
Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie

Novel architectures for brain-inspired photonic
computers

Nieuwe architecturen voor brein-geïnspireerde fotonische
computers

Floris Laporte

Proefschrift tot het bekomen van de graad
Doctor in de ingenieurswetenschappen:

fotonica
Academiejaar 2019-2020

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie

Promotoren:

Prof. Dr. Ir. Peter Bienstman
Prof. Dr. Ir. Joni Dambre

Examencommissie:

Prof. Dr. Ir. Filip De Turck (voorzitter) Universiteit Gent, INTEC
Prof. Dr. Ir. Peter Bienstman (promotor) Universiteit Gent, INTEC
Prof. Dr. Ir. Joni Dambre (promotor) Universiteit Gent, IDLab
Prof. Dr. Ir. Francis wyffels Universiteit Gent, IDLab
Prof. Dr. Ir. Dries Vande Ginste Universiteit Gent, IDLab
Prof. Dr. Ir. Wim Bogaerts Universiteit Gent, INTEC
Prof. Dr. Ir. Serge Massar Université Libre de Bruxelles, LIQ
Dr. Ir. Martin Fiers Luceda Photonics

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie
Technologiepark-Zwijnaarde 126, 9050 Gent, België

Proefschrift tot het behalen van de graad
Doctor in de ingenieurswetenschappen:

fotonica
Academiejaar 2019-2020

Acknowledgment

Photonic Neuromorphic computing, ofwel Photonics + machine learning. Het was
van in het begin een doctoraat dat mij aansprak. Een combinatie waarvan elk
deel gerepresenteerd werd door mijn twee promotoren: prof. Peter Bienstman
en prof. Joni Dambre. Ik zou hen willen bedanken voor het verder aanflakkeren
van de interesse in elk van beide gebieden afzonderlijk en me te helpen ze in een
interessante manier te combineren tijdens dit doctoraat. Bovendien apprecieer
ik de hoeveelheid vrijheid, vertrouwen en bijsturing die ik van hen kreeg. Het liet
me toe mijn eigen ding te doen zonder het grotere geheel uit het oog te verliezen.

Peter, bedankt om altijd beschikbaar te zijn voor eender welke vraag op een-
der welk moment, voor je geduld als ik weer eens iets nieuws probeerde en voor
je waardevolle input tijdens het schrijven van dit werk.

I would also like to thank the members of the jury, whose many valuable
comments definitely improved the final version of the manuscript.

Each member of the Photonic Reservoir Computing group also had an impor-
tant impact onmy research these last four years. Andrew, you taught me to work
with high speed photonic reservoir setup. Bendix, you planted the seed for the
Photontorch simulator, Alessio who experimented with it first and Emmanuel,
who started using it extensively. Matthias, your machine learning insights were
very valuable. Stijn and Chonghuai for continuously improving the reservoir
setup and sharing your knowledge with the rest of us.

Working in a large research group, like the Photonic Research Group, has the
advantage that you’re being aided, getting influenced and inspired by many peo-
ple during the period of the PhD. I’d like to especially thank my office mates
Chonghuai, Umar and “office responsible” Anton. I really appreciate discussing
both our photonics-related problems and life experiences together. Alexandros,
for helping me with photonic crystals. Fabio, for directing me away from pho-
tonic crystals. Jasper and Michael, your continued support in the measurement
labs is really appreciated. Alejandro, Alessio, Irfan, I really apprciate you guys
spearheading the ping-pong group (I should work on my presence). Wim, An-
tonio, Umar, Lukas, Mi, Xiangfeng, Hong, thanks for letting me tag along with
the programmable photonics team in Florida. I had a great time. Also, thanks
for coming to the parties Alejandro, Alessio, Ana, Andrew, Anton, Artur, Camiel,
Chonghuai, Grigorij, Kasper, Mahmoud, Nina, Sanja, …

ii

Even though I have always tried to spend as little time as possible there, a big
thank you is in place for the people who regularly helped me in the cleanroom.
Sören and Muhammad in particular, for your patience helping me fabricate yet
another batch of experimental cavities, but also Liesbet for the occasional SEM
image.

Tijdens het werken aan een doctoraat kan de boog echter niet altijd ges-
pannen staan. Daarom wil ik graag mijn vrienden en familie bedanken die mij
daar dagelijks aan herinneren. Mijn vrienden van de scouts, volleybal, squash,
het “elite” ski team, de Musketeers, de “schoolkaaifamilie” en recentelijk ook de
vrienden van onze nieuwe roundnet club. Jullie hielpen mij de dagelijkse beslom-
meringen van een doctoraat met gemak relativeren.

In het bijzonder wil ik ook graag mijn ouders, broer en zus bedanken. Mama,
papa, Jeroen en Jana, merci voor het aanhoudende geloof en de niet aflatende
steun die ik kon genieten tijdens de laatse vier jaar én ervoor.

And of course, I’d like to thank my girlfriend Eva, I wouldn’t have been able
to do this without you. Many thanks for your patience and understanding while
I was writing this book. Your support and love mean a lot to me.

Gent, maart 2020
Floris Laporte

Table of Contents

Acknowledgment i

Table of Contents iii

List of Figures vii

List of Tables xvii

Nederlandse Samenvatting xxv
1 Fotonisch neuromorf rekenen . xxv

1.1 Reservoir computers . xxvi
1.2 Optimalizatie van het reservoir xxvii
1.3 Caviteiten voor continue mixing in het reservoir xxvii
1.4 Optimalizeerbare reservoircaviteiten xxviii

2 Resultaten . xxviii
2.1 Aaneengeschakelde reservoirs xxviii
2.2 Fotonische caviteiten . xxix
2.3 Fotorefractief reservoir . xxix

3 Conclusies . xxix

English Summary xxxi
1 Photonic neuromorphic computing xxxi

1.1 Reservoir computing . xxxii
1.2 Optimizing the reservoir xxxii
1.3 Cavities for continuous reservoir mixing xxxiii
1.4 Optimizable reservoir cavities xxxiii

2 Results . xxxiii
2.1 Cascaded reservoirs . xxxiv
2.2 Photonic cavities . xxxiv
2.3 Photorefractive reservoir xxxiv

3 Conclusions . xxxv

0 Introduction 1
1 Optical Information Processing 3
2 Silicon Photonics . 5
3 Photonic Reservoir Computing . 6

iv

4 Photorefractive effect . 7
5 Objectives . 7
6 Thesis outline . 8
7 Publications . 9
References . 9
References . 11

1 Machine Learning & Neuromorphic Computing 13
1.1 Linear models . 13

1.1.1 Linear regression . 13
1.1.2 Regularization and overfitting 16

1.2 Loss minimization by gradient descent 17
1.3 Linear classifiers . 19

1.3.1 Linear regression . 20
1.3.2 Perceptron model . 21
1.3.3 Soft thresholding . 21
1.3.4 Logistic Regression . 22
1.3.5 Regression in the complex domain 23
1.3.6 Classification on noisy Boolean problems 25

1.4 Dimensionality Reduction . 26
1.4.1 Principal Component Analysis 26
1.4.2 Linear discriminant analysis 28

1.5 Artificial neural networks . 29
1.6 Backpropagation . 31
1.7 Recurrent neural networks . 33

1.7.1 Long Short Term Memory 35
1.7.2 Reservoir computing . 35

1.8 Photonic neuromorphic computing 37
1.8.1 Photonic reservoir computing 37
1.8.2 Neuromorphic computing with unitary matrices 39

1.9 Conclusion . 39
References . 40

2 Photontorch 45
2.1 The wave equation . 46
2.2 Waveguide modes . 47
2.3 Scattering matrices for linear components 48

2.3.1 Waveguide S-matrix . 49
2.3.2 Directional coupler S-matrix 50

2.4 Circuits of linear components . 51
2.4.1 Ring resonator S-matrix 52
2.4.2 Mach-Zehnder Interferometer S-matrix 55

2.5 Towards a general circuit . 56
2.5.1 Delay-introducing linear components 56
2.5.2 Non-linear components 57

v

2.5.3 Network terminations . 58
2.5.4 A general circuit . 58
2.5.5 Carrier Modulation . 59
2.5.6 A double ring in the time domain 59

2.6 Highly parallel simulations with Photontorch 61
2.7 Performance metrics . 62
2.8 Optimization of photonic circuits through backpropagation . . . 66

2.8.1 Optimizing a CROW in the frequency domain 67
2.8.2 Optimizing a ring network in the frequency domain . . . 69
2.8.3 Optimizing a ring network in the time domain 69
2.8.4 Optimizing photonic meshes 72
2.8.5 Improving the performance of a single passive reservoir . 78
2.8.6 Improving the performance by cascading two passive

reservoirs . 81
2.9 Conclusion . 81
References . 84

3 On-chip Reservoir Computing with Photonic Cavities 87
3.1 Introduction . 87
3.2 Reservoir designs . 88

3.2.1 Photonic crystal cavity reservoir 88
3.2.2 Cavities based on index contrast 90

3.3 Simulations . 91
3.3.1 Pulse composition . 92
3.3.2 Convergence analysis . 93
3.3.3 Photodetector . 94
3.3.4 Readout . 94
3.3.5 Benchmark tasks . 94

3.4 Cavity parameters . 96
3.4.1 Power budget of the reservoir 96
3.4.2 Q-factor and pulse half life 96

3.5 Simulated boolean tasks . 99
3.5.1 Copy task . 99
3.5.2 Header recognition . 100
3.5.3 AND task . 103
3.5.4 XOR task . 104
3.5.5 Number of arms . 107

3.6 Fabrication . 109
3.7 High speed measurements . 114

3.7.1 High speed setup . 114
3.7.2 Pulse response . 115
3.7.3 Copy task . 116
3.7.4 Header recognition . 117
3.7.5 AND Task . 119
3.7.6 XOR Task . 119

vi

3.8 Conclusions . 121
References . 122

4 Neuromorphic Computing with Photorefractive Materials 123
4.1 The Finite-Difference Time-Domain Method 123

4.1.1 Electromagnetism background 124
4.1.2 Simulation units . 124
4.1.3 Yee grid discretization . 125
4.1.4 Update equations . 126
4.1.5 Sensible defaults . 127
4.1.6 Sources . 127
4.1.7 Lossy Medium . 128

4.2 Simulating the photorefractive effect 130
4.2.1 Kukhtarev equations . 131
4.2.2 Electron diffusion . 132
4.2.3 Space Charge Electric Field 134
4.2.4 Electro-optic effect . 137
4.2.5 Lithium Niobate . 138
4.2.6 FDTD update equations for the electric field 139
4.2.7 Bringing it all together . 140
4.2.8 A note on stability . 140

4.3 Holographic storage in photorefractive crystals 142
4.3.1 Beam coupling . 142
4.3.2 Holographic storage . 144

4.4 Artificial neural networks with photorefractive crystals 146
4.4.1 Reservoir computing with a fixed hologram 147
4.4.2 Reservoir computing with a changing hologram 149

4.5 Conclusion . 152
References . 153

5 Conclusions 155
5.1 Summary . 155
5.2 Perspectives . 156

List of Figures

1 Een laag-dimensionaal tijdsafhankelijk ingangssignaal wordt
gemengd met vroegere versies van zichzelf vanwege de zeer dy-
namische architectuur van het reservoir. Telkens wordt (een deel
van) de reservoirstatus uitgelezen om een tijdsafhankelijke voor-
spelling te maken. xxvi

2 Twee caviteiten die interessante menging vertonen. Beide vor-
men zijn gebaseerd op indexcontrast: een eenvoudige geul werd
geëtst rond de caviteit om het licht binnen te houden. xxvii

3 (a) Leercurve voor het trainen van de readout voor een
alleenstaand reservoir vergeleken met de leercurve voor het
trainen van de readout en de tussenverbindingen van twee aa-
neengeschekelde reservoirs. (b) Resulterend uitgangssignaal
voor het aaneengeschekelde reservoir voor de XOR-taak. xxviii

4 Gemeten prestaties van fotonische caviteiten van verschillende
groottes en bij een groot bereik van bitrates op (a) de 3-bit header-
herkenningstaak en (b) de XOR-taak. xxix

5 Prestaties van het fotorefractief reservoir op de XOR-taak voor
en na het primen. xxx

6 A low-dimensional time-dependent input signal gets mixed with
previous versions of itself due to the highly dynamic architecture
of the reservoir. At each time, (a part of) the reservoir state is
read out by the readout to make a time dependent prediction . . xxxii

7 Two cavity shapes that induce interestingmixing dynamics. Both
shapes are based on index contrast: a simple trench was etched
around the cavity to keep the light in. xxxiii

8 (a) Learning curve for training the readout of a single reservoir
compared to the learning curve for training both the readout and
intermediate connections in the cascaded reservoir on the XOR
Task (b) Resulting outputs for the cascaded reservoir for the XOR
target. xxxiv

9 Measured performance of photonic cavities of different sizes and
at a large range of bitrates on (a) the 3-bit header recognition task
and (b) the XOR task. xxxv

viii

10 Performance of the photorefractive reservoir on the XOR task be-
fore and after priming. xxxv

1 Moore’s law is stagnating. Single-thread computing power has
not been increasing since about 2010, while the sole reason the
number of transistors has kept on increasing is by the increasing
number of cores per chip (parallelization). Original data from [10] 4

2 Most silicon photonic chips consist of structures patterned on
a 220 nm thick silicon-on-insulator (SOI) structure. Gener-
ally speaking, deeply etched trenches in the Si layer create
light-guiding structures called waveguides, while shallow etched
trenches are used to couple light into the waveguides from above
the chip. 6

1.1 A point cloud that seems to have a linear relationship 14

1.2 For the data points presented here, a simple linear fit is proba-
bly sufficient. The fitted line going through all the data points is
clearly overfitting. 16

1.3 During gradient descent, the minimum of the loss function is
found by iteratively updating the weights in the direction that
the loss decreases. This direction is determined by the gradient
of the loss function, hence the name of this algorithm. 18

1.4 The line fitting the data points in (a) is iteratively updated by
gradient descent, which changes the weights of the line in the
direction of the minimum of the MSE loss (b). For illustration
purposes, only the slope of the line, w1, is updated. 19

