on top are to ensure a clean surface prior to bonding and the sacrificial 

layers at the bottom of the epitaxial layer stack enables GaAs substrate removal 

post bonding. The sacrificial layers we used in our device are AlxGa(1-x)As and 

GaAs [1], which can be selectively etched with respect to each other using a 

selective dry or wet chemical etching process. In order to prepare a clean III-V 

surface prior to bonding, the chemical etchant used to remove the sacrificial layers 

should be able to provide a high-quality surface with high yield. Therefore, the 

etching properties of GaAs and AlxGa(1-x)As layers in different wet etching 

solutions were investigated. Several tests were done to ensure homogeneous wet 

etching of sacrificial layers resulting in a clean and flat surface with high yield. 

 

Fig. 5.1 Schematic cross section of the GaAs half VCSEL epitaxial layer 

stack 

 Selective wet etching of GaAs over AlxGa(1-x)As 

Wet chemical etching procedures are widely applied in the preparation and 

conditioning of GaAs surfaces for the fabrication of semiconductor devices. 

Opposite to dry etching, wet chemical processing is impact-free and thus does not 

cause surface defect formation. Moreover, wet chemical processing is more 

simple and easy to control. The utility of a reproducible and selective etch of GaAs 

over A1xGa(1-x)As and vice versa has become apparent in fabricating a wide range 
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of devices such as light-emitting diodes, semiconductor lasers, and integrated 

optical devices. Selective wet chemical etching of GaAs usually proceeds by 

oxidation, followed by dissolution of the oxide by a chemical reaction. Typically 

this is achieved by submerging the semiconductors in a liquid mixture consisting 

of two components: an oxidizing and a dissolving agent. Therefore, the oxidation 

and etching occur simultaneously, resulting in an etch depth dependent on the 

immersion time. Oxides formed on GaAs tend to be amphoteric and thus can be 

dissolved in either acidic or alkaline solution. Hence, several acidic and alkaline 

solutions are used as selective wet etchants for GaAs such as Citric acid-based 

etchants [2-7], Ammonium hydroxide-based etchants [7-11], and Succinic acid- 

based etchants [5,7]. Etch tests of GaAs over AlxGa(1-x)As in every solution was 

not possible. Therefore two important etchants that are widely used were tested in 

this thesis and both of them were used in the heterogeneous integration process 

for a different purpose. 

 Citric Acid-based etching 

The etching of GaAs in a citric acid(C6H8O7): hydrogen peroxide(H2O2) solution 

is a reaction rate limited process [2]. That is, the relationship between etch depth 

of GaAs with etching time is linear, and with temperature it is exponential. 

Furthermore, agitation (stirring) of the etchant does not affect the etch rate of 

GaAs, and the etched surface follows the crystal orientation. In the citric acid-

based etchant solution, H2O2 is the oxidizer and the citric acid dissolves the oxide. 

The etch rate of GaAs depends on the volume ratio of the C6H8O7:H2O2 (y:1) 

solution, providing a large variation in etch depth with a slight change in volume 

ratio. When the volume ratio (y) of the etching solution is too low the etch rate of 

GaAs is limited by the dissolution due to the deficiency of citric acid to remove 

the oxide. Further, with very high volume ratio (y) both the GaAs and 

AlxGa(1- x)As layer has a high etch rate making the solution nonselective. A study 

shows that the etch rate of GaAs abruptly increases (with a value of ~ 200 nm/min) 

while the etch rate of AlxGa(1- x)As (x > 0.4) is still very low when the volume 

ratio (y) is between 3 and 5. Once the top GaAs layer is etched, the AlxGa(1-x)As 

layer gets exposed and the etch rate of AlxGa(1-x)As decreases rapidly due to the 

formation of AlxOy. With an increase in Al composition, the etching selectivity 

between GaAs and AlxGa(1-x)As layer increases but the etching surface starts to be 

of poor quality due to oxidation. In case the Al composition is very high (> 0.7), 

the oxidation of the AlxGa(1-x)As  layer is very severe regardless of the selective 

etchants used. 

The C6H8O7 (50%):H2O2(30%) (5:1) etching solution is prepared 

approximately 15 min before etching and is placed on a shaker, to mix it 

homogeneously and to allow the etchant to return to room temperature. The 40 

nm thick sacrificial GaAs layer on top of the 70 nm thick AlAs etch stop layer is 
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removed selectively by immersing it into the C6H8O7:H2O2 solution for 20 sec. 

While etching the GaAs layer, a color change on the surface of GaAs layer is 

observed. Once the GaAs layer is etched and the AlAs layer is exposed, the 

etching surface appears to be dark blue. In case of over-etch the color of the 

surface changes to a yellowish color indicating that the AlAs layer is over-

exposed and the surface is getting oxidized. After etching the GaAs sacrificial 

layer, the exposed AlAs layer should be selectively removed immediately; 

otherwise, the surface will further oxidize when it comes in contact with air and a 

completely oxidized AlAs layer is very hard to remove.  

 Ammonia-based etching 

The mechanism for selective etching of GaAs in ammonium hydroxide 

(NH4OH)/hydrogen peroxide (H2O2) is the same as in the case of the citric acid-

based solution. Here H2O2 again acts as an oxidizing agent and NH4OH dissolves 

the oxidized surface. However, the etching and stability of the etched surface 

depend on the pH of the NH4OH/H2O2 solution. In [8], etching of GaAs in a 

NH4OH/H2O2 solution was investigated by adjusting the pH of the solution at 

different volume ratios. It was concluded that a solution with pH below 6 can be 

used to grow oxide on the surface (galvanically or anodically) while a solution 

with pH value greater than 6 can be used to etch the GaAs surface. Solutions with 

pH value between 6.0 - 7.1, can result in smoothly etched surfaces and for pH 7.0, 

the etching of GaAs with respect to AlxGa(1-x)As was found to be selective. As the 

pH further increases to >7.2, dissolution of the oxidized layer limits the efficiency 

of etching of GaAs and results in surface roughness. In NH4OH/H2O2 solution the 

etch rate decreases with time due to a deficiency of the etching solution to remove 

the oxidized layer and a continuous agitation in the etching solution is required to 

further increase the etch rate. Therefore, the etch rate of GaAs depends on the 

effective mechanical removal of the oxidized layer formed on the surface either 

by agitating the etchant or by wiping the surface with a polishing cloth [8], or by 

using a jet-thinning instrument for spray etching [9]. The latter technique of spray 

etching ensures a significant improvement in etched surface quality.  Etching with 

a NH4OH/H2O2 solution is often used as a processing step in the fabrication of 

GaAs-based devices to remove the native oxide layer from the GaAs surface. 

Moreover, treatment with aqueous ammonia solution renders the surface 

properties suitable for atomic layer deposition of a gate dielectric [12]. 

A NH4OH:H2O2 (1:19) etching solution was prepared 15 min before the 

etching experiments [1]. An etch rate of ~3.5 μm/min was achieved for GaAs but 

the etching of the AlAs surface was very slow. The 40 nm thick GaAs layer was 

etched in 10-15 sec and a color change was again observed. A reddish surface 

indicated the removal of the GaAs layer leaving the AlAs layer exposed. A slight 

over etch again turned the top surface to a yellowish color indicating the oxidation 
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of AlAs. In case of over-etch, sometimes it was difficult to remove the AlAs layer. 

Therefore, by etching GaAs over AlAs in a NH4OH:H2O2 (1:19) solution, 

reproducible results could not be achieved. 

In summary, amongst the two selective etchants, the NH4OH-based etch must 

be agitated vigorously throughout the etch so that the pH at the sample surface 

remains constant, while the citric acid-based etch is not affected by agitation.  For 

final surface preparation, etching of GaAs over AlAs in citric acid is preferred 

over NH4OH due to the better surface roughness and yield. However, NH4OH 

etchants are still useful for processes such as GaAs substrate removal, where 

selective etching of GaAs with high etch rate is required.  

5.2.2  Selective wet etching of AlxGa(1-x)As over GaAs 

The quality of the final GaAs surface after removal of an AlxGa(1-x)As layer 

depends on the Al content in the layer, the extent of oxidation of the layer and the 

etchant used. In literature, several wet chemical etchants such as HF:H2O [13-16], 

BHF:H2O [3] and HCl:H2O [17] have been reported to provide excellent selective 

etching of AlxGa(1-x)As over GaAs when x > 0.6. In this thesis, the quality of the 

final surface after etching of AlxGa(1-x)As in HF and HCl-based etchants was 

investigated. 

 HF-based etching 

The selective etching of AlxGa(1-x)As over GaAs or AlxGa(1-x)As with low Al 

composition using hydrofluoric acid (HF) was proposed for a technique that is 

known today as epitaxial lift-off (ELO) [13-16], where the device film is separated 

from the GaAs substrate by etching. Etching of AlxGa(1-x)As in HF is fully 

isotropic, where the released structure can possess arbitrary orientation. This 

method has been extensively explored to reduce the cost of III–V devices by 

reusing the substrates. An AlxGa(1-x)As sacrificial layer inserted between the 

device film and the substrate can separate the device layer from a GaAs substrate. 

Subsequently, this same method has been applied by many researchers to 

successfully peel GaAs thin films from its parent substrate and transfer it onto 

desirable substrates for various applications [13-16]. An investigation revealed 

that the etch rate of AlxGa(1-x)As in diluted HF with certain volume concentration 

increases with increase in Al composition [15]. Further, a higher concentration of 

HF shows a higher etch rate of AlxGa(1-x)As with a fixed Al composition. It was 

concluded that HF in varying concentrations is an effective isotropic etchant for 

AlxGa(1−x)As when the aluminium fraction is greater than x > 0.5 while exhibiting 

a rapid decrease in etch rate for Al fraction below x < 0.4 [15]. Also, a diluted HF 

with volume concentration 2 % showed a remarkable etch selectivity (>106) with 

GaAs, for Al fraction > 0.7.  
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Although etch selectivity of an AlAs over GaAs is very high (∼106) and it has 

been used and investigated for ELO, there have been reports on the degradation 

of the final GaAs surface due to micro-particles formed from etching residues [13-

16]. During the etching of AlAs in HF, a residue layer appears on the surface. 

Formation of residue upon etching in HF is also confirmed by the microscope 

images shown in Fig.5.2. The origin of these residues is explained in [13,14] by 

studying the chemical reaction during the etching of AlAs in HF. The chemical 

reaction during etching is shown below [13,14]. 

 

 𝐴𝑙𝐴𝑠(𝑠) + 3𝐻𝐹(𝑎𝑞) + 6𝐻2𝑂 →  𝐴𝑠𝐻3(𝑔)
+ [𝐴𝑙𝐹𝑛(𝐻2𝑂)6−𝑛]𝑠

(3−𝑛)+
 

+[(3 − 𝑛)𝐹−]𝑎𝑞 + 𝑛𝐻2𝑂  

(5.1) 

 

Where n=1,…,3. Among all the by-products formed during etching, AsH3 is 

gaseous and can form bubbles and diffuse away from the interface to the 

atmosphere. Under certain conditions AlF3 is formed, which is solid and hard to 

dissolve into the solution. The formation of AlF3 can stop the etching. Besides 

these primary by-products, solid As2O3 can also be formed on the substrate 

depending on the oxygen concentration in the etchant.   

 

Fig. 5.2 Microscope image of the final GaAs surface after etching of GaAs 

in citric acid and AlAs in (a) 2% HF and (b) 10% HF 

A stock HF solution with 2% and 10% concentration was prepared by diluting 

concentrated HF (40%). HF is a highly corrosive liquid and it should be handled 

with extreme care. The surface morphology of the GaAs layer after the removal 

of the final etch stop layer (AlAs) by exposure to HF was examined by optical 

microscopy and is shown in Fig 5.2.  From Fig. 5.2, the formation of a residue 

(a) (b) 
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layer was confirmed. The size and the type of residue depended on the 

concentration of the HF used (see Fig 5.2). These residue layers have low 

solubility and stay on the surface but could be easily removed by a cotton tip. 

However, cotton tips are not clean room compatible and the process can reduce 

the yield of adhesive bonding. Therefore a spray bottle can be used to disperse DI 

water on the etched surface, to rinse off the residue layer. But some of the residue 

still stays at the surface, which can further reduce the device performance and 

yield of bonding. Therefore, a post-chemical treatment is required to get rid of 

these residues completely [17,18]. In a next section, such a chemical treatment, 

called digital etching, will be explained. 

 HCl-based etching 

To overcome the above mentioned problem, another solution was also proposed 

by using a different sacrificial layer that can be selectively etched by a non-HF 

solution [14], leaving no insoluble etching by-products on the GaAs surface. For 

example, phosphide-based materials (InGaP, InAlP, InP and so on) have been 

widely applied as etch stop layers for the selective etching of arsenide-based 

materials (GaAs, InGaAs and so on), and vice versa. An InAlP layer in 

combination with GaAs has shown an excellent etch selectivity with high-quality 

surface without any residue when HCl is used as etchant [14]. Although it is an 

attractive solution, it does not help for the existing epi where AlAs and GaAs 

layers are already embedded as a sacrificial layer and the search of a viable 

solution to achieve a good quality surface continues.  

Hydrochloric acid (HCl), which is a well-known acid to etch phosphide-based 

materials can also be used to etch AlxGa(1-x)As [17,18]. Not much data is available 

on the etching of an AlxGa(1-x)As layer with HCl. However, [18] states that 

AlxGa(1-x)As with Al composition > 0.6 can be etched by HCl while it does not 

attack GaAs and only removes the oxide of GaAs. The roughness on GaAs 

induced by HF and HCl was examined in [14] by leaving blanket GaAs wafers in 

HCl or HF for 24 h. The atomic force microscopy (AFM) afterwards showed an 

RMS roughness of the 24h-HCl wafer of only 0.327 nm, much lower than the 

1.666 nm RMS roughness after 24 h in HF. This result indicates that HF attacks 

GaAs severely and causes excess surface roughness.   

To perform the etching experiment, HCl(36%):H2O(30%) (1:1) etching 

solution was prepared which gives an exothermic reaction. Hence, to ensure that 

the solution is at room temperature, the solution was allowed to cool down for 30 

minutes. The AlAs layer is etched by immersing the III-V sample in the etching 

solution for 1 min immediately after etching the top GaAs layer in citric acid.  
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Fig. 5.3 Dark field microscopic image of the final GaAs surface after 

etching of GaAs in citric acid for (a) 20 sec (b) 40 sec and (c) 60 sec . The 

AlAs layer is etched in HCl:H2O (1:1) for 1 min. 

The surface morphology on the GaAs layer after the removal of the etch stop 

(AlAs) layer by exposure to HCl was examined by dark-field microscopy and is 

shown in Fig 5.3. From Fig 5.3, it is evident that the sample etched in HCl:H2O 

again contained a thin, non-uniform layer of residual material that remains on the 

underlying smooth GaAs surface following the selective AlAs etch. These residue 

layers are again enriched by elemental arsenic or arsenic oxide and show a web-

like morphology. This morphology persists even after additional exposure of the 

surface to HCl:H2O. The size of the web-like structure varies depending on the 

exposure time of the GaAs layer to citric acid and is shown in Fig.5.3. The etching 

time of the GaAs layer in citric acid was 20sec, 40sec and 60sec for Fig 5.3 (a), 

(b) and (c) respectively whereas the AlAs layer is removed in 1 min in HCl:H2O. 

The size dependence of the web-like structure can be seen as a result of the extent 
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of oxidation of AlAs layer by exposure to citric acid. As can be seen from Fig 5.3, 

over etching of GaAs in citric acid increased the size of the web-like morphology. 

For the particular case where the GaAs layer is etched in citric acid for 20 sec and 

AlAs in HCl:H2O for 1 min, the web-like morphology could be completely rinsed 

off only by dispersing DI water with a spray bottle and no post chemical treatment 

was required. However, in case the over-etch is increased, the size of web-like 

structures increases and residue layer sticks to the GaAs layer and the removal of 

the residue becomes more difficult. Again, a post-chemical treatment such as 

digital etching is required to completely get rid of these residues.  

In conclusion, the selective etching of AlxGa(1-x)As layer in HF-based etchant, 

which is a highly corrosive acid requiring special handling and extra protection, 

is less attractive and attacks the final GaAs surface severely, resulting in surface 

roughness. Contrary to that, the use of HCl ensures better surface quality and is 

safer to use.  

5.2.3 Digital wet etching  

Normal III-V semiconductor wet etching occurs by combining two chemical 

reactions into a single chemical etching system. The digital etching technique 

differs from the normal etching method by separating the chemical reaction at the 

surface into two distinct processes. The first chemical reaction forms the surface 

film compound to a fixed depth due to the self-limiting nature of the first chemical 

reaction. The surface is then cleaned to prevent mixing of the first chemical with 

the second chemical in the next step. The second chemical reaction selectively 

removes the newly formed surface film compound but does not affect the 

unreacted GaAs region underneath. These two steps form an etching cycle and by 

repeating the etch cycles, etching can be achieved in a digital manner [17,18]. 

Therefore, in the wet chemical digital etching, the etch depth is dependent on the 

diffusion limited thickness of the surface film formed in the first step. An essential 

component in wet chemical digital etching is to develop a diffusion limited 

chemical reaction at the surface. H2O2 which is a well-known oxidizer forms a 

stable native oxide of GaAs by a self-limiting (diffusion- limited) process. It has 

been reported that an oxide thickness of 115 Å is formed after soaking a GaAs 

sample in H2O2 for 6 days at room temperature [19]. Thus H2O2 is used in a 1st 

step to form a thin oxidized GaAs layer by this self-limiting process. In the 2nd 

step, a HCl:H2O (1:1) solution is used to etch away the oxide layer formed on the 

GaAs surface without affecting the unreacted GaAs material underneath. 

Therefore, the single etch cycle in the digital wet etch process used in this thesis 

consists of 1 min soaking the sample in H2O2 to oxidize the GaAs surface, rinsing 

the sample in DI water, blow drying with a N2 gun, followed by 1 min soaking in 

HCl:H2O (1:1) to remove the oxidized GaAs. 



86 CHAPTER 5 

 

The digital etching was performed on the sample immediately after etching 

the AlAs sacrificial layer in HCl or HF. Fig 5.4 shows the dark field microscope 

image of the final GaAs surface after etching of GaAs in citric acid for 20 sec and 

AlAs in HCl:H2O for 1 min. Fig 5.4 (a) shows the final surface without digital 

etching whereas Fig 5.4 (b) shows the final surface at the same location after 

digital etching. As can be seen from Fig 5.4 (b), the residues from AlAs etching 

were completely removed after repeating 3 cycles of digital etching and a 

smoother GaAs surface was achieved.   

An AFM image of the final GaAs surfaces before and after treatment with 

three cycles of digital etching is also shown in Fig 5.5. From the AFM images, it 

is evident that the residue material remains on the underlying smooth GaAs 

surfaces following the selective AlAs etch in HCl:H2O (1:1). For the sample 

shown in Fig. 5.4 (a), these residues account for the rougher surface, which had 

an rms roughness of 3.9 ± 0.16 nm. The residue had a height of 15-20 nm. As 

shown in Fig. 5.5 (b), the sample etched in HCl:H2O (1:1) reflected an 

improvement in the surface quality as compared to the samples prepared without 

the digital etch and the surface had an rms roughness of 0.47 ± 0.18 nm. 

 

Fig. 5.4 Dark field microscope image of the final GaAs surface after 

etching of GaAs in citric acid for 20 sec and AlAs in HCl:H2O (1:1) for 1 

min (a) before treatment with the digital wet etch and (b) after treatment 

with the digital wet etch 

To compare the surface quality of the etched GaAs surface with that of the 

dielectric DBR and an unetched GaAs surface, an AFM image of the surface of 

the dielectric DBR and the GaAs surface without any etch were also taken and are 
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shown in Fig 5.6. The surface had an rms roughness of 0.59 ± 0.06 nm, and 1.4 ± 

0.26 nm for dielectric DBR and GaAs surface without any etch respectively. 

 

Fig 5.5 AFM image of the final GaAs surface after etching of GaAs in 

citric acid for 20 sec and AlAs in HCl:H2O (1:1) for 1 min (a) before 

treatment with the digital wet etch and (b) after treatment with the digital 

wet etch. 

 

Fig 5.6 AFM image of (a) Ta2O5/SiO2 DBR surface and (b) GaAs surface 

without any etch. 