1.5 A linear classification boundary tries to find the optimal bound-
ary between the blue class (−1) and the orange class (+1), given
two features x1 and x2. A class is misclassified when its bound-
ary color (the prediction) is different from the inside color (the
target). (a) In 2D, this dataset is not linearly separable, however
in 3D (b), it is. 20

1.6 Instead of a discontinuous sign function, a continuous tanh can
be used to threshold the prediction. 22

1.7 Both the MSE and the cross-entropy loss are convex and well
behaved functions in the complex domain. 24

1.8 (a) The noisy AND can be linearly separated. (b) The XORhas two
clusters that form a cross and can thus not be linearly separated
as can clearly be observed (points with different boundary color
(prediction) than the inside color (ground truth) are misclassified) 25

1.9 When using complex weights, a boundary for the XOR can be
found. 26

ix

1.10 (a) We see that the x-axis is more important than the y-axis, as
the data shows more variance along the x-axis. (b) However, the
PCA algorithm goes a step further and describes the data in a
new basis defined by the orthogonal PCA transformation. The
order of the basis vectors is described by how well they describe
the data. 27

1.11 An artificial neural network node (neuron) with three inputs. All
artificial neurons always have a single output. 29

1.12 An artificial neural network consists of nodes representing the
neurons and weights representing the synapses. 30

1.13 A recurrent neural network can have any topology 34
1.14 Connecting a FFNN onto itself is the easiest way to create a re-

current neural network. 34
1.15 When an RNN is rolled out, it becomes clear that it in fact has a

similar network structure as a deep neural network. However, the
same subnetwork is used over and over in conjunction to letting
new data Xt in every time step. 34

1.16 A low-dimensional time-dependent input signal Xt gets dis-
tributed by an [optional] input layer into the reservoir. Inside the
reservoir, the signal mixes with previous versions of itself due to
the highly dynamic architecture of the reservoir. At each time,
[a part of] the reservoir state is read out by the readout to make
a time dependent prediction ŷt 36

1.17 Swirl reservoir architecture with 16 nodes. 38
1.18 Any unitary matrix can be constructed from cascading multiple

MZIs together. 39

2.1 In the S-matrix formalism, a component is considered a black box
which changes the input fields xi to the output fields x′

i. 49
2.2 Waveguide schematic . 49
2.3 Directional coupler (dc) schematic 50
2.4 A visual representation of (2.32): two components with S-

matrices S1 (ports 1,2) and S2 (ports 3,4,5,6) are interconnected
by a connection matrix C , which also connects the rest of the
ports to the output ports (7,8). 52

2.5 A ring resonator consists of a directional coupler connected onto
itself by a waveguide. 53

2.6 A ring resonator consists of a directional coupler connected onto
itself by a waveguide. The outputs of the directional coupler are
coupled to the output ports 7 and 8, which after reducing the S-
matrix can be relabled as port 1 and 2 of the ring resonator circuit. 54

2.7 In simulation, a general MZI can be constructed from twowaveg-
uides and two 50/50 directional couplers. 55

2.8 A double ring add-drop filter. The first ring has a circumference
of 20µm, while the second ring has a circumference of 20.01µm. 60

x

2.9 (a) 4-QAM modulated input sent through the double ring cir-
cuit. (b) Response without GVD for Photontorch (PT) and In-
terconnect (IC). (c) Response with GVD for Interconnect (30 and
100 ps/(nm·km)) compared to the Photontorch response (no GVD). 60

2.10 A CROW is an add-drop filter with extra rings. Each CROWwith
n rings has n+ 1 couplings (red) and n phase shifts (blue). 62

2.11 Simulation times to simulate a CROW circuit in the frequency
domain. (a) A CROW simulated on a GPU shows an almost lin-
ear increase in simulation times, whereas CPU simulation times
increase much faster. (b) We can zoom in on the beginning of
this graph, where we simulate a CROW with just 10 rings, but
for many waveguides simultaneously. We see that especially in
this regime, being able to simulate for many wavelengths con-
currently yields enormous benefits over the sequential simula-
tion approach often used by other frameworks. (c) Even when
the number of rings increases to 850 it stays more interesting to
use the concurrent approach. 63

2.12 Using a GPU becomes even more appropriate when simulating
in the time domain. (a) Here, the performance was tracked for a
single simulation (batch) of 2000 time steps for 1, 3 and 6 wave-
lengths at once respectively. (b) The performance for simulating
a 10-ring CROW for multiple wavelengths and multiple parallel
simulations. 64

2.13 The performance for Photontorch simulating a CROW, both in
the frequency domain and the time domain, was also compared
to Lumerical Interconnect and Caphe. (a) The time needed to
find the frequency response for a CROW of increasing number
of rings. The performance of Photontorch lies somewhere in be-
tween the Caphe and Interconnect. (b) The time needed to do
a time-domain simulation of 3000 time steps for an increasing
number of rings. The simulation time of Photontorch is practi-
cally zero up to about 100 rings. (c) Performance for amulti-mode
time-domain simulation for a CROW of 64 rings and an increas-
ing number of wavelengths. (d) Performance for a time-domain
simulation of a CROW with 64 rings for a single wavelength but
for an increasing number of input waveforms (batch size). 65

2.14 A CROW circuit in Photontorch with ring radius r is built up
from several directional couplers for which each arm has a length
of 2πr/2. These directional couplers with non-zero arm length
are basically Photontorch sub-circuits containing 4 waveguides
(each with length 2πr/4 connected to each of the ports of the
directional coupler without length). 68

2.15 The parameters for a CROW-based bandpass filter can be ob-
tained through backpropagation. 68

xi

2.16 A ring molecule on a square lattice with rings of radius r can be
built up from the same basic building blocks as a CROW orga-
nized in a staggered way. This time, the arm length of each of
the directional couplers is 2πr/4. 69

2.17 After some optimization, the ring network can easily be opti-
mized as a bandpass filter. 70

2.18 Transmission of the output port of the ring network on a logarit-
mic scale. 70

2.19 Pulse classification of two types of pulses. (a) The two pulses with
their respective target function. (b) A stream of 10 pulses before
entering and after leaving the (trained) ring network. 71

2.20 Frequency response of the 3 × 3 ring network optimized to rec-
ognize two different pulse types. 72

2.21 Any unitary matrix can be created by cascading several layers of
MZIs together in what is called a photonic mesh. To span the full
unitary matrix space, the number ofMZI layers needs to be equal
the rank of the matrix to represent. 73

2.22 By looping the unitary matrix onto itself, one creates a URNN.
The network represented here contains an input layer, which
transforms the 1D time dependent input data to a 256D state.
This state then gets sent through the unitary matrix, which is
connected onto itself. The output weights transform the recur-
rent layer back into a 10D state: one output for each digit to
recognize. To boost the power of the recurrent neural network,
an activation or non-linear element was added into the recurrent
loop. 74

2.23 An image of a digit consisting of 28×28 pixels is first randomized
by a fixed permutation before it is flattened and sent through the
network pixel by pixel. 74

2.24 Training for the pixel-by-pixel MNIST task with a capacity-3 uni-
tary neural network. 76

2.25 A 4× 7 mesh of imperfect directional couplers acting as a single
tolerant directional coupler with 50/50 coupling. 76

2.26 Transmission for (a) a batch directional couplers with coupling
normally distributed around 50% with a standard deviation of
5%; (b) a batch of mesh circuits containing directional couplers
with the same deviations but optimized to reduce variation in
the output. 78

2.27 A single-input reservoir computer. A single input is distributed
over the nodes of a reservoir by a fixed set of input weights Win.
The reservoir has a complex recurrent interconnection topology
characterized by its intermediate weights Wint. The reservoir
states are read out by a trainable set of readout weights Wout. . . 78

xii

2.28 Learning curves of the reservoir optimization through backprop-
agation. A reservoir where only the readout is optimized is com-
pared to a reservoir where both the readout and 6 internal phases
were optimized. 80

2.29 Optimal performance on the XOR task where the reservoir was
fine-tuned by allowing the optimization of 6 internal phases. . . . 80

2.30 Two reservoirs are cascaded by a trainable set of intermediate
weights Wint. 81

2.31 Learning curves obtained by optimizing the cascaded reservoir
optimization through backpropagation. A reservoir where only
the readout is optimized is compared to a cascaded reservoir
where both the readout and the intermediate weights are opti-
mized. (a) Performance on the XOR of two adjacent bits. (b) Per-
formance on the XOR of two bits with one bit in between. 82

3.1 Snapshot of the field profile in 10µm × 5µm photonic crystal
cavity. The mixing of the signal can clearly be witnessed by in-
specting the field profiles. 88

3.2 Snapshot of the field profile in 60µm × 30µm photonic crystal
cavity. The mixing of the signal can clearly be witnessed by in-
specting the field profiles. At one of the arms, the color map
range was decreased by a factor ten to better show the radiation
losses due to mode mismatch between the W1-defects and the
waveguide. 89

3.3 Two cavity shapes that induce interestingmixing dynamics. Both
shapes are based on index contrast: a simple trench was etched
around the cavity to keep the light in. 90

3.4 (a) Measurement setup and (b) the approximation in simulation:
the response of a single bit is recorded and is coherently added
together according to a PRBS. 91

3.5 (a) A normalized 1 ps input pulse with smoothed rising and falling
edges. (b) Normalized response to the input pulse at one of the
output arms. 92

3.6 (a) Two subsequent 1ps input pulses. (b) Responses (Poynting
vector projected in the direction of propagation) obtained by
composition and direct simulation. 93

3.7 (a) Waveforms detected at two of the exit waveguides as the re-
sult of a certain 50Gbps bit sequence input. The outputs are
sampled at least once per bit period. (b) After the readout, the
prediction approximates the desired XOR target. The prediction
and the target were aligned by shifting the prediction backwards
in time according to the optimal latency of 0.8 bits. 95

xiii

3.8 When inserting a 10 ps pulse into the 60µm × 30µm photonic
crystal cavity, about 75% of the total inserted energy is retrieved
at the output waveguides. This corresponds to about 0.8 dB loss.
Compare this to a cavity of the same shape and size but which
just relies on index contrast: only 25% of the input power is re-
trieved. 97

3.9 Decay of the field amplitude in the photonic crystal cavity. The
amplitude decays with a half life T1/2 = 18 ps. 98

3.10 Decay of a pulse in the dielectric chamfer cavity with diameter
100µm. Note that this cavity, which in area is about 4 times
bigger than the photonic crystal cavity has a worse half life and
hence Q-factor. 98

3.11 copy task at 50Gbps performed with an increasing latency. . . . 100

3.12 Sweep of the best copy-task performance for the 60µm× 30µm
photonic crystal cavity at different bitrates. To save time, the
sweep over the bitrates was done with 2D FDTD simulations. . . 100

3.13 Error Rate (ER) for the worst performing header at each latency.
The reservoir can distinguish headers of up to L=6 bits without er-
ror at the optimal bitrate of 50Gbps. To reduce simulation times,
the sweep over the latencies was stopped when the ER became
higher than 10−1. 101

3.14 The separation of 3-bit headers can be visualized by projecting
on the (a) two primary LDA axes or (b) three primary LDA axes.
A nice separation for all different headers can be observed while
similar headers are located closer together. Seeing the 2D and
the 3D figures next to each other also serves as a good example
on how a higher dimensional problem gets easier to separate: the
locations of similar headers are clearly easier to separate in 3D
than in 2D. 102

3.15 By sweeping over the bitrate to find the operation range, we find
that the reservoir can distinguish headers up to a header length
of L = 6 bits without error at a bitrate of up to 100Gbps. To
save time, the sweep over the bitrates was done as a 2D FDTD
simulation. 103

3.16 AND of two subsequent bits at 50Gbps performed with a certain
latency. 104

3.17 Sweep of the best AND performance for the 60µm× 30µm pho-
tonic crystal cavity at different bitrates. To save time, the sweep
over the bitrates was done with 2D FDTD simulations. 104

3.18 AND of two bits with one bit in between at 50Gbps performed
with a certain latency. 105

xiv

3.19 The AND performance of two bits with a bit in between. Per-
formance is noticeably worse than for two subsequent bits. The
wide region of operation is gone: this task only works at 50Gbps.
To save time, the sweep over the bitrates was done with 2D FDTD
simulations. 105

3.20 XOR of two subsequent at 50Gbps bits performed with a certain
latency. 106

3.21 Sweep of the best XOR performance for the 60µm× 30µm pho-
tonic crystal cavity at different bitrates. To save time, the sweep
over the bitrates was done with 2D FDTD simulations. 106

3.22 XOR vs bitrate for two smaller photonic crystal cavities of smaller
size. Due to the smaller cavity size, these two sweeps were com-
pletely performed with 3D FDTD simulations. 107

3.23 XOR of two bits with one bit in between at 50Gbps performed
with a certain latency. 108

3.24 The XOR performance of two bits with a bit in between. Just like
for the AND task, the performance is noticeably worse than for
two subsequent bits. The wide region of operation is completely
gone and although the best operating bitrate is still at 50Gbps,
the performance is still not good enough. To save time, the sweep
over the bitrates was done with 2D FDTD simulations. 108

3.25 The Q-factor decays for an increasing number of output arms.
Moreover, the BER on the XOR task seems to drastically increase
when transitioning to six output waveguides. We can also see
that a higher Q does not automatically relate to a longer mem-
ory capacity (expressed in maximum latency) for retrieving the
original bit stream (copy task), possibly because the memory of
the cavity fades too slow. 109

3.26 Q factor decay for an increasing number of output waveguides
for a dielectric cavity. Since the base loss is already quite high,
adding additional arms to the cavity will not have a big influence
on the Q-factor. 110

3.27 Most silicon photonic chips consist of structures patterned on (a)
a 220 nm or (b) a 400 nm thick silicon-on-insulator (SOI) struc-
ture. 110

3.28 (a) Microscope image and (b) Scanning electron microscope im-
age of the 60µm× 30µm photonic crystal cavity fabricated with
electron beam lithography. 111