Apart from removing the residual layer, digital etching can also be used to 

etch thin GaAs layers in a controlled way. It has been shown that by etching GaAs 

material in a digital manner a precise, reproducible and controlled GaAs etch rate 

of approximately 1.6 nm/cycle can be achieved [17]. To avoid optical band-to-

band absorption in the final devices, the 4 nm thin GaAs layer (see Fig 5.1) also 

needs to be removed using a digital wet etch process. Therefore during the 3 

(a) (b) 
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cycles of digital wet etching, the 4 nm GaAs layer on top of the CSL is also 

removed. 

Thus in summary, among the presented etchants for selective etching, citric 

acid and HCl are preferred to etch GaAs and AlAs respectively. Finally, with 3 

cycles of digital wet etching in H2O2 and HCl:H2O, a smooth surface can be 

achieved with high yield. Therefore, digital wet etching proves to be an effective 

treatment for final surface preparation of GaAs for bonding. The use of HCl 

opposed to HF simplifies the process by reducing the number of chemical 

solutions involved in etching and by providing a safer environment. NH4OH is 

still useful where coarse removal of GaAs is required.  

5.3  Adhesive bonding  

Bonding one material onto another is an important process in the microelectronics 

industry [20–23]. A comprehensive review of bonding techniques can be found 

in [24]. The adhesive bonding technique which employs an intermediate adhesive 

layer between two substrates offers several advantages over direct bonding, such 

as low bonding temperature (typically below 450°C depending on the polymer), 

good tolerance to particles and insensitivity to the surface topography of the 

bonding surfaces [24]. Therefore, less intensive cleaning procedures are required 

and higher yield can be obtained. The most important parameters in adhesive 

bonding are: the choice of the polymer used as the adhesive, the bonding pressure, 

bonding temperature, temperature ramp profile and chamber pressure. One of the 

most popular adhesives for wafer bonding is divinylsiloxane-

bisbenzocyclobutene (DVS-BCB). It was developed in the late 1980’s by Dow 

Chemical Company as a low dielectric constant (low-k) polymer intended to 

replace silica as a dielectric in on-chip interconnects [25]. Today, under the 

commercial name Cyclotene, it is a well-known material with a variety of 

applications in microelectronic packaging and interconnect applications. 

Chemically, DVS-BCB is a monomer molecule that polymerizes to create a low-

k dielectric material with some advantageous properties. Important beneficial 

properties that make DVS-BCB a suitable candidate for adhesive bonding is its 

low dielectric constant, low moisture absorption, low curing temperature, a high 

degree of planarization, low level of ionic contaminants, high optical clarity, good 

thermal stability, excellent chemical resistance, and good compatibility with 

various metallization systems [25-28]. The drawback of DVS-BCB is its low 

thermal conductivity. Below we will elaborate on the adhesive bonding process 

used in this work. 
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5.3.1 Preparation of dielectric DBR on Si sample 

The important process steps in the preparation of the DBR samples before 

bonding is to remove any contamination from cleaving or post-processing steps 

and to spin coat the DVS-BCB layer on the surface. Although the adhesive 

bonding is somewhat tolerant to particle contamination, it is essential to remove 

any residual particles on the bonding surface, since we want to achieve a bonding 

layer thickness of 40-50 nm. A careful preparation of the sample ensures high 

yield in the adhesive bonding procedure.  

 Gen1 DBR sample (Dielectric DBR on Si) 

As mentioned before, the Gen1 devices are fabricated by bonding III-V half 

VCSELs onto a 20 pair dielectric DBR on Si. The dielectric DBR wafer was 

cleaved into 10 mm × 12 mm samples.  Before cleaving, a thin layer of photoresist 

was spin coated to protect samples from small Si particles (by-products of the 

cleaving). After cleaving, the protective photoresist was removed using acetone, 

iso-propyl alcohol (IPA) and DI water. The remaining organic contamination was 

removed by a 10 min O2-plasma etching in a Tepla barrel etcher [29].  The surface 

of the DBR was then cleaned using a Standard Clean 1 (SC-1) solution, 

comprising an aqueous ammonia solution (NH4OH), hydrogen peroxide (H2O2) 

and deionized (DI) water in volume ratios of 1:1:5, respectively. The DBR sample 

was immersed in SC-1 at 70 °C, for 15 minutes, after which it was rinsed with DI 

water and dried. The SC-1 cleaning is very effective in removing organic residues 

and particles.  

Next, the standard BCB solution (CYCLOTENE 3022-35 resins) was diluted 

with solvent (Mesitylene (MES)) to achieve an ultra-thin bonding layer thickness 

[30]. The dilution ratio depends on the sample (planar or non-planar surface) and 

the desired DVS-BCB bonding thickness. A stock solution of DVS-BCB was 

prepared by mixing 1 volume of Dow Chemical’s Cyclotene 3022-35 solution and 

8 volumes of Mesitylene. By using this solution, one can realize a bonding 

thickness of 40-50 nm on a planar sample in a reproducible way. The BCB:MES 

(1:8) solution was spin coated onto the DBR sample at a spin speed of 3000 rpm 

for 40 sec (see Fig 5.9 (b)). The spin-coated DBR sample is then baked at 150°C 

on a hotplate for 10 min, to let mesitylene evaporate, after which the substrate is 

slowly cooled down to 90°C in 20 min.  

 Gen2 DBR sample (SiN PIC on Gen1 DBR) 

As discussed before, for the fabrication of Gen2 devices, the Gen1 DBR wafers 

with dielectric DBR on Si were modified by depositing and patterning the SiN 

intra-cavity waveguide and grating on top of it. More details about the processing 
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of the SiN PICs can be found in Chapter 4. In short, the SiN PICs were patterned 

on the Gen1 DBR by PECVD deposition of the SiO2 cladding layer and SiN 

waveguide layer, and 3 steps of e-beam patterning and dry etching. After the SiN 

waveguide structures were patterned, a top SiO2 cladding layer was deposited. 

The thickness of the top cladding layer depended on the resonance wavelength of 

the Gen2 VCSIL, as explained in Chapter 3. The size of the Gen2 DBR sample 

was 15 mm × 20 mm with a 1.6 mm × 10 mm SiN PIC pattern in the center. To 

allow the alignment of Gen2 VCSELs relative to the patterned SiN PIC the Ti/Au 

alignment marks were patterned 5 mm away from the SiN PIC. The cleaning of 

the Gen2 DBR sample is a bit different from the Gen1 DBR. Since the Gen2 DBR 

goes through various processing steps, an intensive cleaning before each step was 

done to ensure a clean surface for bonding. This cleaning included a short 

ultrasonic cleaning of the sample in an acetone bath, cleaning with acetone, IPA 

and DI water, and 10 min O2 plasma. The SC-1 cleaning was avoided in this case 

due to the peeling of the Ti/Au alignment marks in SC1 solution.  

A stock solution of DVS-BCB was prepared by mixing 1 volume of Dow 

Chemical’s Cyclotene 3022-35 solution with 3 volumes of Mesitylene. The 

BCB:MES (1:3) solution was then spin coated onto the Gen2 DBR sample at a 

spin speed of 3000 rpm for 40 sec. Since the top SiO2 cladding layer follows the 

topography of SiN PICs, the surface of the Gen2 DBR sample is non-planar. 

Therefore the DVS-BCB layer planarizes the sample by filling the topography 

with DVS-BCB (see Fig 5.10 (b)). With the solution mentioned above, a bonding 

thickness of 50-60 nm can be achieved on a non-planar sample. The spin-coated 

DBR sample is then baked at 150°C on a hotplate for 10 min to let mesitylene 

evaporate, after which the substrate is slowly cooled down to 90°C in 20 min.  

5.3.2 Preparation of III-V sample  

For realizing Gen1 VCSEL and Gen2 VCSIL devices, the same III-V wafer was 

utilized. Depending on the size of the target DBR sample, a small III-V die was 

cleaved. The size of the III-V die was 8 mm × 10 mm and 4 mm × 12 mm for the 

Gen1 and Gen2 DBR sample respectively. The protective photoresist on the III-

V die is then removed using acetone, IPA, and DI water. A short 2 min O2-plasma 

(600W) was used to remove the remaining organic contamination. 

In comparison to Si, for III-V there are no equivalent chemical cleaning 

solutions which do not attack III-V. Also, ultrasonic cleaning is not advised in 

case of III-V, since III-V materials are very fragile. To overcome this problem, 

two sacrificial layers are grown on the top of our epitaxial layer stack, as described 

in section 5.2. As can be seen from Fig 5.1, a 40 nm thick GaAs layer was grown 

on top of 70 nm thick AlAs layer to act as a sacrificial layer. As described in 

section 5.2, these layers can be removed by selective wet etching prior to bonding. 
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The schematic of etching to remove the sacrificial layers is presented in Fig 5.7. 

Before etching the sacrificial layers, any native oxide on top of the GaAs surface 

is removed by dipping the III-V die in a HCl:H2O (1:1) solution for 30 sec. The 

GaAs sacrificial layer is removed by Citric acid:H2O2 (5:1) in 20 sec (see Fig 5.7 

(a)) and the AlAs is removed by a HCl:H2O(1:1) solution in 1 min (see Fig 5.7 

(b)). 3 cycles of digital wet etching was then performed on the etched surface by 

alternating the exposure of the GaAs surface to H2O2 and HCl:H2O (1:1) for 1 min 

in separate steps (see Fig 5.7 (c)). While performing digital etching, the remaining 

4 nm GaAs layer is also removed with a rate of 1.6 nm/cycle. The III-V sample is 

now ready to be bonded with the DBR sample (Fig 5.7 (d)). For better adhesion 

between III-V and the BCB, a 10 nm thin SiN layer was deposited on the III-V 

immediately after removal of the sacrificial layer and digital etching. The next 

step is to bond the III-V sample to the Gen1 and Gen2 DBR samples. 

 

Fig. 5.7 Sacrificial layer etching prior to bonding: (a) 30 sec dip in 

HCl:H2O (1:1) to remove the native oxide, (b) etching of the GaAs layer in 

C6H8O7:H2O2 (5:1) solution for 20 sec, (c) etching of the AlAs layer in 

HCl:H2O (5:1) solution for 1 min, (d) 3 cycles of digital etching in 

HCl:H2O (1:1) and H2O2 solution.  

5.3.3 Machine bonding 

Machine bonding is employed to control the pressure applied on the sample, 

resulting in an improvement of thickness uniformity of the bonding layer. A Suss 

MicroTec ELAN CB6/8L wafer bonding machine is used in this work. Fig. 5.8 

(a) shows the interior of the bonding machine, where a pressure head is used to 

apply force. Fig. 5.8 (b) shows the transport fixture where the sample can be 

mounted between 2 Pyrex glass plates. To transport the sample to the bonding 

machine, a carrier wafer made of Pyrex glass (1200 µm thick, 100 mm diameter) 

is mounted on the transport fixture. The DBR sample is then placed on the carrier 

wafer and the clean III-V die is flipped on the DBR with the epitaxial device layer 

facing the dielectric DBR (Fig 5.9 and 5.10). After that, another carrier wafer is 

placed on top of the III-V and the stack is then clamped between these two carrier 
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wafers by the transport fixture. The whole transport fixture is then loaded into the 

processing chamber of the wafer bonding tool. Fig. 5.9 and 5.10 shows the 

schematic of the bonding process for Gen1 VCSELs and Gen2 VCSILs 

respectively. 

 

Fig 5.8 (a)The basic components of the Süss Microtec ELAN CB6L wafer 

bonder. (b) transport fixture for handling 100 mm diameter wafers 

 

Fig. 5.9 Schematic of bonding III-V on Gen1 DBR sample: (a) III-V 

epitaxial layer after removing the sacrificial layer (b) Gen 1 DBR sample 

with spin-coated DVS-BCB. 

After loading the fixture into the bonding chamber, the chamber lid is closed 

properly. The chamber is then pumped-down (target pressure 10-3 mbar) and 

heated to 150°C with a ramp of 15 °C/min for 10 min, while applying pressure on 

the III-V/SOI stack. The actual bonding pressure (the applied force per area of the 

III-V die) is kept in the range of 200 to 400 kPa. After maintaining the pressure 

on the dies for 10 min at 150 °C, the temperature is increased up to 280 °C, with 

a ramp of 1.5 °C/min. Upon reaching 280 °C, the dies are kept at this temperature 
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for 60 min in a nitrogen atmosphere to cure the DVS-BCB layer. After curing, the 

bonded samples are cooled down (at 6-10 °C/min) and unloaded from the 

processing chamber. The next step is to remove the thick GaAs substrate.   

 

Fig. 5.10 Schematic of bonding III-V on Gen2 DBR sample: (a) III-V 

epitaxial layer after removing the sacrificial layer (b) Gen 2 DBR sample 

with spin-coated DVS-BCB. 

5.3.4 Substrate removal 

After bonding, the 750 µm thick GaAs substrate needs to be removed completely 

by selective etching. Before removing the GaAs substrate, a wax (CrystalBond 

509) [31] is applied around the die to protect the edges of the III-V during the 

etching process. CrystalBond 509 can be dissolved in acetone. Its melting point is 

at 121oC and its softening point is at 71oC. The CrystalBond 509 wax exhibits 

strong adhesion and high chemical resistance which makes it suitable for sidewall 

protection during the substrate removal process. The CrystalBond 509 was melted 

by heating it to 140 oC in a glass petri dish. With the help of a sharp cotton tip, the 

melted wax was carefully applied at the edges of the bonded III-V (See Fig 5.12 

(a)). In case the wax spreads on top of the bonded III-V die, it can be wiped by a 

clean cotton tip dipped into Acetone. The schematic of the substrate removal 

process is shown in Fig 5.11. The major part of the GaAs substrate can be removed 

either by a mechanical grinding (∼500 µm) or by a fast non-selective wet etching 

(∼700 µm) (Fig 5.11 (a)). After that, the remaining GaAs substrate is removed 

selectively where the etching stops once the Al0.85Ga0.15As etch stop layer is 

reached (Fig 5.11(b)). The etching solution used in this step is NH4OH: H2O2 

(1:19). The 500 nm thick Al0.85Ga0.15As layer is removed selectively in HCl:H2O2 

(1:1) in 5 min and the etching stops when the GaAs layer is reached. The 20 nm 

thick GaAs layer is removed in C6H8O7:H2O2 (5:1) in 10 sec. The final 70 nm 

thick AlAs layer is then removed in HCl:H2O in 1 min followed by 3 cycles of 

digital wet etching. The microscope images of the surface of III-V during different 
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etch steps are shown in Fig 5.12.  Below we elaborate on the mechanical substrate 

removal and full wet substrate removal process. 

 

 

Fig 5.11 Schematic process flow for the removal of the GaAs substrate: (a) 

mechanical grinding or non-selective etching in HNO3:H2O2:H2O, (b) etch 

the remainder of the GaAs substrate in NH4OH:H2O, (c) etching of 

Al0.85Ga0.15As in HCl:H2O, (d) etching of GaAs in C6H8O7:H2O2:H2O,     

(e) etching of AlAs in HCl:H2O and digital wet etching, and (f) final 

bonded sample. 

 Mechanical substrate removal process   

To shorten the process time, most of the substrate can be removed mechanically 

in a process called lapping or mechanical grinding and the rest of the substrate is 

then removed by selective wet etching. For the mechanical substrate removal 

process, the sample is temporarily glued to a smaller glass plate using a wax, 

which melts at ∼70 °C. Care should be taken to get a uniform contact between the 
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sample and the glass plate when gluing the sample as usage of an excess amount 

of glue can result in a thickness variation. The glass plate with the sample glued 

on is then mounted on a glass grinding plate. A controlled downward force on the 

sample can be applied by a pressure head and an abrasive slurry containing a very 

fine powder, i.e., Aluminium oxide powder (12.5 μm diameter) mixed with water 

is used. The slurry is fed continuously onto the grinding plate for homogenous 

abrasion. It is recommended to not lap the substrate to less than ∼200 μm 

thickness in order to not crack the sample. The cracks are mostly caused by any 

small particles trapped between the bonding interfaces, non-optimum force and 

the rotation speed of the grinder (too high force and too fast rotation speed). After 

removing the majority of the GaAs substrate by mechanical grinding, the rest of 

the sacrificial layers are etched by carrying out the etch steps of Fig 5.11 (b)-(f). 

It is also possible to skip this process step altogether and just perform wet 

etching if a high yield is more important than short process time. However, the 

wet etchant used for complete substrate removal needs to be selective and have a 

high etch rate. A process of complete wet etching to remove the GaAs substrate 

is presented in the next section. 

 Complete wet etch substrate removal process 

There is also a possibility to perform complete wet etching of the GaAs substrate 

by choosing two wet etchants. The 1st etchant needs to have a high etch rate to 

reduce the substrate removal time and the 2nd etchant needs to be selective and 

can be introduced at the end to remove the GaAs substrate selectively. Even 

though the etching of the GaAs substrate in an ammonia-based solution is fast 

(∼3.5 µm/min) and selective, it cannot be used in the 1st step of a complete wet 

etching process for substrate removal as etching in ammonia is not linear over 

time and the etching becomes very slow with time. Therefore a non-selective 

etching was chosen to remove the GaAs substrate. A Nitric acid-based etchant can 

be used for fast removal of the GaAs substrate until 40-50 μm of GaAs substrate 

is left. It is reported that the etch rate of GaAs in HNO3: H2O2:H2O (1:x:1) solution 

depends on x (H2O2 concentration) used in the solution [32]. The etch rate of the 

GaAs substrate increases first and then decreases with the amount of H2O2 

increasing. When the ratio of HNO3:H2O2:H2O is 1:6:1, the etch rate reaches its 

maximum, which is ∼8.024 μm/min. When the ratio of HNO3:H2O2:H2O is 

1:4:1, the etch rate is ∼5 μm/min and the smoothest morphology with a roughness 

of about 4.57 nm was observed. We choose HNO3:H2O2:H2O with ratio 1:4:1 due 

to the high etch rate and smoother etching surface. The advantages of Nitric acid-

based etchants are that it is easy, repeatable, and gives no contamination. The only 

disadvantage of Nitric acid-based etchants is that the etching of the GaAs 

substrate starts from one edge of the sample and it finishes at another edge, giving 

~20-30 μm of non-uniformity between one edge to another edge of the sample. 
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The origin of this non-uniformity is not well understood. However, this is not a 

serious problem as the Ammonia based solution has very high selectivity and we 

can etch the rest of the GaAs substrate in it until the etch stop is reached. Hence 

we need to etch the substrate in HNO3:H2O2:H2O (1:4:1) solution for ∼140 

minutes and that should leave ∼50 µm of substrate.  

 

 

Fig. 5.12 Microscope image of the surface after (a) applying the 

CrystalBond 509 wax around edge of the bonded III-V die; (b) mechanical 

grinding or non-selective etching in HNO3:H2O2:H2O; (c) etching the rest 

of the GaAs substrate in a selective etching solution (NH4OH:H2O); 

(d) etching the rest of the sacrificial layers followed by digital wet etching; 

(e) final bonded surface after scratching the ears using a scalpel. 

While doing the fast etching of the GaAs substrate in a Nitric acid based etchant, 

monitoring of the thickness of the substrate left is required towards the end, 30 

minutes before the expected end time. As the non-uniformity induced by the wet 

substrate removal and the thickness of the substrate that we want to leave is 

similar, this step is crucial because the Nitric acid-based etch is not selective. After 

the etching of the substrate in Nitric acid is finished, the sample needs to be 

cleaned in DI water thoroughly for at least 1 minute in order to prevent mixing of 
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etchants in the next step. After cleaning the sample in DI water, the remaining 

GaAs substrate is removed by selective wet etching in NH4OH:H2O2 (1:1) 

solution. To maintain the etch rate the etching solution was continuously agitated 

throughout the etching process. Once the Al0.85Ga0.15As layer is exposed in 

ammonia solution, the etching stops due to the oxidation of the Al0.85Ga0.15As  

layer. Since the nitric acid etch gives nonuniformity in the substrate removal, a 

rainbow pattern can be seen on the surface (Fig 5.12 (c)). The rest of the sacrificial 

layers are then etched by repeating the etch steps in Fig 5.11 (c)-(f).  As can be 

seen from Fig 5.12 (d), the bulk GaAs stays at the edge of the bonded III-V 

forming ears during the substrate removal. These ears can affect the optical 

lithography in subsequent steps during VCSEL fabrication. Therefore, they are 

removed with a scalpel (Fig 5.12 (e)). Before scratching the GaAs ears, a thick 

photoresist was spin coated on the sample to avoid the contamination of the 

bonded III-V layer with particles from scratching. Fig 5.13 shows the SEM image 

of the FIB cross section of a Gen1 and Gen2 bonded sample.  