3.29 Measured transmission of the photonic crystal cavity. Losses in
the manufactured photonic crystal cavities were way too high
to advance to high speed measurements. (Not normalized with
respect to grating coupler loss 2× 7.5 dB.) 112

3.30 Microscope image of a 100µm × 50µm cavity made on the
400 nm platform. 112

xv

3.31 Measured transmission for all the arms of the dielectric cavity
made on the 400 nm platform. None of these transmissions qual-
ify for a high speed measurement. (Not normalized with grating
coupler loss 2× 7.5 dB.) . 113

3.32 Microscope image of a dielectric chamfer cavity with 200µm di-
ameter. The cavity has a single input arm and four output arms
which we label accordingly. 113

3.33 Measured transmission around 1550 nm for all the output arms
in the 100µm diameter chamfer cavity. (Not normalized with
respect to grating coupler loss: 2× 7.5 dB.) 114

3.34 Diagram of the high speed measurement setup. 114
3.35 Measured pulse response of the 100µm diameter chamfer cavity.

Blue line: single pulse; Red line: when averaging 10 pulses a small
significant bump reveals itself around 200 ps 115

3.36 Comparison between the normalized 30 ps pulse responses for
each of the cavities measured at arm 1 and averaged over 20
streams. The 100µm response looks almost indistinguishable
from the response of the waveguide, indicating that the dynam-
ics in this cavity are probably not rich enough for the any of the
tasks at hand. The responses of the 200 − 500µm cavities are a
bit stretched out. 116

3.37 Measured copy task performance for the 100µm diameter cham-
fer cavity. To reduce the noise on the measurement, the perfor-
mance of the readout on the average of 10 bit streams (dashed
red line) is also included. At the measured bitrate of 48Gbps the
reservoir has a memory of about two bits. 117

3.38 3-bit header recognition. Performance on the worst performing
header at each bitrate for a sweep of cavity sizes. 117

3.39 Although the measured headers for the 200µm diameter cavity
are not completely separable as there is a max error rate of 2%,
we still can see distinct regions for each header. Moreover, similar
headers seem to be closer together. 118

3.40 4-bit header recognition. Performance on the worst performing
header at each bitrate for a sweep of cavity sizes. 118

3.41 performance on the AND task for the 500µm cavity at 16Gbps . 119
3.42 performance on the XOR task for the 200µm cavity at 16Gbps.

The minimal bit error rate is 0.6% for the 10× averaged bit stream. 119
3.43 Measured BER on the xor task at different bitrates. The error rate

was reported on a 10× averaged bit stream. 120
3.44 Eye diagrams for (a) the incoming bit stream before the XOR op-

eration and (b) the outgoing bit stream after the XOR operation
at 16Gbps. The difficulty of the XOR operation is reflected in the
eye diagram which is significantly more closed after the operation. 121

xvi

4.1 A unit cell on a Yee-grid. The E-fields are on the edges of the
unit cell; the H-fields are on the faces of the unit cell. 125

4.2 Left: the photorefractive effect defined by its microscopic pro-
cesses. Right: amplitude of the different functions according to
the space and phase shift between them. Figure from [4]. 130

4.3 A flowchart of a typical photorefractive FDTD simulation to-
gether with typical times in the physical process. Each iterative
operation is accompanied by a typical number of iterations. . . . 141

4.4 (a) Beam coupling can be induced in a photorefractive crystal
by letting two perpendicular beams interfere. At first, the beams
propagate through each other, resulting in the blue curves on the
figure. However, the resulting interference pattern creates an in-
dex contrast that after a few seconds of illumination becomes big
enough to have an influence on the light. When now one of the
sources is turned off, the light will be refracted on the induced
grating in the material, as can be seen in the green beam profile
(where the north source was turned off). (b) The induced index
variation n and the intensity profile I of the light are shifted by a
quarter period: perfect for energy exchange between the beams.
The Pockels effect was exaggerated by a factor 1000 to account
for the small crystal size in simulation. 143

4.5 Simulated holographic setup . 144
4.6 Detected hologram before second Fourier lens (top) and after sec-

ond Fourier lens (bottom). 145
4.7 A photorefractive reservoir computer. 146
4.8 BER and MSE for the copy task measured at 8 sample points per

bit. 148
4.9 BER and MSE for the copy task measured with a camera integra-

tion time equal to the bit pulse length of the signal. 148
4.10 BER and MSE for the XOR task at 8 samples per bit. 149
4.11 BER and MSE for the XOR task measured with a camera integra-

tion time equal to the bit pulse length of the signal. 149
4.12 (a) The photorefractive crystal is first primed by enabling multi-

ple interference locations with itself and with a reference beam.
(b) After the priming step different emerging beams form for dif-
ferent bit sequences. These beams take “shortcuts” through the
cavity, ensuring proper mixing of the input signal. 150

4.13 Performance on the copy task before and after priming. Although
in both cases the incoming bit stream can be recovered without
error, the priming seems to increase the memory of the reservoir. 151

4.14 Performance on the XOR task before and after priming. Just like
for the copy task, priming seems to improve the memory of the
reservoir. 151

List of Tables

2.1 Coupling coefficients for a noise-resilient mesh 77

3.1 Labeling a random bit stream for different header lengths L. . . . 101

4.1 Typical photorefractive parameters for LiNbO3. [13–15] 138

List of Acronyms

A

ANN Artifical Neural Network

C

CMOS Complementary Metal-Oxide-Semiconductor

D

DC Directional Coupler
DSP Digital Signal Processor

E

ESN Echo State Network

F

FCNN Fully-Connected Neural Network
FDTD Finite-Difference Time Domain
FFNN Feed-Forward Neural Network
FIR Finite Impulse Response

xx

G

GC Grating Coupler
GD Gradient Descent
GPU Graphical Processing Unit

I

IIF Infinite Impulse Response

L

LASSO Least Absolute Shrinkage and selection operator
LDA Linear Discriminant Analysis
LSM Liquid State Machine
LSTM Long Short Term Memory

M

MC Memory Containing
ML Memory Less
ML Machine Learning
MNIST Modified National Institute of Standards and Tech-

nology
MZI Mach-Zehnder Interferometer

N

NN Neural Network
NRMSE Normalized Root Mean Squared Error
NRZ Non-Return to Zero
MSE Mean Squared Error

xxi

O

ODE Ordinary Differential Equation
OSA Optical Spectrum Analyzer
OTF Optical Tunable Filter

P

PC Polarization Controller
PCA Principle Component Analysis
PIC Photonic Integrated Circuit
PRBS Pseudo-Random Bit Stream
PRC Photonic Reservoir Computing

Q

QAM Quadrature Amplitude Modulation

R

RIE Reactive Ion Etching
RC Reservoir Computing
RNN Recurrent Neural Network
ReLU Rectified Linear Unit
RMSE Root Mean Squared Error
RTO Real Time Oscilloscope
RZ Return to Zero

S

SEM Scanning Electron Microscope
SLM Spatial Light Modulator
SNR Signal to Noise Ratio

xxii

SOA Semiconductor Optical Amplifier
SOI Silicon on Insulator
SVD Singular Value Decomposition

T

TE Transverse Electric (mode)
TM Transverse Magnetic (mode)

U

UNN Unitary Neural Network
URNN Unitary Recurrent Neural Network

X

XE Cross Entropy

Nederlandse Samenvatting

In deze tijd van het internet leven we in een wereld die volledig vertrouwt op
digitale informatieverwerking. De hoeveelheid informatie tot onze beschikking
is vrijwel onbeperkt en groeit nog steeds exponentieel tot het punt waarop som-
mige van demeest de belangrijke aspecten van ons leven onlineworden geregeld.

Deze honger naar informatie vraagt elke dag meer en meer van onze infra-
structuur. Tot nu toe is deze vraag gepaard gegaan met een toename in reken-
kracht die, volgens de wet van Moore, stelt dat ongeveer om de 18 maanden het
aantal transistors — en dus het rekenvermogen — op een computerchip verdub-
belt. Het einde van deze wet is echter in zicht, omdat we tegen de fundamentele
grenzen aan de grootte van de transistors stoten. Ondertussen groeit de vraag
naar informatie nog steeds aan een oogverblindend tempo. Een compleet nieuw
rekenmodel — vooral voor telecom — is nodig.

1 Fotonisch neuromorf rekenen

Inspiratie voor dit nieuwe computermodel kan gevonden worden door te kijken
naar onze eigen hersenen, die berekeningen volledig anders doen vergeleken met
traditionele computers. Zo een model heeft daarom de mogelijkheid om be-
paalde taken een grootteorde efficiënter uit te voeren, denk bijvoorbeeld aan
autorijden of gezichten herkennen.

Typische neuromorfe computers volgen dezelfde basisstructuur als onze her-
senen: neuronen die onderling verbonden zijn door synapsen. Deze brein-
geïnspireerde neurale netwerken zijn zeer succesvol in software, waar ze naar een
geheel nieuw gebied van machine learning genaamd deep learning leidden. On-
danks hun successen zijn deze software-gebaseerde neurale netwerken echter
fundamenteel nog steeds gebonden aan dezelfde limieten van traditioneel com-
putergebruik.

In dit doctoraat proberen we fotonica te gebruiken om deze neuromorfe struc-
turen te maken in hardware. De keuze voor fotonica heeft twee redenen. Al-
lereerst maakt licht als drager voor informatie ultrasnelle berekeningen moge-
lijk (“aan de snelheid van het licht”). Ten tweede richten we ons op telecom-
applicaties, waarvoor de meeste signalen zich al in het optische domein bevin-
den. Het is daarom logisch om de berekening optisch te houden om het aantal
elektro-optische conversies te beperken.

xxvi NedeRlandse Samenvatting

In dit werk zullen we bestaande fotonische neuromorfe architecturen verbe-
teren, met de nadruk op het uitbreiden van de fotonische reservoircomputer naar
meer algemene neuromorfische architecturen. We zullen ook de interessante
eigenschappen van licht beter proberen te benutten door bijvoorbeeld quasi in-
stantane analoge vermenging van het licht in photonische caviteiten, alsook in-
teressante niet-lineaire interacties in fotorefractieve materialen te gebruiken.

1.1 Reservoir computers

Het idee van een reservoircomputer, zoals geïllustreerd in Fig. 1, is gebaseerd op
een zeer dynamisch systeem — het reservoir — dat een tijdsafhankelijk ingangs-
signaal transformeert door temporele en ruimtelijke menging naar een hoog-
dimensionale interne reservoirtoestand. Deze toestandwordt dan geïnterpreteerd
door de readout, die in feite een lineaire combinatie op de interne toestand uit-
voert. De gewichten die de lineaire combinatie bepalen zijn dus geoptimaliseerd
om opkomende patronen in het reservoir te herkennen in plaats van in het sig-
naal zelf.

outputsinputs

Wout
Win

Wres

(a)

Figuur 1: Een laag-dimensionaal tijdsafhankelijk ingangssignaal wordt gemengd met
vroegere versies van zichzelf vanwege de zeer dynamische architectuur van het reservoir.

Telkens wordt (een deel van) de reservoirstatus uitgelezen om een tijdsafhankelijke
voorspelling te maken.

Het reservoir — dat in feite werkt als een preprocessor voor de uitlezing —
heeft twee fundamentele eigenschappen nodig om te correct te werken: de ge-
noemde spatio-temporale vermenging en een soort van vervagend geheugen, wat
betekent dat het asymptotisch eerdere signalenmoet vergeten. Merk op dat deze
vereisten niet erg beperkend zijn en dat er dus een hele reeks verschillende re-
servoirimplementaties bestaan, variërend van software reservoirs tot zeer perfor-
mante hardwarereservoirs in elektronica 1. In deze thesis ligt de focus op optisch
geïmplementeerde reservoirs.

1Zelfs reservoircomputers die gebruik maken van een emmer water als reservoir zijn al gerappor-
teerd.

NedeRlandse Samenvatting xxvii

1.2 Optimalizatie van het reservoir

Hoewel normaal gezien het reservoir niet wordt geoptimaliseerd, zijn er toch en-
kele voordelen van enige optimalisatie in het reservoir. Bovendien laten huidige
optimalisatietechnieken die zijn voortgekomen uit de snelle groei op het gebied
van deep learning toe om gemakkelijker dergelijke zeer recurente systemen te
optimaliseren.

Door Photontorch2, een op maat gemaakte fotonische circuitsimulator, te ge-
bruiken kunnen deze technieken tijdens de simulatie en optimalisatie van de
fotonische circuits worden geleend. Dit laat toe om te experimenteren met uit-
breidingen op de traditionele fotonische reservoircomputer.

1.3 Caviteiten voor continue mixing in het reservoir

Een andere uitbreiding op de traditionele reservoircomputer kan ontstaan door
een meer continu mengen van het ingangssignaal toe te staan. Een traditio-
nele reservoircomputer maakt gebruik van de standaard neuromorfe architec-
tuur: neuronen die verbonden zijn door synapsen. Licht laat echter wat meer
esoterische structuren toe, zoals caviteiten, waar het licht vrij is om te mengen
in een meer continue manier, waardoor een heel complexe vermenging van het
ingangssignaal mogelijk wordt.

Een typische caviteit die voor dit doel kan worden gebruikt, moet een grote
spatio-temporale vermenging van het ingangssignaal vertonen. Mogelijke vor-
men met deze eigenschap zijn bijvoorbeeld de zogenaamde kwartstadium of een
circelvormige schijf met een recht stuk zoals weergegeven in Fig. 2.

(a) Kwartstadium (b) Schijf

Figuur 2: Twee caviteiten die interessante menging vertonen. Beide vormen zijn
gebaseerd op indexcontrast: een eenvoudige geul werd geëtst rond de caviteit om het

licht binnen te houden.

2Een portmanteau voor “Photon” en “PyTorch”, de machine learning backend die deze simulator
gebruikt.

xxviii NedeRlandse Samenvatting

1.4 Optimalizeerbare reservoircaviteiten

Beide uitbreidingen van reservoir computing waar we naar op zoek zijn kunnen
in feite gecombineerd worden. Inderdaad, met behulp van een niet-lineair effect,
zoals bijvoorbeeld het photorefractieve effect, kan enige plasticiteit in de cavitei-
ten worden ingebouwd. Om dit aan te tonen gebruiken we een aangepaste FDTD
simulator, gebouwd om het fotorefractieve effect nauwkeurig te kunnen simu-
leren. We zien dat deze fotorefractieve caviteiten zichzelf reorganiseren volgens
de doorgestuurde lichtpatronen. Deze reorganisatie kan worden beschouwd als
een vorm van zelf-leren.