 

Fig. 5.13 SEM images of a FIB cross-section of (a) a bonded Gen1 VCSEL 

sample and (b) a bonded Gen2 VCSIL sample 

5.4 VCSEL fabrication 

After the bonding of the GaAs-based “half-VCSEL” structure to the dielectric 

DBR on Si using DVS-BCB and removal of the GaAs substrate, VCSELs were 

fabricated using a range of standard VCSEL processing steps, including 

photolithography, thin film deposition, metallization, etching, and wet oxidation 

[33,34]. These processes were carried out at Chalmers University of Technology, 

as part of the PhD work of E. P. Haglund [34]. 
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5.4.1 Gen1: VCSEL fabrication 

The fabrication process for hybrid-cavity Gen1 VCSELs is illustrated in Fig. 5.14 

and the different steps in VCSEL fabrication are explained as below: 

 p-contact metallization 

The bonded sample is cleaned in acetone, IPA, and DI water and 2 min O2 plasma, 

followed by a 30sec dip in HCl:H2O (1:1). As a first step, the alignment marks 

and top p-contact rings were patterned using optical lithography. The metal 

contacts (Ti/Pt/Au) (10 nm/10 nm/175 nm) were deposited by electron-beam 

evaporation. A lift-off procedure is performed after the metallization by dipping 

the sample in acetone, after which the sample is rinsed and dried. 

 Island definition 

In order to isolate the individual VCSEL devices, rectangular islands of bonded 

III-V were defined by making trenches in the III-V using optical lithography. The 

epitaxial III-V was etched using ICP-RIE with SiCl4 and Ar chemistry. These 

trenches allowed residual gas trapped in the bonding layer to escape during 

subsequent high-temperature process steps (oxidation and annealing).  

 Mesa definition 

A 300 nm thick blanket SiN layer was deposited by sputtering on the entire chip 

to act as a hard mask for etching the mesa. Circular mesas with diameters of 22, 

24, 26, and 28 μm were defined by photolithography and the pattern was first 

transferred to the SiN hard mask by a dry etch of the SiN using an NF3 chemistry, 

followed by etching the III-V mesas using ICP-RIE with SiCl4 and Ar chemistry. 

While etching the mesa, an in-situ laser interferometer endpoint detection system 

was used to accurately stop within the thin (~280 nm) intra-cavity Al0.12Ga0.88As 

n-contact layer just below the active region and to expose the Al0.98Ga0.02As layer 

for oxidation.  

 Wet oxidation 

Selective wet oxidation of high aluminium-content AlxGa(1-x)As is used to form 

the VCSEL oxide aperture. The surface of the mesas and the contact layer were 

protected during oxidation by a 100 nm thick SiN layer deposited by plasma-

enhanced chemical vapor deposition. The SiN layer was removed at the mesa 

sidewalls using photolithography and ICP-RIE etching with NF3 chemistry to 

expose the Al0.98Ga0.02As layer for oxidation. The wet oxidation is performed by 

exposing the high aluminium-content Al0.98Ga0.02As layer to water vapour at 

elevated temperature [35]. The sample was transferred to an oxidation furnace 
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held at 420°C. Using a N2-bubbler the water vapour from a water beaker held at 

95°C is transported to the oxidation furnace, achieving a typical oxidation rate of 

∼0.3 μm/min for Al0.98Ga0.02As. The progress of the wet oxidation is monitored 

in-situ using IR illumination under a microscope with a CCD camera. Since the 

oxidation rate is very sensitive to the temperature, even a small temperature 

gradient across the sample is enough for the oxide aperture diameter to become 

non-uniform [35]. To improve the uniformity, the sample was rotated 180° after 

half of the oxidation. Depending on the mesa diameters, oxide aperture diameters 

from 4 to 10 μm were obtained. 

 n-contact metallization 

After wet oxidation, the SiN layer is again removed in ICP-RIE using NF3 

chemistry. An optical lithography step was performed to define the n-contact 

pattern. The sample was then dipped in HCl:H2O2 (1:1) for 30 sec to remove any 

native oxide on AlGaAs. A thin film of metal (Ni/Ge/Au) (20 nm/52 nm/100 nm) 

was deposited using electron beam evaporation, see Figs. 4.2 (d). Germanium is 

included in the composition of the n-metal contact because the intra-cavity n-

contact layer is not sufficiently doped to allow for ohmic contacting without 

additional doping. In the subsequent rapid thermal annealing at 430°C in an N2 

atmosphere for 30 sec, Ge alloys with the contact layer, thereby heavily doping it 

and generating ohmic contacts. 

 Passivation 

After the n-type metallization, the passivation is performed. This is realized by 

spin coating a thick protective layer of DVS-BCB on the sample. This layer later 

provides an electric insulation between the p-contact on the top and the n-

electrodes located below. For this purpose, a photosensitive DVS-BCB 4026-46 

resin is spin-coated on the sample.  

 Bondpads 

The photosensitive DVS-BCB enables opening up of the DVS-BCB by 

photolithography. After defining the bondpads on the DVS-BCB layer in a GSG 

configuration through photolithography, the last process step is to deposit Ti/Au 

bondpads through sputtering and lift-off to allow for probing and evaluation of 

the devices.  
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Fig. 5.14 The process steps for hybrid-cavity GEN1 VCSEL fabrication 

includes: (a) p-contact deposition, (b) mesa etching followed by deposition 

of SiN, (c) oxide aperture formation after opening of SiN on mesa side 

walls, (d) n-contact deposition, (e) planarization with DVS-BCB, and (f) 

deposition of bondpads. 
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Fig. 5.15 Optical micrographs of (a) an array of fully processed VCSELs 

and (b) a single VCSEL. 

The top GaAs p-contact layer has a thickness of λ/2, thereby producing an anti-

phase reflection at the surface to facilitate post process tuning of the photon 

lifetime. Therefore, after initial characterization of the VCSEL, the top GaAs 

surface of the VCSEL can be etched by low power Ar ion milling to investigate 

the dependence of VCSEL performance on the top DBR reflectivity [36]. The 

optical micrograph image of an array of fully processed Gen1 VCSELs and a 

single Gen1 VCSEL is shown in Fig. 5.15 

5.4.2 Gen2: VCSIL fabrication 

The fabrication process for Si-integrated hybrid-cavity Gen2 VCSILs has a 

similar fabrication process as Gen1 VCSELs and is illustrated in Fig. 5.16. The 

only difference is in defining the top contact and the III-V mesas: direct laser 

writing is used instead of the optical lithography in this case. This improved the 

alignment of the VCSIL relative to the intra-cavity grating underneath. Any 

remaining AlxGa(1-x)As material on top of the waveguides was also removed 

outside the device structure to reduce the power leakage from the waveguide to 

the higher refractive index AlxGa(1-x)As material. As can be seen from Fig 5.16(e), 

the device fabricated at this step still act as surface emitting device and allowed 

us to characterize the surface emitting output of the VCSEL. The surface-emission 

was then suppressed by depositing 100 nm thick gold by electron beam 

evaporation on top of the III-V mesas (Fig 5.16(f)). The optical micrograph of an 

array of fully processed Gen2 VCSILs and a single Gen2 VCSIL is shown in Fig. 

5.17. 

(a) (b) 
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Fig. 5.16 The process steps for hybrid-cavity Gen2 VCSIL fabrication 

include: (a) p-contact deposition, (b) mesa etching followed by deposition 

of SiN, (c) oxide aperture formation after opening of SiN on the mesa 

sidewalls, (d) n-contact deposition, (e) planarization with DVS-BCB, and 

deposition of bondpads and (f) deposition of a gold reflector 
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Fig. 5.17 Optical micrographs of (a) an array of fully processed Gen2 

VCSILs and (b) a single Gen2 VCSIL. 

5.5  Conclusion 

In summary, several etchants were investigated for selective etching of GaAs over 

AlAs and vice versa. An optimal wet chemical selective etching process was 

developed to achieve a reproducible high-quality surface. This ensured high yield 

in the adhesive bonding process. After bonding, the process to fabricate Gen1 

VCSELs and Gen2 VCSILs is also presented. 
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6   

Characterization of Si-

Integrated Hybrid cavity 

VCSELs 

6.1  Introduction 

In the previous chapters, we discussed the design and technologies to realize Si-

integrated VCSELs. In this chapter, the optical characteristics of these integrated 

VCSELs will be presented. Static measurements will be presented for Gen1 

VCSELs and Gen2 VCSILs. The impact of the DVS-BCB thickness on the static 

and dynamic performance of Gen1 VCSELs will also be presented. These 

measurements were carried out at the Chalmers University of Technology, as part 

of the PhD work of E. Haglund. Finally, in the last section of this chapter, a 

conclusion will be provided.  

6.2  Gen1 HC-VCSEL 

As discussed before, the Gen1 HC-VCSEL consists of a GaAs half VCSEL 

attached to a dielectric DBR on Si, resulting in a surface emitting laser. The static 

light-current-voltage (LIV) characteristics of these devices are measured using a 

low noise current source and a large area Si photodetector. A Peltier element and 

a thermistor are attached to the VCSEL submount to enable measurements at 

elevated temperature.  
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6.2.1 Static performance 

The first batch of lasers were fabricated after etching the GaAs and AlAs 

sacrificial layers on the III-V layer stack in citric acid and 2% HF respectively. 

Since there was no digital etching performed at this stage, a very thin layer of 

GaAs (~4nm) is still left inside the cavity. The LIV characteristics under 

continuous wave operation of VCSELs with oxide aperture diameters of 7 µm, 

measured at 25°C, can be seen in Fig 6.1. As can be seen from Fig 6.1, this device 

showed almost no lasing behavior and the output power of the VCSEL is very low 

due to optical band-to-band absorption in the thin GaAs layer and 

scattering/absorption by residues left inside the laser cavity after sacrificial layer 

removal.   

 

Fig. 6.1 Measured light-current-voltage characteristics for hybrid-cavity 

VCSELs with oxide aperture diameter of 7 µm.  