2 Resultaten

Omdat de genoemde architecturen bedoeld zijn om te worden gebruikt in tele-
com, werden hun prestaties gemeten op telecom-gerelateerde taken, zoals hea-
der herkenning en Booleaanse logica.

2.1 Aaneengeschakelde reservoirs

De meest voor de hand liggende uitbreiding op de traditionele reservoirarchitec-
tuur kan worden bereikt door twee reservoirs te combineren. We gebruiken de
Photontorch-simulator om zowel de readout als de tussenverbindingen tussen de
reservoirs te optimalizeren voor een betere prestatie op de XOR-taak. De presta-
tieverbetering door het gebruik van twee aaneengeschakelde reservoirs tijdens
training kan gezien worden in Fig. 3a. Een typisch signaal dat de readout verlaat
wordt getoond in Fig. 3b.

(a) (b)

Figuur 3: (a) Leercurve voor het trainen van de readout voor een alleenstaand reservoir
vergeleken met de leercurve voor het trainen van de readout en de tussenverbindingen

van twee aaneengeschekelde reservoirs. (b) Resulterend uitgangssignaal voor het
aaneengeschekelde reservoir voor de XOR-taak.

NedeRlandse Samenvatting xxix

2.2 Fotonische caviteiten
De fotonische caviteiten getoond in Fig. 2 werden gemaakt in veel verschillende
formaten op het 220 nm siliciumfotonicaplatform. De prestaties voor elk van
de vervaardigde caviteiten op een 3-bit headerherkenningstaak en op de XOR-
taak werd gemeten, zoals geïllustreerd in Fig. 4. De resultaten laten zien dat
de schijf-caviteit 3-bit headers kan herkennen voor ten minste één bitrate voor
elke geteste diameter van de schijf. De XOR-taak lijkt echter moeilijker te zijn
voor de caviteiten: alleen de schijf met een diameter van 200µm kan deze taak
uitvoeren.

8 16 24 32 40 48 64

bitrate [Gbps]

0

20

40

60

80

100

m
ax

er
ro

r
ra

te
[%

] Ø 500um

Ø 300um

Ø 200um

Ø 100um

(a)

8 16 24 32 40 48 64

bitrate [Gbps]

0

10

20

30

40

50
B
ER

[%
]

Ø 500um

Ø 300um

Ø 200um

Ø 100um

(b)

Figuur 4: Gemeten prestaties van fotonische caviteiten van verschillende groottes en bij
een groot bereik van bitrates op (a) de 3-bit headerherkenningstaak en (b) de XOR-taak.

2.3 Fotorefractief reservoir
Het gebruik van fotorefractieve kristallen voor neuromorfisch computergebruik
is gemotiveerd door het feit dat dit effect mogelijk de prestaties van het reservoir
kan verbeteren. Door het kristal in een caviteit te plaatsen en er een signaal
door te sturen zullen interferentie-effecten beginnen op te bouwen. Het idee
is nu dat verschillende bit-deelreeksen van het ingangssignaal op verschillende
manieren met elkaar zullen interfereren, wat resulteert in een kristal dat zichzelf
reorganiseert om deze reeksen beter te herkennen.

Deze systemen werden gesimuleerd met een speciale FDTD-simulator ont-
wikkeld om specifiek het fotorefractieve effect te kunnen simuleren. In Fig. 5 is
duidelijk te zien dat het primen van het kristal met zo een bitstroom het wer-
kingsbereik van het systeem verbreedt en dus het geheugen vergroot.

3 Conclusies
Concluderend hebben we laten zien dat verder gaan dan de traditionele fotoni-
sche reservoircomputer, door de definitie van een fotonisch reservoir uit te brei-

xxx NedeRlandse Samenvatting

0.0 2.5 5.0 7.5

latency [bits]

0.0

0.2

0.4

Er
ro

r

BER

MSE

(a) Before priming

0.0 2.5 5.0 7.5

latency [bits]

0.0

0.2

0.4

Er
ro

r

BER

MSE

(b) After priming

Figuur 5: Prestaties van het fotorefractief reservoir op de XOR-taak voor en na het
primen.

den om caviteiten er in op te nemen of door enige optimalisatie toe te staan in het
reservoir, de prestaties op verschillende telecom-gerelateerde taken verbetert.

Concreet toonden we aan dat aaneengeschakelde fotonische reservoirs met
een optimaliseerbare tussenlaag beter presteren op de XOR-taak. We konden
deze prestatieverhoging alleen aantonen dankzij onze speciale fotonische circuit
optimizer, Photontorch, waarmee een zeer efficiënte optimalisatie van de tus-
senliggende verbindingsgewichten mogelijk werd.

Bovendien, als alternatief voor de op neuronen gebaseerde architecturen, ex-
perimenteerden we met reservoircomputing op basis van fotonische caviteiten.
Deze caviteiten vertonen een continumengen in tegenstelling tot eenmeer (ruim-
telijk) discreet mengen binnen de knooppunten van een netwerk. We hebben ex-
perimenteel aangetoond dat deze caviteiten een levensvatbaar platform bieden
voor hoge snelheid fotonische reservoircomputing in het telecomveld. Ten slotte
hebben we aangetoond dat het fotorefractieve effect kan benut worden om het
kristal te primen om terugkerende patronen in willekeurige bitreeksen beter te
herkennen.

English Summary

In this day and age of the internet, we are living in a world that completely relies
on digital information processing. The amount of information at our disposal
and being exchanged is virtually unlimited and still growing exponentially to a
point where major aspects of our life take place online.

However, this rapid growth in appetite for information demands more and
more from our infrastructure every day. So far this demand has been matched
by an increase in computing power according to Moore’s law, which states that
about every 18 months the number of transistors — and hence the computing
power — on a computer chip doubles. However, this law is starting to crumble, as
fundamental limits on the size of the transistors are being reached. Meanwhile,
the demand for information keeps growing at a dazzling pace. A new computing
paradigm — especially for telecom — is needed.

1 Photonic neuromorphic computing

Inspiration for this new computing paradigm can be found by looking at our own
brain, which does computations completely differently compared to computers
and hence has the ability to do certain tasks orders of magnitudemore efficiently,
for example driving a car or recognizing faces.

Typical neuromorphic computers follow the same basic structure of our brain:
neurons interconnected by synapses. These brain-inspired neural networks have
been very successful in software, giving rise to a whole new field of machine
learning called deep learning. However, despite their successes, these in-software
neural networks are fundamentally still bound by the same limits of traditional
computing.

In this PhD we attempt to use photonics to create these neuromorphic struc-
tures in hardware. The choice for photonics has two reasons. First of all, using
light as a carrier for information enables ultra-fast computations (“at the speed
of light”). Second, we will be targeting telecom applications, for which most of
the signals are already in the optical domain. It makes therefore sense to keep
the computation optical to reduce the number of electro-optical conversions.

We will improve on existing photonic neuromorphic computing paradigms,
with the main focus on extending the principle of photonic reservoir computing
to more general neuromorphic architectures. We will also try to better better
exploit the interesting properties of light, by using it’s quasi instantaneous mix-

xxxii English SummaRy

ing in photonic cavities as well as using the interesting nonlinear interactions in
photorefractive materials.

1.1 Reservoir computing
The idea of a reservoir computer, as illustrated in Fig. 6, is based on a highly
dynamical system — the reservoir — which transforms a time-dependent input
signal through temporal and spatial mixing to a high-dimensional internal reser-
voir state. This state is then interpreted by a readout, which basically performs a
linear combination on this internal state. The weights defining the linear combi-
nation are thus optimized to recognize emerging patterns in the reservoir instead
of in the signal directly.

outputsinputs

Wout
Win

Wres

(a)

Figure 6: A low-dimensional time-dependent input signal gets mixed with previous
versions of itself due to the highly dynamic architecture of the reservoir. At each time, (a

part of) the reservoir state is read out by the readout to make a time dependent
prediction

The reservoir — which basically acts as a preprocessor to the readout — needs
two fundamental properties to operate properly: the mentioned spatio-temporal
mixing and a fading memory, which means that it should asymptotically for-
get past inputs. Notice that these requirements are not very restrictive and
hence a whole range of different reservoir implementations exist, ranging from
in-software reservoirs to highly performant hardware reservoirs in electronics3.
In this thesis, the focus lies on optically implemented reservoirs.

1.2 Optimizing the reservoir
Although the main idea of reservoir computing is that the reservoir itself is not
being optimized, some advantages from allowing some optimization in the reser-
voir still exist. Moreover, current optimization techniques which have arisen
from the rapid growth in the field of deep learning have made it easier to opti-
mize such highly recurrent systems.

By using a custom-built photonic circuit simulator, which we call Photon-
torch4, these optimization techniques can be borrowed during the simulation and

3Even reservoir computing using a bucket of water has already been reported.
4A portmanteau for “Photon” and “PyTorch”, the machine learning backend this simulator uses.

English SummaRy xxxiii

optimization of photonic circuits, enabling experimenting with extensions to the
photonic reservoir computer paradigm.

1.3 Cavities for continuous reservoir mixing
Another extension to the traditional reservoir computer is allowing amore contin-
uous mixing between the input states. A traditional reservoir computer uses the
standard neuromorphic architecture: neurons connected recurrently by synapses.
However, light allows for some more esoteric structures, such as cavities, where
light is free to mix in a more continuous matter after which very complex mixing
of the input signal becomes possible.

A typical cavity to be used for this purpose should have high spatio-temporal
mixing. Possible shapes like this are for example the so-called quarter-stadium or
a disk-shaped cavity with a chamfer as illustrated in Fig. 7.

(a) Quarter stadium (b) Disk with chamfer

Figure 7: Two cavity shapes that induce interesting mixing dynamics. Both shapes are
based on index contrast: a simple trench was etched around the cavity to keep the light

in.

1.4 Optimizable reservoir cavities
Finally, both extensions of reservoir computing that we are looking into can in
fact be combined. Indeed, using a non-linear effect, like the photorefractive effect,
some plasticity can be built into the cavity. We use a custom FDTD simulator,
built to accurately simulate the photorefractive effect, to show in a theoretical
viability study that photorefractive cavities reorganize themselves according to
the light patterns sent through them. This reorganization can be considered a
form of self-learning.

2 Results
As the said architectures are intended to be used in telecom, their performance
was measured on telecom-related tasks, such as header recognition and Boolean

xxxiv English SummaRy

logic.

2.1 Cascaded reservoirs

The most straightforward extension to the traditional so-called swirl reservoir
can probably be achieved by cascading two of them together. We use the cus-
tom Photontorch simulator to optimize both the readout and the intermediate
connections for better performance on the XOR task. The performance increase
from using two cascaded reservoirs during training is visualized by the learn-
ing curve in Fig. 8a. A typical output for the cascaded reservoir after training is
visualized in Fig. 8b.

(a) (b)

Figure 8: (a) Learning curve for training the readout of a single reservoir compared to
the learning curve for training both the readout and intermediate connections in the

cascaded reservoir on the XOR Task (b) Resulting outputs for the cascaded reservoir for
the XOR target.

2.2 Photonic cavities

The photonic cavities shown in Fig. 7 were fabricated for many different sizes on
the 220 nm silicon photonics platform. The performance for each of the fabri-
cated cavities on both a 3-bit header recognition task and on the XOR task was
tracked, as illustrated in Fig. 9. The measurements show that the chamfer cav-
ity was able to perform the 3-bit header recognition task for the whole range of
diameters at at least one bitrate. The XOR-task seems to be more difficult for
these cavities: only the 200µm diameter chamfer cavity can perform this.

2.3 Photorefractive reservoir

Using photorefractive crystals for neuromorphic computing is motivated by the
fact that this effect can possibly be exploited for better reservoir performance.
By placing the crystal in a cavity and sending a signal through the cavity and the
crystal, interference effects start to build up. The idea is now that different bit

English SummaRy xxxv

8 16 24 32 40 48 64

bitrate [Gbps]

0

20

40

60

80

100

m
ax

er
ro

r
ra

te
[%

] Ø 500um

Ø 300um

Ø 200um

Ø 100um

(a)

8 16 24 32 40 48 64

bitrate [Gbps]

0

10

20

30

40

50

B
ER

[%
]

Ø 500um

Ø 300um

Ø 200um

Ø 100um

(b)

Figure 9: Measured performance of photonic cavities of different sizes and at a large
range of bitrates on (a) the 3-bit header recognition task and (b) the XOR task.

subsequences of the signal beam will interfere with each other in different ways,
resulting in a crystal that reorganizes itself towards better recognizing these se-
quences.

These systems were simulated with a dedicated FDTD simulator, which was
developed to specifically be able to simulate the photorefractive effect. In Fig. 10
it can clearly be seen that priming the crystal first with such a bit stream widens
the operation range (increases the memory) of the system.

0.0 2.5 5.0 7.5

latency [bits]

0.0

0.2

0.4

Er
ro

r

BER

MSE

(a) Before priming

0.0 2.5 5.0 7.5

latency [bits]

0.0

0.2

0.4

Er
ro

r

BER

MSE

(b) After priming

Figure 10: Performance of the photorefractive reservoir on the XOR task before and
after priming.

3 Conclusions

In conclusion, we showed that going beyond traditional photonic reservoir com-
puting, by either expanding the definition of a photonic reservoir to include cavi-
ties or by allowing some optimization in the reservoir, improves the performance

xxxvi English SummaRy

on several telecom-related tasks.
Concretely, we showed that cascaded photonic reservoirs with an optimizable

intermediate layer perform better on the XOR task. We were only able to show
this increase in performance due to our dedicated photonic circuit optimizer,
Photontorch, which enables very efficient optimization of the intermediate con-
nection weights.

Moreover, as an alternative to the node-based architecture, we experimented
with photonic reservoir computing based on photonic cavities. These cavities ex-
hibit a continuousmixing in contrast to themore (spatially) discretemixing inside
the nodes of a network. We experimentally showed that these cavities provide a
viable platform for high-speed photonic reservoir computing in the telecom field.
Finally, we showed that the photorefractive effect can be exploited to prime the
crystal to better recognize returning patterns in random bit sequences.

0
Introduction

In this day and age we are living in a world that completely relies on digital
information processing. According to Moore’s law, digital computing power has
been doubling every 18 months since the invention of the transistor in the 1960s.
However, with the advent of the Internet, the bandwidth requirements on our
infrastructure have been catching up at a dazzling pace while Moore’s law is
starting to falter.

This race between a stagnating computing power and ever increasing band-
width requirements has sparked renewed interest in alternative computing
paradigms for a different, smarter and faster processing scheme of data. One
of these alternative computing paradigms is analog or physical computing, which
relies on using the analog response of a physical system to an appropriately en-
coded input signal. The idea here is that the physical system is used for the
computationally intensive part of the calculation at hand, while a simple elec-
tronic circuit can then be used for translating the analog response back into a
digital format.

A popular implementation of these physical computers relies on physical ar-
chitectures which are inspired by the human brain: instead of the traditional
transistors used in digital computing, these neuromorphic computers consist of
neurons interconnected by synapses. These artificial neural networks thus rely on
a more biologically inspired way of computing which is in stark contrast to the
very systematic and deterministic approach used in digital computers.

To see the possible advantages of this approach, one only has to observe the
vast amount of tasks a human is good at, such as recognizing faces, driving a

2 IntRoduction

car and listening to conversations at a busy party with lots of background noise,
to just name a few. All these tasks which come naturally to us are incredibly
difficult for traditional computers. The main reason for this is that it is very hard
to break down what we are actually doing in clear step-by-step tasks required to
program digital computers.

Indeed, what is actually happening in our brain is much more primitive: we
do not distinguish a cat from a dog by following a flowchart, we just know : we
have seen cats and we have seen dogs before in our life and either animal acti-
vates our brain slightly differently. It is very hard to translate this into a logical
decision making process as no such explicit process ever took place in our brain.

The promise of neuromorphic computing being successful in totally different
areas from traditional computing has attracted the attention of many researchers
since the 1970s. However, it took until the early 2010s before the first impres-
sive developments started to appear. Ironically, this was for neural networks
implemented in software on digital computers…

This branch of machine learning has taken traditional computing by storm
and the results are impressive. Image recognition? A computer can do it better
than you. Games like chess, Go or even Poker? A computer beats you at it.
Recognizing your friend’s voice? Alexa or Siri can do it too. Soon, cars will not
need drivers anymore and packages will be delivered at your doorstep by an
unmanned drone.

These achievements all serve to show that this new computing paradigm
is very successful and is here to stay. However, these in-software deep neural
networks are still constricted by the same limits on Moore’s law. Although the
massive parallel nature of these deep neural networks allows them to be easily
parallelized on Graphical Processing Units (GPUs) — which probably buys them
a fewmore years — they too will eventually reach their limits. Moreover, simulat-
ing such analog systems like neural networks on a digital computer is inherently
inefficient and leads to immense power consumption1.

This all leads to the question if these inherently analog neural networks
should be implemented on digital computers at all. In this thesis we will try
to tackle this problem head on. In fact, we’ll do this by applying neuromorphic
architectures to solve the mentioned scaling issue in telecom: how can analog
systems, like artificial neural networks, be used to increase the speed and ef-
ficiency of common telecommunication operations such as header recognition
and boolean logic.

The most obvious information carrier for these tasks is of course light. First

1AlphaZero, Google’s AI that beats bothGo-players and chess players needs about 250 GPUs, just
for playing the game (inference). At a power consumption of about 300W per GPU, this results in a
total power consumption of 75 kW, about 4000 times more than what a human brain needs (20W).
This is not even considering the training of this massive neural network, which on its own consumes
even more than inference (playing the game).

IntRoduction 3

of all because most telecommunication signals are already in the optical domain,
so it makes sense to keep them there. Second, light propagation is a massively
parallel scheme which allows to easily perform the analog operations necessary
to mimic a neural network. Additionally, light has an amplitude and a phase,
giving two independent degrees of freedom that can be exploited for better com-
putations. Moreover, the available bandwidth of a photonic chip is several orders
of magnitude larger than that of an equivalent electronic chip as it is not limited
by the movement of charge carriers. Finally, some materials allow for very fast
optical non-linearities that can possibly be exploited.

The way to implement these photonic neural networks is less clear. Over
the years, several different implementations have been tried and tested, ranging
from photonic activation functions [1] to photonic deep neural networks [2], to
photonic reservoirs computers [3–9]. This thesis aims to expand on these artifi-
cial neural network implementations by searching for new architectures that are
effective for the mentioned telecom applications.

The most obvious choice for optical neural networks would be integrated sil-
icon photonics, which in addition to the mentioned advantages of using light as
an information carrier also benefits from a very small footprint (typical photonic
chips have a footprint of the order of a fewmm2) and an incrediblymature CMOS
fabrication platform.

However, even on the silicon photonics platform there are several possibili-
ties for implementing neural networks on a chip. One could stick to primitive
photonic elements like splitters and combiners to construct a similar mapping of
the structure of our brain, consisting of neurons and synapses. However, light
allows for some more esoteric structures such as cavities, where light is free to
mix in a more continuous matter at no computational overhead.

Moreover, if one looks beyond the silicon photonics platform, one gains ac-
cess to a whole new world of optical effects that cannot be exploited on a sili-
con chip. One of these effects is the non-linear photorefractive effect, which we
will also briefly touch upon in later chapters. Obviously, leaving the integrated
photonics platform to incorporate photorefractive materials also introduces new
challenges: slower operating speeds and less mass-producible structures to name
the most important ones.

1 Optical Information Processing

We are currently living in an age of Big Data. The amount of information at our
disposal and being exchanged is virtually unlimited and still growing exponen-
tially. Data-heavy services like Netflix, YouTube and Skype demand more and
more of our infrastructure every day.

4 IntRoduction

A large part of this growing information exchange relies on an ever expand-
ing optical infrastructure for telecommunication. Indeed, today we experience
instant communication over 1000s of miles across the globe. Light is an indis-
pensable factor in this link: from large fiber-optical cables connecting continents
on the bottom of the ocean to small on-chip optical interconnects increasing the
operation speed of traditionally electronic chips.

The fact that fiber optical communication can take advantage of huge band-
width, low electromagnetic crosstalk and low power loss is of course well known.
Today fiber-optical communication links often reach data transmission rates well
above 100Gbps. These high optical data transmission rates have had a direct in-
fluence on the importance of on-chip optical interconnects.

1975 1985 1995 2005 2015

107

Frequency
[MHz]

Typical Power
[W]

Number of Cores

Single-thread
Performance
[SpecINT]

Transistors
[×103]106

105

104

103

102

101

100

Figure 1: Moore’s law is stagnating. Single-thread computing power has not been
increasing since about 2010, while the sole reason the number of transistors has kept on
increasing is by the increasing number of cores per chip (parallelization). Original data

from [10]

Indeed, up until recently, we have been able to match the growing demand in
bandwidth by an ever increasing processing power in our computers. This expo-
nential growth in computing power, known as Moore’s law, states that roughly
every 18months the number of transistors on a computer chip doubles, as is illus-
trated in Fig. 1. However, to accommodate this increasing chip-density — which
currently in 2019 lies at about 10 billion transistors per chip — these transistors
have to be made smaller and smaller to the point where they have reached their
quantum limit: making them any smaller will make their bit-value unstable due
to thermal effects.

This fundamental limit on the processing power of electronics impedes the
processing of the incoming optical signals beyond certain data transmission rates
and hence alternatives — preferably in the optical domain — have to be found.

A lot has already been improved in the optical domain. Over the years the

IntRoduction 5

optical communication research has reduced the fiber losses, reduced the cost of
optical sources and amplifiers and so on. However, a large part of optical commu-
nication still relies on various manipulations in the electrical domain to ensure
correct routing, conditioning and alignment. Traditionally these manipulations
are carried out by converting the light into an electrical signal, which is then
electronically processed by a Digital Signal Processor (DSP) and subsequently
converted back into the optical domain if needed.

Apart from the obvious power considerations related to this transformation
to the electrical domain and back, there are also the fundamental scaling issues
for digital processing that limit the DSP technology to signals well below the
limits of optical communication2.

It is therefore key that optical methods are found to do the most common
optical signal processing tasks related to optical telecommunication. Using pho-
tonic neuromorphic computing can possibly allow for such all-optical signal pro-
cessing, removingmost bandwidth limitations by keeping the processing entirely
in the optical domain.

2 Silicon Photonics

The choice for silicon as an optical medium is not so much guided by its optical
properties but rather by the advanced CMOS3 fabrication techniques it enables.
Indeed, CMOS fabrication is an incrediblymaturemanufacturing technique used
in micro electronics to create electronic structures with sub-micrometer preci-
sion. Borrowing this technology enables the manufacturing of nanophotonic
structures with the same precision, offers a cost-effective way of mass produc-
ing silicon photonic chips and at the same time opens up possible opportunities
for co-integration of electronics and photonics on the same silicon chip.

However, silicon photonics would not be a viable platform if silicon was not
at least a bit transparent at optical wavelengths used for telecommunication.
Silicon is transparent for infrared light in the so-called C-band around 1550 nm
and the O-band around 1300 nm. Although the losses at these wavelengths are
still a few dB/cm— a few orders of magnitude larger than losses in optical fibers
— the small size of these silicon photonic structures makes up for a lot.

To create light-guiding structures on a silicon chip, trenches need to be etched
on a 220 nm silicon-on-insulator (SOI) slab as illustrated in Fig. 2. By sending
light through such an entrenched structure, light gets laterally trapped and is
guided forward creating a waveguide. It turns out that the guiding properties

2As a comparison: digital signals in the electrical domain become notably difficult to process
beyond 20Gbps, while single-wavelength optical data transmission rates easily reach 100Gbps and
more.

3CMOS stands for ComplementaryMetal-Oxide-Semiconductor, which is themost common type
of micro-transistor used today.

6 IntRoduction

rely heavily on the width of the waveguide, for which single-mode propagation
lies around 450 nm. Slight manufacturing variations can have a measurable in-
fluence on the phase of the mode through surface roughness and hence high
manufacturing precision is required for most applications.

2µm

220 nmSi

SiO2

shallow etch
(70 nm)

deep etch
(220 nm)

Figure 2: Most silicon photonic chips consist of structures patterned on a 220 nm thick
silicon-on-insulator (SOI) structure. Generally speaking, deeply etched trenches in the Si
layer create light-guiding structures called waveguides, while shallow etched trenches

are used to couple light into the waveguides from above the chip.

3 Photonic Reservoir Computing

Reservoir Computing (RC) is a well-established machine-learning concept, first
proposed in the early 2000s [11, 12] as a brain-inspired computing mechanism to
process temporal signals in real time. In RC, a highly dynamical and non-linear
system is used as a signal-mixing reservoir, which essentially produces a number
of non-linearly mixed versions of an input signal. Those resulting reservoir states
are then read out by performing an application-dependent linear combination of
these states [13].

In the case of photonic RC, this reservoir can be created by interconnecting
many optical neurons (often called nodes in this context). While traditionally,
those neurons are implemented by a non-linear activation function, previous
work has shown that, in the case of light, a non-linear detection operation at
the readout suffices. This is a direct result of the fact that light carries an ampli-
tude and a phase, resulting in a non-linearly mixed cross-term at the readout [9].

We have shown before that this conceptually simple approach to reservoir
design leads to fewer parameters to tune and more energy-efficient designs. The
work in this thesis will pick up where the research has brought us so far and
look in which ways this traditional passive design can be improved by possi-
bly cascading or micro-optimizing the photonic reservoir. To do these micro-
optimizations, a dedicated simulator will be necessary which can optimize (back-
propagate) through the physical structure of the reservoir itself.

IntRoduction 7

Then, a different approach will be followed, where the concept of a passive
reservoir which follows the traditional neuronal structure of our brain (neurons
connected by synapses) is expanded to a more continuous representation using
photonic cavities. In these cavities, the light is free to mix in a more continuous
manner at no computational overhead.

4 Photorefractive effect

As an alternative medium for optical neuromorphic computing, photorefractive
materials will be explored. As the photorefractive effect is mostly a phenomenon
appearing in bulk dielectric materials, exploring this route requires us to look
beyond silicon photonics.

The photorefractive effect relies on a careful interplay between photons and
electrons. A photorefractive material consists of a crystalline structure with
many photon traps present. Photons entering the photorefractive material will
thus very often excite electronswhichwill become free to diffuse through thema-
terial. As on average more electrons are freed at locations of high light intensity,
the global tendency of the electrons will be to move towards locations of lower
light intensity where the chance of being trapped is higher. This means that if
an interference pattern is applied in the material, a permanent displacement of
charges can be created which in turn creates a quasi permanent space-charge
field which will remain present, even when the interference pattern is removed.
When the material is then also susceptible to an electro-optical effect like the
Pockels or Kerr effect, this material is said to be photorefractive, as due to the
photon-induced space-charge field a refractive index profile can be created.

This phenomenon is obviously very interesting for several reasons. The first
of which is the plasticity of the material: different holograms can be imprinted
into the photorefractive crystal for different applications bringing us closer to an
all-optical multi-functional processing unit. Moreover, the 3D structure of the
holograms allows for a much richer interconnection topology that far exceeds
any structure that can be made on a 2D chip.

However, an expensive price has to be paid for these advantages: the ease
and cost of manufacturing.

5 Objectives

As we have laid out before, one of the major goals of this thesis is replacing the
DSP with an all-optical processor. Due to the highly analog nature of light, one
promising way to achieve this is by adopting a neuromorphic architecture on a
silicon photonics chip.