In the next batch of devices, 3 cycles of digital etching were performed. As 

discussed in chapter 5, the digital etch ensured removal of residues from the 

sacrificial layer removal as well as it etches away the 4 nm thin GaAs layer in a 

very controlled way. The LIV characteristics of such VCSELs under continuous 

operation with oxide aperture diameters ranging from 3-9 µm, measured at 25°C, 

can be seen in Fig 6.2. The impact of this digital etching step is clearly seen by a 

significant improvement in the output power of the VCSEL. The VCSELs with 

the smallest and largest oxide aperture exhibit threshold currents of 0.3 and 1.2 

mA, respectively. The maximum output power is 1.6 mW at 6.0 mA bias current 

for the 9 μm VCSEL, mainly limited by thermal effects.  
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Fig. 6.2 Measured light-current-voltage characteristics for hybrid-cavity 

VCSELs with oxide aperture diameters of 3–9 µm. Inset: spectrum for a 7 

µm aperture VCSEL operated at 3.0 mA. Reproduced from [1] 

The slope efficiency is 0.5 W/A for all aperture sizes. The differential 

resistance ranges from 50 Ω for a 9 μm aperture VCSEL to 120 Ω for a 3 μm 

aperture VCSEL which is lower than the typical values for oxide-confined 

VCSELs [2] with same aperture size due to the intra-cavity contact. The emission 

spectrum for a 7 μm aperture device operated at 3.0 mA is included as an inset to 

Fig. 6.2, showing multiple transverse modes lasing around 844 nm. 

6.2.2 Impact of BCB bonding thickness on VCSEL 

performance 

As discussed in Chapter 3, the cavity resonance wavelength of a heterogeneously 

integrated VCSEL can be adjusted by the DVS-BCB layer thickness used for 

adhesive bonding. In a VCSEL cavity, as temperature increases both the cavity 

resonance and the laser gain peak shift to longer wavelength with a rate of 0.06–

0.09 nm/K and 0.32nm/K respectively [3]. A degradation in laser performance is 

expected when the cavity resonance wavelength is not properly aligned with the 

gain peak wavelength. Therefore, we can adjust the DVS-BCB thickness to align 

the cavity resonance and the laser gain peak wavelength in such a way that, either 

a low threshold/high output power can be obtained at a particular temperature or 

a relatively invariant threshold properties over a wide range of operating 

temperatures can be produced. Below we will elaborate on the impact of the DVS-

BCB thickness on the static and dynamic performance of Gen1 VCSELs. 

 Static performance 

To study the impact of the bonding thickness on the VCSEL performance, 4 

batches of HC-VCSELs denoted as A–D with an interface thickness of 35, 65, 

125, and 180 nm and cavity resonance wavelengths of 843, 853, 861, and 867 nm, 
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corresponding to a gain-to-resonance detuning of approximately +9, −1, −9, and 

−15 nm, respectively are prepared. The diameter of the oxide aperture is 10 µm. 

The resonance wavelengths are extracted from optical emission spectra of HC-

VCSELs biased below the threshold at 25 °C. The output power and voltage-

versus-current measured at ambient temperatures ranging from 15 to 100 °C, in 

steps of 5°C, are shown in Fig. 6.3, while the corresponding static performance 

characteristics are summarized in Table 6.1. 

 

Fig. 6.3 Output power and voltage versus current for HC-VCSELs A–D 

measured at ambient temperatures ranging from 15 to 100 °C in steps of 5 

°C, reproduced from [4]. 

As can be seen from Fig 6.3, the HC-VCSEL B, providing the smallest gain-

to-resonance detuning (-1 nm) at 25°C has a minimum threshold current (1.1 mA). 

At higher ambient temperatures, HC-VCSELs C and D have lower threshold 

currents since the detuning is reduced with temperature as a result of the ~4 times 

faster redshift of the gain peak with respect to the cavity resonance [3]. The 

threshold currents for different VCSELs as a function of ambient temperature is 

extracted from Fig. 6.3 and is plotted in Fig. 6.4(a). The temperatures for 

minimum threshold current were identified by fitting a second order polynomial 

to the dependence of threshold current on temperature, as seen in Fig. 6.4(b). 

At the temperature for minimum threshold current, the wavelengths of the 

cavity resonance and the gain peak are aligned. At 25°C this occurs at 852 nm. 

While the threshold current of HC-VCSEL D is higher than that of HC-VCSEL 

B at 25°C, it is lower at high temperatures and shows a weaker dependence on 

temperature.  

The achievable output power depends on the threshold current, the slope 

efficiency and the thermal roll-over current. All HC-VCSELs have similar slope 

efficiency (~0.5 W/A at 25 °C), with a slight variation due to uncertainty in the 

thickness of the top layer of the p-DBR. At high temperature, reduction in slope 

efficiency is observed as a result of increased internal optical loss (free carrier 

absorption) and reduced internal quantum efficiency [5].  
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Table 6.1. Static performance parameters, reproduced from [4]. 

 

  HC-VCSEL 

Parameter Temp. (°C) A B C D 

Resonance wavelength (nm) 25 843 853 861 867 

Peak gain-to-resonance detuning 

(nm) 
25 +9 −1 −9 −15 

Temperature at min. threshold 

current (°C) 
 6 27 36 54 

Threshold current (mA) 

25 

55 

85 

100 

1.42 

2.18 

n/a 

n/a 

1.07 

1.36 

2.10 

3.00 

1.42 

1.52 

2.08 

2.77 

1.85 

1.64 

1.87 

2.24 

Maximum optical output power 

(mW) 

25 

55 

85 

100 

1.8 

0.66 

n/a 

n/a 

2.3 

1.4 

0.56 

0.19 

2.3 

1.4 

0.67 

0.31 

2.2 

1.5 

0.89 

0.58 

Thermal roll-over current (mA) 

25 

55 

85 

100 

6.2 

4.8 

n/a 

n/a 

7.4 

6.2 

5.0 

4.3 

8.2 

7.1 

5.7 

5.0 

9.0 

7.9 

6.6 

5.9 

Slope efficiency (W/A) 

25 

55 

85 

100 

0.54 

0.30 

n/a 

n/a 

0.55 

0.42 

0.25 

0.09 

0.54 

0.41 

0.26 

0.16 

0.50 

0.39 

0.28 

0.22 

Differential resistance at 4 mA (Ω) 

25 

55 

85 

100 

61 

62 

n/a 

n/a 

81 

79 

79 

81 

55 

54 

55 

55 

51 

50 

50 

51 

Differential resistance at thermal 

roll-over (Ω) 

25 

55 

85 

100 

48 

60 

n/a 

n/a 

61 

67 

76 

81 

33 

41 

48 

53 

28 

34 

42 

45 
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The thermal roll-over current is largely determined by the thermal impedance 

and the dependence of threshold current on temperature. 

 

Fig. 6.4 (a) Threshold current versus ambient temperature and (b) 

estimated temperature at minimum threshold current versus resonance 

wavelength, reproduced from [4]. 

The thermal impedance was deduced by tracking the red shift of the 

fundamental mode as a function of stage temperature and dissipated power. The 

fundamental mode redshifts with temperature by 0.059 nm/K, while it redshifts 

with dissipated power by 0.42 nm/mW (Fig. 6.5). This gives a thermal impedance 

of 7 K/mW for all HC-VCSELs, regardless of the thickness of the bonding 

interface. This indicates that the thermal impedance is to a large extent determined 

by heat transport through the dielectric DBR. With the thermal impedance being 

~4 times larger than for ordinary GaAs-based oxide-confined VCSELs [5], the 

thermal roll-over currents are relatively low, which limits the maximum output 

power. Therefore, while HC-VCSEL B and C produce the highest output power 

at 25 °C (2.3 mW), HC-VCSEL D shows improved high temperature and high 

current performance since the gain peak aligns with the resonance wavelength at 

higher internal temperature. The maximum output power at 100 °C is 0.6 mW. 

The rapid increase of threshold current with temperature for HC-VCSEL A limits 

the maximum operating temperature to 70 °C. 

The differential resistances are comparable (50–60 Ω), with negligible 

dependence on temperature, since the bonding interface thickness should have no 

impact on the electrical characteristics. The somewhat higher resistance of HC-

VCSEL B (80 Ω) is believed to be due to residues from the removal of the 

substrate, which led to a higher p-contact resistance. The performance of HC-

VCSEL B is still superior in terms of maximum output power at temperatures up 

to 25°C.  Optical emission spectra, measured at a bias current of 2 mA, are shown 

in Fig. 6.6.  

(a) (b) 
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Fig. 6.5 (a) Wavelength of the fundamental mode versus dissipated power 

at 25 °C for HC-VCSELs A–D with fits to extract the thermal impedance, 

reproduced from [4]. 

 

Fig. 6.6 Emission spectra at 25 °C for HC-VCSELs A–D biased at 2 mA, 

reproduced from [4]. 

 Dynamic performance 

 Small signal modulation response 

A first indicator of high-speed performance is to measure the small signal 

frequency response (S21) of the VCSEL using a network analyzer. From this 

measurement, f3dB, fr, γ, and fp and their respective dependencies on bias current 

can be extracted through curve-fitting equation 2.14 to the measured data and 

conclusions can be made about which parameters are limiting the dynamic 

performance. It is in principle possible to attain both phase and magnitude of the 

modulation response if the system is calibrated accordingly. However, only 

magnitude information of the detector frequency response is typically available in 

the product calibration sheet and even though phase response information in 
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principle can be extracted from this data [6], we measure only the magnitude of 

the frequency response (|S21|) as it requires less calibration and still provides 

much information (|S21(f)| = |H(f)| from equation 2.14). 

Fig. 6.7 shows a schematic of the setup used to measure the modulation 

response. The bias current is combined with the sinusoidal small signal 

modulation signal from port 1 of the 20GHz vector network analyzer (VNA-

Agilent N5230A) through a high frequency bias-T and fed to the VCSEL by a 

high-speed RF probe (Picoprobe 40A-GSG-100-P from GGB Industries). The 

design of the VCSEL bondpad is such that it is matched with the 100 μm pitch of 

the ground-signal-ground configured probe. A Peltier element and a thermistor 

are attached to the VCSEL submount to enable measurements at elevated 

temperatures. The modulated light is coupled to a short (1m long) 50 μm 

multimode fiber (OM4) via an AR coated lens system that matches the numerical 

aperture of the VCSEL with that of the fiber. This coupling system results in 

>60% coupling efficiency and minimizes optical feedback to the laser. The fiber 

is connected to the 28 GHz (Picometrix DG-32xr-FC) photodetector which in turn 

is connected to port 2 of the network analyzer. If the fiber-coupled output power 

is high, a variable optical attenuator (VOA) is included to keep the photodetector 

from saturating. A calibration is made to remove any influence from attenuation 

in the cables and the bias-T prior to the measurement. The measured data is 

corrected for the response of the RF probe and detector (with data obtained from 

the calibration sheets provided with the respective equipment) before the transfer 

function (equation 2.14) is fitted to the response. From the fit, the K- and D-factors 

can be extracted.  