8 IntRoduction

How this architecture is supposed to look is one of the main items that will
be looked into in this dissertation. We will focus in particular on simple feed-
forward structures pre-trained in software, as well as on recurrent reservoir ar-
chitectures and photonic cavities all integrated on-chip. However, also photore-
fractive systems will be considered due to their interesting plasticity which pos-
sibly can be exploited for training.

Moreover, to efficiently obtain and test out new designs, a machine-learning
driven design philosophy will be followed. For this, a completely new photonic
simulator was created, which allows to efficiently simulate and optimize ar-
bitrary on-chip photonic circuits through a machine learning algorithm called
backpropagation.

An obvious advantage of these on-chip designs is a possible co-integration
with the electronics into a opto-electronic transceiver. Therefore, especially for
these kind of structures the reservoir computing approach can be particularly
interesting as that approach relies on a simple electronic readout circuit that can
relatively easily be implemented on a chip.

6 Thesis outline

As this thesis is about novel photonic neuromorphic computing architectures, we
will gradually build up the content towards more complex unconventional ways
of doing neuromorphic computing with light.

Chapter 1 covers the basics ofmachine learning (ML) and neuromorphic com-
puting. The goal of this chapter is to introduce most of the prerequisites that will
be used in later chapters.

Then, in chapter 2, we will cover the simulation and efficient optimization
through backpropagation of large photonic circuits. For this, a dedicated sim-
ulator — Photontorch [14] — was designed. We will also use this simulator to
improve the photonic swirl reservoir [9] on certain benchmark tasks.

In chapter 3, we will then cover the simulation of on-chip photonic cavities
used in the context of reservoir computing. We will simulate their performance
on the same benchmark tasks as before and compare it with experimental results.

Finally, in chapter 4, we will explore how photorefractive crystals can be used
to do neuromorphic computing. The photorefractive effect in these materials
enables some kind of plasticity in the reservoir: the reservoir is able to learn For
the photorefractive effect to be strong enough, however, these systems have to
be considered in bulk, i.e. not on-chip.

IntRoduction 9

7 Publications

Publications in international journals

[1] Floris Laporte, Andrew Katumba, Joni Dambre, and Peter Bienstman. Nu-
merical demonstration of neuromorphic computing with photonic crystal cavi-
ties. Optics express, 26(7):7955–7964, 2018.

[2] Floris Laporte, Joni Dambre, and Peter Bienstman. Highly parallel simulation
and optimization of photonic circuits in time and frequency domain based on the
deep-learning framework PyTorch. Scientific reports, 9(1):5918, 2019.

[3] Andrew Katumba, Matthias Freiberger, Floris Laporte, Alessio Lugnan, Stijn
Sackesyn, Chonghuai Ma, Joni Dambre, and Peter Bienstman. Neuromorphic
computing based on silicon photonics and reservoir computing. IEEE Journal of
Selected Topics in Quantum Electronics, 24(6):1–10, 2018.

[4] Chonghuai Ma, Floris Laporte, Joni Dambre, and Peter Bienstman. Address-
ing Limited Weight Resolution in a Fully Optical Neuromorphic Reservoir Com-
puting Readout. arXiv preprint arXiv:1908.02728, 2019.

[5] Alessio Lugnan, Andrew Katumba, Floris Laporte, Matthias Freiberger, Stijn
Sackesyn, Chonghuai Ma, Joni Dambre, and Peter Bienstman. Photonic Neu-
romorphic Information Processing and Reservoir Computing. APL Photonics
(accepted), 2020.

Publications in international conferences

[6] Floris Laporte, Joni Dambre, and Peter Bienstman. Photonic Reservoir Com-
puting (invited). Photonic Integration Week, 2020

[7] Floris Laporte, Joni Dambre, and Peter Bienstman. Photontorch: Simulation
and Optimization of Large Photonic Circuits Using the Deep Learning Frame-
work PyTorch. In 2019 IEEE Photonics Society Summer Topical Meeting Series
(SUM), pages 1–2. IEEE, 2019.

[8] Floris Laporte, Joni Dambre, and Peter Bienstman. Neuromorphic Computing
with Signal-Mixing Cavities. In 2018 IEEE International Conference on Reboot-
ing Computing (ICRC), pages 1–4. IEEE, 2018.

[9] Peter Bienstman, Joni Dambre, Andrew Katumba, Matthias Freiberger,
Floris Laporte, and Alessio Lugnan. Photonic reservoir computing: a brain-
inspired approach for information processing (invited). In Optical Fiber Com-
munication Conference, pages M4F–4. Optical Society of America, 2018.

10 IntRoduction

[10] Peter Bienstman, Joni Dambre, Andrew Katumba, Matthias Freiberger,
Floris Laporte, and Alessio Lugnan. Silicon photonics for neuromorphic in-
formation processing. In Optical Data Science: Trends Shaping the Future of
Photonics, volume 10551, page 105510K. International Society for Optics and
Photonics, 2018.

[11] Floris Laporte, Alessio Lugnan, Joni Dambre, and Peter Bienstman. Novel
photonic reservoir computing architectures. In Workshop on Dynamical sys-
tems and Brain-Inspired Information Processing, page 1, 2017.

[12] Andrew Katumba, Floris Laporte, Alessio Lugnan, Joni Dambre, and Peter
Bienstman. Integrated-photonics implementation of reservoir computing neural
networks (invited). In Workshop Machine Learning@ ECOC 2017, pages 1–1,
2017.

[13] Floris Laporte, Joni Dambre, and Peter Bienstman. Reservoir computing
with signal-mixing cavities (invited). In 2017 19th International Conference on
Transparent Optical Networks (ICTON), pages 1–4. IEEE, 2017.

[14] Floris Laporte, Joni Dambre, and Peter Bienstman. Header recognition with
signal-mixing cavities. In Workshop on Dynamical Systems and Brain Inspired
Computing, pages 1–1, 2017.

[15] Floris Laporte, Joni Dambre, and Peter Bienstman. Photorefractive crystals
as brain-inspired photonic reservoir computing systems. In Proceedings Sym-
posium IEEE Photonics Society Benelux, pages 151–154, 2016.

Patents

[16] Peter Bienstman, Floris Laporte, and Alessio Lugnan. Mixing wave based
computing. Patent Application No. PCT/EP2018/063855, Filed May 26, 2018

[17] Peter Bienstman, Alessio Lugnan, and Floris Laporte. Object classification
system and method. Patent Application No. PCT/EP2018/063854, Filed May
26, 2018

Book Chapters

[18] Andrew Katumba, Matthias Freiberger, Floris Laporte, Alessio Lugnan,
Stijn Sackesyn, Chonghuai Ma, Joni Dambre, and Peter Bienstman Integrated
on-chip reservoirs. Photonic Reservoir Computing: Optical Recurrent Neural
Networks, De Gruyter, 2019.

REFERENCES 11

References

[1] Alexander N Tait, Mitchell A Nahmias, Bhavin J Shastri, and Paul R Pruc-
nal. Broadcast and weight: an integrated network for scalable photonic spike
processing. Journal of Lightwave Technology, 32(21):4029–4041, 2014.

[2] Yichen Shen, Nicholas C Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-
Jones, Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk En-
glund, et al. Deep learning with coherent nanophotonic circuits. Nature Pho-
tonics, 11(7):441, 2017.

[3] Quentin Vinckier, François Duport, Anteo Smerieri, Kristof Vandoorne, Pe-
ter Bienstman, Marc Haelterman, and Serge Massar. High-performance
photonic reservoir computer based on a coherently driven passive cavity. Op-
tica, 2(5):438–446, 2015.

[4] Lennert Appeltant, Miguel Cornelles Soriano, Guy Van der Sande, Jan
Danckaert, Serge Massar, Joni Dambre, Benjamin Schrauwen, Claudio R
Mirasso, and Ingo Fischer. Information processing using a single dynamical
node as complex system. Nature communications, 2:468, 2011.

[5] Yvan Paquot, Francois Duport, Antoneo Smerieri, Joni Dambre, Benjamin
Schrauwen, Marc Haelterman, and Serge Massar. Optoelectronic reservoir
computing. Scientific reports, 2, 2012.

[6] Laurent Larger, Miguel C Soriano, Daniel Brunner, Lennert Appeltant,
Jose M Gutiérrez, Luis Pesquera, Claudio R Mirasso, and Ingo Fischer. Pho-
tonic information processing beyond Turing: an optoelectronic implementa-
tion of reservoir computing. Optics express, 20(3):3241–3249, 2012.

[7] Daniel Brunner, Miguel C Soriano, Claudio R Mirasso, and Ingo Fischer.
Parallel photonic information processing at gigabyte per second data rates us-
ing transient states. Nature communications, 4:1364, 2013.

[8] Kristof Vandoorne, Wouter Dierckx, Benjamin Schrauwen, David Ver-
straeten, Roel Baets, Peter Bienstman, and Jan Van Campenhout. Toward
optical signal processing using Photonic Reservoir Computing. Opt. Express,
16(15):11182–11192, Jul 2008.

[9] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Ver-
straeten, B. Schrauwen, J. Dambre, and P. Bienstman. Experimental demon-
stration of reservoir computing on a silicon photonics chip. Nature commu-
nications, 5, 2014.

[10] Chuck Moore. Data processing in exascale-class computer systems. 2011.

12 IntRoduction

[11] H. Jaeger. The ‘echo state’ approach to analyzing and training recurrent neural
networks. Bonn, Germany: German National Research Center for Informa-
tion Technology GMD Technical Report, 148:34, 2001.

[12] W. Maass, T. Natschläger, and H. Markram. Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural computation, 14(11):2531–2560, 2002.

[13] David Verstraeten, Benjamin Schrauwen, Michiel d’Haene, and Dirk
Stroobandt. An experimental unification of reservoir computing methods.
Neural networks, 20(3):391–403, 2007.

[14] Floris Laporte, Joni Dambre, and Peter Bienstman. Highly parallel simula-
tion and optimization of photonic circuits in time and frequency domain based
on the deep-learning framework PyTorch. Scientific reports, 9(1):5918, 2019.

1
Machine Learning

& Neuromorphic Computing

Computers have been used to find relations in data for as long as they were
around. The models used to approximate and find those relations have grown
in complexity with increasing computing power. During this chapter we’ll try
to introduce a small subset of these models along with some key concepts used
in Machine Learning with a strong focus on the most relevant ones used in later
chapters: linear models, gradient descent, backpropagation, dimensionality reduc-
tion and neural networks, eventually leading to an introduction to Photonic Neu-
romorphic Computing.

1.1 Linear models

Of all machine learning concepts introduced here, Linear Models remain relevant
as being the most interpretable and easy to implement, yet they remain incredi-
bly powerful in combination with other paradigms or even on their own.

1.1.1 Linear regression

Linear regression is traditionally defined as the method that finds the best fitting
straight line through a set of points by minimizing the y-distance between the
points and the line. In the example depicted in Fig. 1.1, this amounts to finding

14
Machine

LeaRning & NeuRomoRphic Computing

0 2 4 6 8 10
x

0

2

4

6

8

10

y

(xj , yj)

(xj , ŷj)

dyj

ŷ

(xi, yi)

Figure 1.1: A point cloud that seems to have a linear relationship

a line defined by

ŷ = ax+ b (1.1)

Where ŷ is the predicted y-value for the given x-values. This equation can be
generalized in matrix form as follows:

ŷ =
(
b a

)
·
(
1
x

)
(1.2)

This matrix form for the straight line is preferred over the explicit form as
it generalizes better to higher dimensional problems, where x belongs to a N -
dimensional vector space (called the feature space), instead of being just a scalar
value:

ŷ = wTx =
(
w0 w1 · · · wN

)
·


1
x1

...
xN

 (1.3)

In this case a vector of N + 1 elements (a bias term 1 and N features) gets
weighted by N + 1 weights (often w0 is called the bias). Let us define X as the
composite matrix consisting ofB observations of the vectors xi, each of (N +1)

elements (the features) forming a (N + 1)×B matrix1.

1In this thesis, we’ll consistently denote the number of samples by the letter B, which stems
from the batch size: a term that is traditionally only used during iterative optimization methods like
gradient descent (see 1.2), where a batchmeans a subset of the total number of samples (observations)
available. Note that in the case of regression tasks, however, all data is used.

Machine LeaRning & NeuRomoRphic Computing 15

To each of vectors xi in the batchX belongs a scalar data-point yi, such that
the equation for the predicted points ŷi can be written as(

ŷ1 · · · ŷB
)
= ŷ = wTX (1.4)

=
(
w0 w1 · · · wN

)
·


1 1 · · · 1
x11 x12 · · · x1B

...
...

. . .
...

xN1 xN2 · · · xNB


Obviously, the predicted value ŷ has to be as close as possible to the real value y.
In the case of linear regression, this is achieved by minimizing the mean squared
error (MSE) loss2 L:

L =
1

2m
|y − ŷ|2 (1.5)

This term is often also called the L2-loss as it purpose is to minimize the aver-
age L2-norm3 between prediction and target. Going on, this loss term can be
rewritten as follows:

L =
1

2m
|y − ŷ|2 (1.6)

=
1

2m

∣∣y − wTX
∣∣2 (1.7)

=
1

2m

(
y − wTX

) (
y − wTX

)T
(1.8)

To minimize this expression, the derivative (gradient with respect tow) has to be
zero:

∇w

(
yyT − yXTw − wTXyT + wTXXTw

)
= −2XyT + 2XXTw (1.9)

= 0

Which yields for the weights:

w = (XXT)−1XyT = X+yT (1.10)

Here, the expression for the pseudo-inverse of X , denoted by X+ can be recog-
nized in the last expression4. Note that this closed-form solution for finding the

2Loss, in machine learning, is generally a cumulative error between prediction and target. The
loss function can be chosen freely and its choice only depends on the application domain and the
goal one wants to achieve.

3
√∑

i xi
4In fact, this is basically how the pseudo-inverse was defined in the first place.

16
Machine

LeaRning & NeuRomoRphic Computing

weights given the sample pointsX and the target y relies on the fact that the ex-
pressionXXT is invertible. This is usually not a problem, as for the (N+1)×B

matrix X , the number of samples B is typically much larger than the number of
features N , resulting in a dense (N + 1)× (N + 1) matrix XXT that is almost
always invertible. In other words: given enough sample points (B ≫ N), you
would be very unlucky to have them all be linearly dependent.