 

Fig. 6.7. Measurement setup for the small signal modulation response.  
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The modulation response for HC-VCSELs A–D at 25 and 85 °C, compensated 

for the frequency response of the probe and the photodetector, are shown in Fig. 

6.8. The dynamic performance characteristics of all HC-VCSELs at three ambient 

temperatures (25°C, 55°C, and 85°C) are summarized in Table 6.2.  

Table 6.2. Dynamic performance parameters, reproduced from [4]. 

  HC-VCSEL 

Parameter 
Temp. 

(°C) 
A B C D 

Maximum 3 dB bandwidth (GHz) 

25 

55 

85 

8.2 

4.3 

n/a 

10.0 

8.1 

5.2 

9.7 

8.1 

5.6 

9.5 

8.1 

6.4 

Bias current at max. 3 dB 

bandwidth (mA) 

25 

55 

85 

5.2 

4.4 

n/a 

7.1 

5.8 

4.9 

7.9 

6.9 

5.0 

9.0 

7.1 

6.2 

D-factor (GHz/mA1/2) 

25 

55 

85 

4.8 

2.8 

n/a 

4.2 

4.2 

3.1 

3.3 

3.3 

2.6 

3.0 

2.9 

2.7 

 

 

Fig. 6.8. Small-signal modulation response at 25 °C (a)-(d) and 85 °C (e)-

(g) for HC-VCSELs A-D at indicated bias currents. The maximum 3 dB 

modulation bandwidth is reached at the highest bias currents indicated. 

Reproduced from [4]. 
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All HC-VCSELs show a strongly resonant modulation response caused by the 

relatively low photon density established in the cavity at thermal roll-over. A more 

damped response is desired to reduce overshoot and jitter during large signal 

modulation and data transmission [7]. Although the modulation bandwidth is 

largely limited by the capacitance over the single oxide layer (with a parasitic pole 

frequency of 6–8 GHz), there are clear differences in the maximum modulation 

bandwidth related to the differences in bonding interface thickness and gain-to-

resonance detuning. The maximum modulation bandwidth depends on how fast 

the resonance frequency increases with bias current (quantified by the D-factor) 

and the highest photon density that can be achieved [8]. 

The D-factors were extracted from the measured dependence of the resonance 

frequency on the square root of current above threshold (Equation 2.16), as shown 

in Fig. 6.9(a) at 25 °C. The D-factors are plotted in Fig. 6.9(b). Clearly, the D-

factor is reduced with increasing resonance wavelength. This is caused by the 

differential gain being lower on the long-wavelength side of the gain peak. At 

higher temperatures (Table 6.2), the D-factors are further reduced due to a 

reduction of differential gain with temperature and a more pronounced reduction 

of internal quantum efficiency at the highest temperature. 

The maximum photon density is reached at the thermal rollover current. 

Therefore, higher photon densities can be established in HC-VCSELs with low 

threshold current and weak dependence of threshold current on temperature.  

As a consequence of these dependencies, HC-VCSEL B has the highest 3 dB 

modulation bandwidth at 25 °C (10.0 GHz) while HC-VCSEL D has the highest 

bandwidth at 85 °C (6.4 GHz). HC-VCSEL D also shows the smallest dependence 

of bandwidth on temperature. 

 

Fig. 6.9 Resonance frequency versus square root of current above the 

threshold at 25 °C with fits to extract the D-factors, which are shown versus 

resonance wavelength in (b). Reproduced from [4]. 
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 Large signal data transmission 

By setting a VCSEL in either it’s on- or off-state, the simplest modulation format 

of ones and zeros can be represented. This binary modulation format is called on-

off keying (OOK).  

The schematic of the setup used to measure large signal data transmission is 

shown in Fig. 6.10. To perform large signal data transmission experiments, an 

OOK signal consisting of a pseudo-random bit sequence (PRBS) signal with word 

length 27−1 is generated by a bit pattern generator (SHF 12103A) and is fed to the 

VCSEL through a bias-T and a GSG probe after amplification.  The light from the 

HC-VCSEL is coupled into a 1 m long OM4 multimode fiber using the AR coated 

lens package. The fiber is then connected to a 30 GHz limiting photoreceiver (VI 

Systems R40- 850) through a VOA. The electrical signal from the photoreceiver 

is connected to either an error analyzer (SHF 11100B) (Path A in Fig 6.10) 

synchronized with the pattern generator to count the number of errors in the 

received signal or a 70 GHz equivalent time sampling oscilloscope (Agilent 

Infiniium DCA-J 86100C) (Path B in Fig 6.10) to record eye diagrams (an overlay 

of the signal waveform). By relating the number of errors to the total number of 

bits the bit error ratio (BER) can be calculated. For very low BERs the time needed 

to accumulate errors is very long. For reasonable measurements times, it is, 

therefore, necessary to use statistical methods. It is required that Nbits are detected 

without any error to ensure a BER below p with a statistical confidence c, where 

Nbits is given by [9] 

 
𝑁𝑏𝑖𝑡𝑠 =  −

ln(1 − 𝑐)

𝑝
 

(6.1) 

 

Fig. 6.10. Large signal data transmission setup. Path A is used to measure 

BERs, while path B is used to record eye diagrams.  
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A HC-VCSEL with similar resonance wavelength (859 nm) as HC-VCSEL C, 

but with a smaller oxide aperture diameter (5 µm), was chosen for back-to-back 

data transmission experiments. The smaller aperture device has a slightly more 

damped modulation response and a higher photon density at low bias currents. 

The small signal 3 dB modulation bandwidth for this device is 12.1 and 8.9 GHz 

at 25 and 85 °C, respectively. With a bias current of 4.5 mA, a modulation voltage 

of 350 mVpp , and the HC-VCSEL held at 25 °C, error-free transmission (BER < 

10−12) was achieved at data rates up to 25 Gbit/s with an extinction ratio (ER) of 

5.6 dB (Fig. 6.11). At 85 °C, a bias current of 3.5 mA and modulation voltage of 

180 mVpp enabled error-free transmission at data rates up to 10 Gbit/s (ER = 5.9 

dB).  

The lower bias current and modulation voltage used at 85 °C were required to 

maintain high modulation efficiency and avoid the operation below threshold at 

the off-state. The same biasing and modulation conditions were also used with the 

HC-VCSEL held at 25 °C and modulated at 10 Gbit/s for comparison, resulting 

in a reduction of the ER to 3.9 dB due to the lower threshold current. At 10 Gbit/s, 

there is no power penalty when increasing the temperature from 25 to 85 °C due 

to the higher ER at 85 °C, but the power budget is 2.3 dB larger at 25 °C. However, 

increasing the data rate from 10 to 25 Gbit/s at 25 °C results in a 4 dB power 

penalty. 

 

Fig. 6.11. Measured BER versus received optical power for a 5-µm oxide 

aperture diameter HC-VCSEL with similar resonance wavelength as HC-

VCSEL C at data rates up to 25 Gbit/s at 25 °C and 10 Gbit/s at 85 °C. 

Insets: Corresponding optical eye diagrams (scales: 100 mV/div and 20 

ps/div). Reproduced from [4]. 
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6.3 Gen2 HC-VCSIL 

As discussed before, a Gen2 HC-VCSIL is a modified version of the Gen1 

VCSEL with a shallow etched grating incorporated inside the cavity to tap off the 

output to the SiN waveguide. As discussed above, a VCSEL with a resonance 

wavelength of 852 nm corresponding to a gain-to-resonance detuning of -1 nm 

has superior performance at room temperature. Therefore, Gen2 VCSIL devices 

to operate around that wavelength were fabricated. As the GaAs half VCSEL used 

in this case is designed for surface emission, a 100 nm thick gold layer needs to 

be deposited on top of the p-DBR to suppress the surface emission. Moreover, the 

surface emission of the device prior to gold deposition works to our advantage as 

it enables the evaluation of the polarization state and the transverse mode 

characteristics of the device.   

 

6.3.1 Static performance 

 Surface emitting characteristics 

To evaluate the properties of the Gen2 HC-VCSIL cavity, the surface emission 

was studied prior to the deposition of the surface gold layer. Fig 6.12 (a) shows 

the polarization-resolved light-current-voltage (LIV) characteristics at 25oC of a 

device with an intra-cavity grating period of 545 nm and 50% DC, measured from 

the surface using a free-space polarizer and a large area Si photodetector. The 

measurement result shows that the cavity only supports lasing in the TE 

polarization, which is consistent with the simulations.  

 

Fig. 6.12. (a) Polarization-resolved surface-emitted light-current-voltage 

characteristics for a 5 μm oxide-aperture diameter VCSIL with 545 nm 

intra-cavity grating period and 50% DC (prior to gold deposition on the 

surface). (b) Surface emitssion spectrum for the same device operated at 

2.5 mA. 
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The surface-emitted spectrum for the same device at a bias current of 2.5 mA 

is shown in Fig 6.12 (b). The spectrum shows near-single-mode operation with a 

side-mode suppression ratio (SMSR) of 30.8 dB and a peak wavelength of 856.3 

nm. This indicates that the cavity is mode selective enough to achieve near single 

transverse mode emission. At this stage, without the gold layer on top of the 

surface to suppress surface emission, the waveguide-coupled power was weak due 

to the dominant cavity loss from the top surface emission. Below we will elaborate 

on the waveguide-coupled characteristics of Gen2 HC-VCSILs. 