1.1.2 Regularization and overfitting

Often, for high-variance data, the closed-form solution defined above yields
weights that vary significantly in size. This is not typically what you want, as
this leads to overfitting. Overfitting happens when the model is too specialized
on the data it was presented with during training and as a result does not gener-
alize well to unseen data. The term originally comes from fitting a polynomial to
a set of data points, as can be seen in Fig. 1.2 Overfitting generally is a result of

0 2 4 6 8
x

0

1

2

3

4

y

linear fit

overfit

Figure 1.2: For the data points presented here, a simple linear fit is probably sufficient.
The fitted line going through all the data points is clearly overfitting.

using too many parameters in the model at hand. The traditional way of dealing
with this is often to reduce the number of parameters. However, a more general
approach is to use regularization of the parameters of the model, which often
yields better results.

Regularization penalizes models using too large weights. This penalty is en-
forced by adding an extra term to the loss function. This term is usually propor-
tional to the norms of the weights. Generally speaking, the MSE loss would be
extended as follows:

L =
1

2m
|y − ŷ|2 + λ |w|p (1.11)

Machine LeaRning & NeuRomoRphic Computing 17

The two most common regularization methods are L1-regularization or LASSO
(Least Absolute Shrinkage and Selection Operator) regularization, for which
p = 1, and L2 regularization or Tikhonov regularization, for which p = 2. The
application of Tikhonov regularization to linear regression is often called ridge
regression and results in a modification of the closed-form solution (1.10) for the
weights:

w = (XXT − λI)−1XyT (1.12)

The expression for the weights under LASSO regularization is not as simple,
but can be shown to equal [1]

w = sign
(
X+yT

) (∣∣X+yT
∣∣− λI

)+
(1.13)

1.2 Loss minimization by gradient descent

In the regression examples above, a closed-form solution for each of the loss
functions was found. However, this is often more the exception than the norm.
For more complicated non-linear models or for more specialized loss functions,
finding an analytic solution is almost never possible.

A naive solution is to just calculate the loss for every parameter combina-
tion possible and see where the minimum lies. This parameter sweep approach
works well for models with only a few parameters, but unfortunately becomes
completely unfeasible for models existing in a high dimensional feature space.
For these kind of problems, a smarter iterative approach is necessary. One of
the most used algorithms to iteratively find the minimum of the loss function is
Gradient Descent (GD).

Imagine a ball placed on a hill. When the ball is placed on one of the slopes
of the hill, it will roll down. This same principle is applied during GD. When
using GD, a random weight vector is chosen (think of it as the coordinates of
the ball); this weight vector will have a certain loss associated to it (the altitude
of the ball). Just like the ball will roll down the hill in the direction where the
hill is the steepest, the weight vector will be updated by GD in the direction
where the gradient of the loss points. By taking those steps consistently in the
direction of the gradient, you’re guaranteed to eventually arrive at a minimum
of the loss function, as illustrated in Fig. 1.3. Note that this minimum might be
a local minimum.

What is nice about the MSE loss, which defines the closed-form solution for
the regression techniques, is that this loss function results in a convex surface
for linear models. This is a big advantage over (most) other loss functions, as a
convex surface only has a single minimum: the global minimum and thus, one is
guaranteed to find its minimum by gradient descent.

18
Machine

LeaRning & NeuRomoRphic Computing

Figure 1.3: During gradient descent, the minimum of the loss function is found by
iteratively updating the weights in the direction that the loss decreases. This direction is

determined by the gradient of the loss function, hence the name of this algorithm.

The math behind gradient descent is quite easy to understand. The change
in loss dL resulting from a small change dw in the weights can be expressed as
follows:

dL = ∇wL · dw (1.14)

When the change of the weights itself is chosen in the opposite direction of the
gradient of the loss such that

dw = −η∇wL, (1.15)

the expression becomes

dL = −η |∇wL|2 . (1.16)

This means that the weights chosen in such a way will always decrease the value
of the loss function. The parameter η is a strictly positive hyper-parameter called
the learning rate and determines how fast the minimum of the loss function is
reached. Choosing a good value for η is more an art than a science: choose it too
small and youmight never reach the minimum. Choose it too large and equation
(1.14) does not hold anymore, which means that the ball might overshoot the
minimum of the valley, or worse, overshoot the valley altogether. That said, there
are a whole lot of smart optimization techniques such as Adam [2], RMSProp [3],
Nesterov Momentum [4] and many others [5] that improve the gradient descent
algorithm to reduce (but not remove) the importance of the initial learning rate
choice.

Machine LeaRning & NeuRomoRphic Computing 19

As an example, GD was applied on the weights defining the best fitting line
through the point cloud from Fig. 1.1. As can be seen in Fig. 1.4a, the line de-
termined by the weights gets better after iteratively changing the weights in the
direction of the minimum like presented in Fig. 1.4b. Moreover, the final best fit-
ting line obtained by GD (green) is equivalent to the line obtained by the closed
form solution of LR. This is to be expected, as both are found by minimizing the
same loss function: the MSE.

0 2 4 6 8 10
x

0

2

4

6

8

10

y

(a)

0.00 0.25 0.50 0.75 1.00
w1

0

2

4

6

L

MSE

(b)

Figure 1.4: The line fitting the data points in (a) is iteratively updated by gradient
descent, which changes the weights of the line in the direction of the minimum of the

MSE loss (b). For illustration purposes, only the slope of the line, w1, is updated.

1.3 Linear classifiers

Where regression techniques try to make predictions about continuous target
values y given a set of features X , classifiers try to predict discrete target values
or classes. Although these two problems are clearly distinct, similar techniques
as for regression can be applied to find the boundaries between those classes.

Let us consider a binary classification task as an example. Such a classifica-
tion task can be summarized by modifying (1.3) in such a way that it is thresh-
olded around 0.5

ŷ = sign
(
wTX

)
(1.17)

For such a binary classification task, one can visualize the operation of a linear
classifier as dividing the N -dimensional feature space with a hyperplane, as can
be seen in Fig. 1.5, where the hyperplane is a 1D-line in a 2D feature space (with
features x1, x2) or a 2D plane in a 3D feature space (with features x1, x2, x3).

5Note that a bias term is included in X , which makes a threshold around anything else than 0
redundant.

20
Machine

LeaRning & NeuRomoRphic Computing

0 2 4 6 8 10
x1

0

2

4

6

8

10

x
2

(a) (b)

Figure 1.5: A linear classification boundary tries to find the optimal boundary between
the blue class (−1) and the orange class (+1), given two features x1 and x2. A class is
misclassified when its boundary color (the prediction) is different from the inside color
(the target). (a) In 2D, this dataset is not linearly separable, however in 3D (b), it is.

Classification mistakes might happen when the parameters (weights) of the
hyperplane are not yet optimized to separate the clusters of data points or when
the dataset is not completely linearly separable, like in Fig. 1.5a, where a decent
boundary between the two classes was found, but somemistakes were still made.

It is important to note however, that the higher the dimension of the feature
space, the easier it will be to find a hyperplane that separates the data points,
even when the number of data points is still much larger than the number of
features [6]. This is exemplified in Fig. 1.5, where in the 2D case - Fig. 1.5a - the
dataset is not linearly separable, while in the 3D case - Fig. 1.5b - it is.

1.3.1 Linear regression

The most naive implementation of a linear classifier is probably to just use linear
regression. Indeed, even though the goal is to predict discrete class labels, one
can just pretend they are continuous. Using this approach, the weight matrix
can easily be calculated using (1.10) to predict a continuous approximation of the
class label. This continuous class value is then thresholded like in (1.17) to obtain
the class label.

For binary classification tasks, this approach works reasonably well and it is
the preferred way to implement the readout for photonic reservoir computing for
telecom applications6, as we will see later in 1.7.2. There are however a whole lot
of disadvantages when using linear regression for classification, the main one
being that it is very sensitive to unbalanced data and outliers. Indeed, linear
regression tries to find a global relation between the data points7, and if many of

6Recognizing bits in a bit stream is a binary classification task.
7This by itself should already be a reason not to use linear regression for complicated classification

Machine LeaRning & NeuRomoRphic Computing 21

them have class label−1 and only some of them have class label 1, the bias term
(which is related to the average of all the data points) will be too low. The other
weights will try to compensate for this, resulting in an inaccurate representation
of the classes.

On the other hand, outliers will influence the regression as well, as they will
be counted more heavily due to the quadratic MSE loss.

These problems can partly be solved through regularization, but for best per-
formance on classification tasks, different loss functions like the cross-entropy
loss (see 1.3.4) or different algorithms are necessary.

1.3.2 Perceptron model

Let us have another look at (1.17).

ŷ = sign
(
wTX

)
(1.18)

This model is often called the perceptron model after a 1958 paper by Rosen-
blatt [7]. In this paper, an iterative technique was proposed to update the
weights. The perceptron algorithm takes a randomly misclassified data point xi

and uses that to update the weights:

w′ = w + yixi (1.19)

Since xi is misclassified, we have that yi = −ŷi = −sign(wTxi): it thus pushes
the classification boundary towards a correct classification of xi.

There is however a problem with this very simple model. Although it works
great for linearly separable data, it becomes unstable for data like in Fig. 1.5 which
is not.

1.3.3 Soft thresholding

It would be great if gradient descent could be used on the perceptronmodel (1.18).
However, gradients are not well defined on discontinuous functions like the sign
function. Let us instead replace the sign by a continuous look-a-like: the hyper-
bolic tangent function tanh:

ŷ = tanh
(
wTX

)
(1.20)

The tanh, which is defined as

tanh(x) = exp(x)− exp(−x)

exp(x) + exp(−x)
, (1.21)

tasks. Data points related to classAmight have nothing in common with data points related to class
B. Finding a global linear relationship between both does not make much sense.

22
Machine

LeaRning & NeuRomoRphic Computing

−5.0 −2.5 0.0 2.5 5.0

wTxi

−1.0

−0.5

0.0

0.5

1.0

ŷ i

sign

tanh

Figure 1.6: Instead of a discontinuous sign function, a continuous tanh can be used to
threshold the prediction.

is bounded between −1 and 1 and thus implements a so-called soft threshold, as
can be seen in Fig. 1.6. Moreover this function is differentiable! This allows us
to apply gradient descent on its parameters and as such find optimal weights in
an iterative manner. However, as we know by now, we need a loss function L

to differentiate for gradient descent. We also know that the choice for the loss
function is rather arbitrary, but ideally we would like one that is convex such
that the gradient descent algorithm can easily find the single, global minimum.

1.3.4 Logistic Regression

The nice thing about using such a soft thresholding function is that it can be
related to a probability P (yi = 1|xi): given the feature vector xi, what is the
probability that you will predict yi to have class label +1 (as opposed to class
label −1). Logistic regression tries to do just that: it tries to have a notion of
probability in the loss function. One can use the fact that the tanh is bounded
between −1 and +1 to propose a proxy for the probability to guess yi correctly
given xi:

P (yi|xi) =
1

2

(
tanh

(1
2
yiw

Txi

)
+ 1

)
(1.22)

=
1

1 + exp (−yiwTxi)
(1.23)

The second function is often called the sigmoid or logistic function, hence the
name logistic regression. Logistic regression now proposes to maximize the prod-
uct of all these probabilities for each xi, i.e. the joint probability of guessing all

Machine LeaRning & NeuRomoRphic Computing 23

yi correctly given xi
8:

w = argmax
w

B∏
i=1

1

1 + exp (−yiwTxi)
(1.24)

One can take the natural log of this expression, normalize it over the number of
sample points (batch size)B and multiply it by−1 (loss functions areminimized,
not maximized) to arrive at the loss function used in logistic regression:

L = − 1

B

B∑
i=1

log
(

1

1 + exp (−yiwTxi)

)

=
1

B

B∑
i=1

log
(
1 + exp(−yiw

Txi)
)

(1.25)

This loss is called the cross-entropy9 loss and is probably the most used loss
function in machine learning for classification problems. This loss becomes
small when yi and the un-thresholded prediction wTxi have the same sign, i.e.
when (1.20) would yield the correct prediction, just like we would expect.

Note that often, equation (1.20) is not applied in practice. One can opt to
stick to the hard threshold of (1.17) as all the continuous thresholding informa-
tion is implicitly assumed in the cross-entropy loss (1.25). Consequently, logistic
regression only differs from linear regression by the chosen loss function.

1.3.5 Regression in the complex domain

Optical signals are generally represented by complex numbers. Both theMSE loss
(1.8) and the cross-entropy loss (1.25) are quite easily extended to the complex
domain by replacing the transpose by a hermitian transpose:

LMSE =
1

2m

∣∣y − wHX
∣∣2 (1.26)

LXE = − 1

B

B∑
i=1

log
(
1 + exp(−yiw

Hxi)
)

(1.27)

Where both w and X are complex-valued. However, having an expression for
these losses in the complex domain does not automatically mean that they are
well-behaved (i.e. convex). Luckily for the case of those two losses this is the
case, as can be seen in Fig. 1.7.

Essentially the same derivation for the closed form solution for linear regres-
sion can be applied in the complex domain as well, yielding the following form

8This is also known as the maximum likelihood.
9Which I often write as XE, although that’s probably not an accepted acronym.

24
Machine

LeaRning & NeuRomoRphic Computing

(a) Complex MSE (b) Complex cross-entropy

Figure 1.7: Both the MSE and the cross-entropy loss are convex and well behaved
functions in the complex domain.

for the weights at the global minimum:

w = (XXH)−1XyH (1.28)

Note that this equation requires full knowledge of both the amplitudes and the
phases of each xi ∈ X . However, for many real-life applications, this closed form
solution is too restrictive.