 Waveguide-coupled characteristics 

With the gold layer on top of the p-DBR surface, the waveguide-coupled output 

from the VCSIL is coupled into a bare OM4 multi-mode fiber by a TE grating 

coupler (GC) with peak coupling efficiency near 855 nm. As discussed in Chapter 

4, the grating coupler used in this measurement has a loss of -5.75 dB when 

coupling to a multimode mode fiber. To be able to estimate the actual optical 

power coupled into the SiN waveguide from fiber-coupled measurements, the 

measured optical power through the grating coupler was compensated for the 

grating coupler loss. The single-sided on-chip continuous wave LIV 

characteristics of VCSILs with five intra-cavity grating periods ranging from 525 

to 545 nm and 55% DC were then measured at 25oC using a fiber-coupled power 

meter, as shown in Fig. 6.13(a). The variation of threshold current with intra-

cavity grating period is expected to follow the variation of the threshold gain 

predicted by the simulation result shown in Fig 3.13 (Chapter 3). However, as can 

be seen from Fig. 6.13 (a) the influence of the intra-cavity grating period on 

threshold current is not as strong as numerically estimated. This indicates that 

there are unexpected dominant losses in the cavity due to surface roughness, 

material loss, etc. From Fig. 6.13(a), we see that the slope efficiency trend is in 

agreement with the simulation result shown in Fig 3.14 in terms of the reduction 

of the slope efficiency with an increased intra-cavity grating period. There is a 

clear difference in the maximum output power that is coupled into the SiN 

waveguides as a function of the intra-cavity grating period. A VCSIL with the 

smallest grating period of 525 nm exhibits a threshold current of 1.13 mA 

providing a maximum single-sided waveguide-coupled output power of 73 µW at 

2.6 mA bias current. The single-sided slope efficiency and the differential 

resistance for this device are 0.085 W/A and 78 Ω, respectively.  

Compared to the simulated single-sided slope efficiency, the experimental 

slope efficiency is somewhat lower, which could be due to the unexpected 

dominant cavity losses. The on-chip spectrum for a VCSIL with intra-cavity 

grating period of 525 nm, at a bias current of 2.5 mA is shown in Fig. 6.13 (b). 

The SMSR is 28.9 dB, while the peak wavelength is at 856.6 nm. As can be seen 

from the spectra in Fig. 6.12 (b) and Fig 6.13 (b), the demonstrated VCSIL has 
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better transverse mode control than ordinary oxide-confined VCSELs with the 

same aperture size, both before and after deposition of gold on the surface 

aperture. This can be attributed to the fact that the higher order transverse modes 

contain spatial frequency components with larger off-normal angles than the 

fundamental mode and the spatial frequency components with large off-normal 

angle couple more efficiently to the waveguide, thereby leading to an increase in 

the threshold gain. Since the gain is clamped at the threshold gain of the 

fundamental mode, a good transverse mode control is obtained from the grating. 

 

Fig. 6.13 (a) Waveguide-coupled light-current-voltage characteristics for 5 

μm oxide-aperture diameter VCSILs with intra-cavity grating periods 

ranging from 525 - 545 nm (after gold deposition on the surface). (b) 

Spectrum for the 525 nm device operated at 2.5 mA. 

 

Fig. 6.14 (a) Wavelength of the fundamental mode versus dissipated power 

at 25 °C for HC-VCSILs with oxide aperture of 5 µm with fits to extract 

the thermal impedance. 

(a) (b) 

(a) (b) 
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The thermal impedance is deduced by tracking the red shift of the fundamental 

mode as a function of stage temperature and dissipated power. The fundamental 

mode redshifts with temperature by 0.052 nm/K, while it redshifts with dissipated 

power by 0.61 nm/mW (Fig. 6.14). At 25oC the thermal impedance is 11.8 K/mW, 

which is similar to the 10.7 K/mW of a Gen1 VCSEL with the same aperture 

diameter. The thermal impedance is ~4 times higher than for an ordinary GaAs-

based oxide-confined VCSELs [5] and explains the early onset of thermal rollover 

in both these cases. 

 

  

Fig. 6.15 Measured light-current-voltage characteristics where the power 

has been measured from both grating couplers for a VCSIL with 525 nm 

intra-cavity grating period and 55% DC. 

Finally, the coupling symmetry was studied. As can be seen in Fig. 6.15, an 

equal amount of power is tapped off into both connected waveguides in opposite 

directions. This indicates that the VCSIL aperture is well aligned with the intra-

cavity grating. 

6.4 Conclusion 

In summary, we demonstrated a heterogeneously integrated continuous-wave 

electrically-pumped Gen1 VCSEL and Gen2 VCSIL. A substantial improvement 

in performance is observed when the 4 nm thin GaAs layer present in the laser 

cavity was removed by digital etching.  

Gen1 HC-VCSELs with a 10-µm oxide-aperture diameter have an output 

power (modulation bandwidth) of 2.3 mW (10.0 GHz) at 25 °C and 0.9 mW (6.4 

GHz) at 85 °C for different interface thicknesses and gain-to-resonance detuning. 

The HC-VCSEL with the largest detuning of −15 nm (thickest bonding interface) 

also shows weak temperature dependencies of the threshold current and the 

modulation bandwidth over the temperature range 25–85 °C. It was found that the 
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thermal impedance is independent of the thickness of the bonding interface, 

therefore being largely determined by the thermal conductivity of the dielectric 

DBR. Finally, an error-free data transmission back-to-back at bit rates up to 25 

and 10 Gbit/s at 25 and 85 °C, respectively, is demonstrated using a 5-µm oxide-

aperture diameter Gen1 HC-VCSEL with moderately large gain-to-resonance 

detuning. 

The intra-cavity grating used inside the Gen2 HC-VCSIL cavity provides the 

advantage of setting the polarization of the output coupled into the SiN waveguide 

together with transverse mode control. A Gen2 HC-VCSIL with a 5 µm oxide 

aperture diameter has a threshold current of 1.13 mA and produces a maximum 

single-sided waveguide-coupled output power on the order of 73 µW at 856 nm. 

The slope efficiency and the thermal impedance of the corresponding device are 

0.085 W/A and 11.8 K/mW, respectively.  

The performance of both the Gen1 HC-VCSEL and Gen2 HC-VCSIL was to 

a large extent limited by the high thermal impedance due to the dielectric DBR. 

Further, the performance of the Gen2 VCSIL was inferior to the Gen1 VCSEL 

due to unexpected additional cavity losses, attributed to surface roughness at the 

bonding interface and excess material absorption.  
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7   

Conclusions and Future 

Perspectives 

 Conclusions  

As elaborated throughout this work a hybrid integration approach is promising to 

facilitate a SiN photonic integration platform with an energy efficient laser source, 

a VCSEL. During the course of this work, we have made a number of important 

contributions towards the design and development of such hybrid cavity VCSELs. 

The important contributions and achievements of this work are summarized 

below: 

 As a first step towards the realization of a heterogeneously integrated 

VCSEL, we proposed a Gen1 HC-VCSEL, where a GaAs half VCSEL 

was attached to a Si-integrated dielectric DBR via adhesive bonding. We 

provided theoretical and technical background for the demonstration of 

these VCSELs. Although these VCSELs were surface emitting, it helped 

in the development of the integration process and to study the impact of 

the high thermal impedance dielectric DBR on the integrated VCSEL 

performance. A successfully demonstrated Gen1 HC-VCSEL showed 

that, with a 10-µm oxide-aperture diameter, we can reach an output 

power (modulation bandwidth) of 2.3 mW (10.0 GHz) at 25 °C and 0.9 

mW (6.4 GHz) at 85 °C. We also studied the impact of the bonding 

interface thickness of such HC-VCSELs on important static and dynamic 

performance parameters. We showed that the VCSEL with resonance to 



126 CHAPTER 7 

 

 

gain peak detuning of −15 nm (thickest bonding interface) has a weak 

temperature dependency of the threshold current and the modulation 

bandwidth over the temperature range 25–85 °C. We also found the 

thermal impedance to be independent of the thickness of the bonding 

interface, therefore being largely determined by the thermal conductivity 

of the dielectric DBR. Finally, we demonstrated error-free data 

transmission back-to-back at bit rates up to 25 and 10 Gbit/s at 25 and 

85 °C, respectively, using a 5-µm oxide-aperture diameter HC-VCSEL 

with moderately large gain-to-resonance detuning.  

 We further proposed a modified laser design by implementing a weak 

diffraction grating in the hybrid cavity to tap off power to an in-plane 

SiN waveguide. This intra-cavity grating also provided the advantage of 

setting the polarization of the output coupled into the SiN waveguide 

with transverse mode control. Theoretical and technical background for 

the realization of such lasers were also presented. We could successfully 

demonstrate a heterogeneously integrated continuous-wave electrically-

pumped vertical cavity Si-integrated laser (VCSIL) with laser output 

coupled into a SiN waveguide. A VCSIL with a 5 µm oxide aperture 

diameter had a threshold current of 1.13 mA and produced a maximum 

single-sided waveguide coupled output power of ~ 73 µW at 856 nm. 

The slope efficiency and the thermal impedance of the corresponding 

device were 0.085 W/A and 11.8 K/mW, respectively.  

  Current and future perspectives 

The performance of the current VCSELs can probably be significantly improved 

by considering the following points: 

 Gen1 VCSEL: The Performance of our Gen1 HC-VCSELs was to a large 

extent limited by high thermal impedance due to the dielectric DBR. 

Therefore, the thermal properties need to be improved to be able to catch 

up with state-of-the-art discrete VCSELs. This can be achieved by 

replacing the dielectric DBR with a DBR with high index contrast, such 

as a-Si/SiO2 DBR, thereby reducing the number of DBR pairs required 

and by integrating a metallic heat spreader. 

 Gen2 VCSIL: The initial results of Gen2 VCSILs are promising. 

However, they are inferior to Gen1 HC-VCSELs. To demonstrate an 

improved performance with in-plane emission, we need to investigate 

and solve the origin of the unexpected cavity losses. The origin of these 

losses are currently not well understood. 
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In future, a transfer printing integration approach can be used to integrate VCSELs 

on a SiN waveguide platform. It is anticipated that the transfer print technology 

will replace die-to-wafer or wafer-to-wafer bonding technology for III-V light 

source integration for relatively large volume applications. Also, to integrate 

multi-wavelength VCSEL arrays on the SiN waveguide platform, the most viable 

solution is to change the cavity length of the VCSEL. This can be achieved by 

varying the top oxide thickness of the device by etching the oxide on top of the 

grating. However, the topography introduced this way does not allow for wafer 

bonding anymore. As can be seen from Fig. 7.1, with the help of transfer printing, 

we can achieve multi-wavelength VCSEL arrays by changing the length of the 

cavity by different amounts on the same chip.  

 
 

Fig. 7.1 (a) Schematic cross-section of a transfer printed VCSEL on the 

same chip.  

A single mode, polarization stable, waveguide coupled VCSEL would benefit 

various on-chip optical interconnect and sensing applications. Further, an 

integrated multi-wavelength array of waveguide-coupled VCSELs would also 

enable the realization of PIC-based WDM transmitters for optical interconnects 

and multi-wavelength sources for biophotonic applications. 
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