To see why, we will consider the binary classification task with class labels 0
and 1, which means that the vector y is real-valued. Assuming we have access
to the amplitudes and phases for each xi ∈ X10 such that we can calculate the
complex weight matrix w with (1.28), we can use this weight matrix w to make
a prediction ŷi for a new data point x̃i:

ŷi = wH x̃i (1.29)

However, when we implement a system like this in photonics, the optical mea-
surement will normally not measure the complex-valued ŷi directly, but rather
what the photodiode detector will output is proportional to the following expres-
sion:

|ŷi|2 = |wH x̃|2 (1.30)

By using (1.28) to calculate the weights, we implicitly assume that the output
should be a real-valued quantity in (1.29). However by squaring this prediction
all the phase information gets lost, i.e. we don’t actually care if ŷi is almost real:
we care if the norm corresponds to the norm of the class label. This seemingly
insignificant detail puts too many constraints on the weight matrix w, possibly
eliminating better weight matrices which are not constrained by having to return

10This is in practice not always self-evident, depending on the application.

Machine LeaRning & NeuRomoRphic Computing 25

a real-valued prediction. Hence, the actual loss function we are interested in this
case looks as follows11:

LMSE =
1

2m

∣∣y − ∣∣wHX
∣∣∣∣2 . (1.31)

By enclosing the expression wHX into the expression for the complex norm | · |,
the complex valued weights w are free to take on any phase they need12. How-
ever, this loss function cannot result in a nice closed form solution as the infor-
mation loss due to the norm operation makes it non-invertible without assuming
a phase. An iterative method like gradient descent is necessary here.

1.3.6 Classification on noisy Boolean problems

As a simple illustration on how these linear classifiers can be used, we apply them
on two examples: a noisy AND function and a noisy XOR function13. When using
normal real-valued regression, one can find a boundary for the AND that linearly
separates the classes, as illustrated in Fig. 1.8a. When trying to to the same for
the XOR in Fig. 1.8b, we find practically the same boundary! This means that at
least one of the XOR clusters (in this case the cluster at (0, 0)) will bemisclassified.

0 1

0

1

0 1

(a) Noisy AND

0 1

0

1

0̂ 1̂

(b) Noisy XOR

Figure 1.8: (a) The noisy AND can be linearly separated. (b) The XOR has two clusters
that form a cross and can thus not be linearly separated as can clearly be observed

(points with different boundary color (prediction) than the inside color (ground truth)
are misclassified)

However, when we do the same with complex valued linear regression as
laid out in the previous section, we can find a boundary for the XOR. This is

11Note that this loss function obviously only works for y > 0: relabeling might be necessary.
12Note that this is different from selecting just real-valued weights, as a phase relation between

the elements of the weight matrix exists which has an influence on the magnitude
∣∣wHX

∣∣
13Both of these functions are very relevant for later chapters, as they serve as perfect benchmark

tasks for telecommunication applications.

26
Machine

LeaRning & NeuRomoRphic Computing

an important observation: the quadratic measurement of complex-valued fields
(taking the norm) is a non-linear operation. As the order of this operation is
quadratic, we are effectively able to find two linear boundaries at once: enough
to separate the XOR task!

0 1

0

1

0 1

(a) Noisy AND

0 1

0

1

0̂ 1̂

(b) Noisy XOR

Figure 1.9: When using complex weights, a boundary for the XOR can be found.

1.4 Dimensionality Reduction

When working with high-dimensional data, it is sometimes important to per-
form a dimensionality reduction technique to reduce chances of overfitting or
to figure out which dimensions (features) of the data are the most important.
There are two major linear dimensionality reduction techniques: principal com-
ponent analysis (PCA) and linear discriminant analysis (LDA). Both techniques try
to find a transformation for the features defining the data into as much as possi-
ble linearly uncorrelated variables. The approach of both techniques is however
different in the sense that PCA is an unsupervised technique, i.e. it does not know
or use the class labels, while LDA does use this information. Both techniques can
be very valuable, as they effectively rank the possible linearly independent linear
combinations of the features in order of importance.

1.4.1 Principal Component Analysis

As discussed above, PCA ranks the features in order of importance. But what is
importance? The PCA algorithm defines the most important features (eigenvec-
tors in fact) of the data to be the ones with the highest variance in the data as-
sociated to it. This choice becomes more clear when looking at figure Fig. 1.10a,
where the same cloud of points as before is plotted. Looking at this data, we
would probably say that the x-axis has more predictive power over the points
than the y-axis, as when the data is projected on either of the axes, the cloud

Machine LeaRning & NeuRomoRphic Computing 27

is projected over a much larger range of values on the x-axis than on the y-axis.
However, you do not need to stop there. In fact, PCA, looks at linearly indepen-

0 2 4 6 8 10
x

0

2

4

6

8

10

y

(a) Rank by variance

0 2 4 6 8 10
x

0

2

4

6

8

10

y
(b) PCA

Figure 1.10: (a) We see that the x-axis is more important than the y-axis, as the data
shows more variance along the x-axis. (b) However, the PCA algorithm goes a step

further and describes the data in a new basis defined by the orthogonal PCA
transformation. The order of the basis vectors is described by how well they describe the

data.

dent axes of the data, as illustrated in Fig. 1.10b. The first of these axes is the
axes that maximizes the variance, while the second axis is an axis perpendicular
to the first axis maximizing the variance as well given this constraint. For highly
dimensional data, this eventually leads to a collection of linearly independent
axes for the data with decreasing variance, i.e. importance. Each of these axes
describes a different linear combination of the initial features of the data.

Given this definition, PCA is often thought of as fitting an ellipsoid to a point
cloud. Using this definition, we say that each axis of the ellipsoid corresponds to
a principal component of the point cloud.

Mathematically, theweight vector defining the first principal component (the
component with highest variance) can be described as the weight vector with
unit norm that maximizes the covariance matrix [8] of X :

w1 = argmax
w

(
wT (X − X̄)(X − X̄)Tw

)
with wTw = 1 (1.32)

= argmax
w

(
wT cov(X)w

)
with wTw = 1 (1.33)

Inwhat follows, wewill assume X̄ (themean ofX over theB sample points) to be
zero, which can be achieved by a simple translation. The subsequent principal
components can then be obtained the same way by first subtracting the first
principle component weight vectors from X to ensure orthogonality:

Xwi = X −
i−1∑
j

wjw
T
j X (1.34)

28
Machine

LeaRning & NeuRomoRphic Computing

PCA now transforms X as follows:

X̃ =
(
wT

0 wT
1 · · · wT

N

)
X (1.35)

= WTX (1.36)

The transformed matrix X̃ can be related to the singular value decomposition
(SVD) [9] of X :

X = USV T (1.37)

Where U and V are matrices of which the columns are orthogonal unit vectors,
respectively called the left singular vectors and the right singular vectors. S is a
diagonal matrix consisting of the singular values, which are strictly positive and
— just like in PCA — ranked from large to small. Using this knowledge, it is not
difficult to see that

XXT = US2UT (1.38)

It is clear that (1.32) is only satisfied if w1 corresponds to the first column of U ,
w2 corresponds to the second column and so on. Therefore, we have W = U

and we get:

X̃ = WTX (1.39)

= SV T (1.40)

Since the SVD algorithm is a very efficient one, this representation for PCA is
preferred.

1.4.2 Linear discriminant analysis

When the class labels of the data points are known, PCA can be extended by
replacing the covariance of all the data pointsX , by the mean of the covariances
for each of the data points belonging to a class c:

cov(X) = (X − X̄)(X − X̄)T → 1

C

C∑
c=1

(Xy=c − X̄y=c)(Xy=c − X̄y=c)
T

(1.41)

This choice of covariance matrix will still optimize for basis vectors that max-
imize the variance inside classes, but the variance between classes is not taken
into account. This has the emergent result that data points resulting to differ-
ent classes will (hopefully) best be represented by different axes, subsequently
improving classification between the classes.

Machine LeaRning & NeuRomoRphic Computing 29

1.5 Artificial neural networks

Artificial neural networks (ANNs) are a beautiful brain-inspired programming
paradigm that allows a computer to learn from observational data. ANNs and in
particular its branch of deep learning have currently entrenched themselves as the
go-to method for problems like image recognition, natural language processing
and speech recognition.

However, this has not always been the case. Programming has traditionally
been a process of telling the computer exactly what it needs to do by breaking
the problem at hand up into many smaller well-defined tasks, each of which a
computer knows well how to solve.

The contrast with a neural network could not be bigger: when programming a
neural network, the programmer only decides on the architecture of the network
and then proceeds to give the network a large amount of examples and data,
hoping the network will figure out the relations between the data by itself to
eventually arrive at a solution to the problem. If the network does not succeed
to find a solution to the problem at hand, the programmer proceeds to tweak
some hyper-parameters or designs a new network architecture. This leads to
a very iterative design approach, which is inherently completely different from
traditional programming.

So what is a neural network? As mentioned before, a neural network is a
brain-inspired structure consisting of artificial neurons—often called the nodes of
the network — which are interconnected by artificial synapses called the weights
of the network.

x1

x2

x3

output

Figure 1.11: An artificial neural network node (neuron) with three inputs. All artificial
neurons always have a single output.

This picture of nodes andweights becomesmore clear when looking at a single
artificial neuron as depicted in Fig. 1.11. In an ideal case, such a neuron makes a
weighted sum of its input signals (x1, x2 and x3 in this case); if the sum is bigger
than a certain threshold value t, the output of the neuron is one, else its output
is zero. This sounds familiar! It sounds a lot like the perceptron model (1.18):
defined for a single output:

ŷ = sign
(
wTx

)
(1.42)

30
Machine

LeaRning & NeuRomoRphic Computing

Indeed, the perceptron model is one of the most basic ways to implement an
artificial neuron. This makes sense, as this model can be intuitively understood
as if it makes a decision (−1 or 1) depending on the features it finds important.

As we did for logistic regression, it is often useful to swap out the discontinu-
ous sign-function by a smoothened activation function:

ŷ = act
(
wTx

)
(1.43)

This activation can be anything you want. The most popular neuron activations
are the tanh (just like in logistic regression) and the Rectified Linear Unit (ReLU),
which is defined as follows:

ReLU(x) =
{
x when x > 0
0 otherwise

(1.44)

As the mathematical model underlying these artificial neuron is very rudi-
mentary, a single neuron will not be able to make any subtle decisions. However,
the idea is that a whole network like in Fig. 1.12, consisting of layers of individual
neurons feeding into layers of subsequent neurons will be able to do so.

outputinputs

Figure 1.12: An artificial neural network consists of nodes representing the neurons and
weights representing the synapses.

In such a neural network, each individual neuron in the first layer will thus
make decisions for the input signals it gets and transmit a signal if it finds the
input signals important enough to do so. Each subsequent layer will then too
weigh the outputs of previous layers and decide for itself which previous neuron
outputs it finds important. This kind of network or artificial neurons, where the
output of a previous layer of neurons is fed into the next layer of neurons is called
a Feed-Forward Neural Network (FFNN). In fact, this network belongs to a certain
subclass of FFNNs, called the Fully-Connected Neural Networks (FCNN). There,
every neuron in one particular layer of the network is connected to every neuron
in the next layer of the network. Note that although it looks in Fig. 1.12 like each
of these neurons has multiple outputs, this is not the case: the same output of
the neuron is transmitted to each of the neurons in the next layer.

Mathematically, the operation of a layer of N neurons, i.e. the parallel ex-
ecution of these neurons, on the output of a previous layer xi−1 of M neurons

Machine LeaRning & NeuRomoRphic Computing 31

can be expressed as follows:

xi = act(W iTxi−1). (1.45)

or when acting on a full batch X containing B feature vectors:

Xi = act(W iTXi−1). (1.46)

We see that the only difference with (1.43) is the fact that the weight vector is
replaced by a (M + 1) × (N + 1) weight matrix working in on the (M + 1)-
dimensional feature vectors xi−1 in the batch Xi−1. Written in terms of the
individual matrix components, this equation becomes:

xi
nb = act

(∑
m=0

wi
mnx

i−1
mb

)
(1.47)

= act
(
zinb
)

(1.48)

Where we defined zinb to be the weighted output of neuron n in layer i on the
feature vector with index b:

zinb =
∑
m=0

wi
mnx

i−1
mb (1.49)

This value is also called the logit of the neuron. It is a useful quantity when
discussing backpropagation.

1.6 Backpropagation

We have seen that for all but the simplest models we have to rely on iterative
techniques like gradient descent to find the minimum of the loss function. We
expect this to be the same for these complicated structures of interconnected
neurons. Indeed, gradient descent is the basis of neural network optimization.
However, applying gradient descent is not straightforward: how will you find
the gradient with respect to each parameter (weight) in the network? This is
where the backpropagation algorithm comes in.

Backpropagation was first proposed in 1986 [10] to optimize neural net-
works. Although it was being applied successfully at that time, due to a lack
of computing power the neural networks themselves were too small to do any-
thing interesting. It was only much later, in the early 2000s, after the computing
power reached a certain threshold that backpropagation became truly success-
ful as the backbone for optimizing very large neural networks in the field of deep
learning.

32
Machine

LeaRning & NeuRomoRphic Computing

The ultimate goal of backpropagation is to find an expression ∂L/∂wi
nm This

would allow us to update each of the weights like proposed in (1.15). Assume a
small variation dzin in the logit zin. This variation will propagate to the end of
the neural network such that the loss changes by a value

dL =
∂L

∂zin
dzin (1.50)

= δindzin (1.51)

Here we defined the value δin and call it the error each neuron makes on the loss
L:

δin =
∂L

∂zin
. (1.52)

The value for this error in the last layer of the network can easily be related to
the output of the last layer L of the network xL

i by applying the chain rule:

δLn =
∂L

∂xL
n

∂xL
n

zLn
(1.53)

=
∂L

∂xL
n

∂

zLn
act
(
zLn
)

(1.54)

It is now key to relate the error in the last layer to the layer before it. More
generally, we’d like an expression that relates the error in layer i+1 to the error
in layer i. This relation can again be found by applying the chain rule:

δin =
∑
m

∂L

∂zi+1
m

∂zi+1
m

∂zin
(1.55)

=
∑
m

δi+1
m

∂zi+1
m

∂zin
(1.56)

=
∑
m

δi+1
m

∑
k

wi+1
km

∂xi+1
k

∂zin
(1.57)

=
∑
m

wi+1
nm δi+1

m

∂

∂zin
act
(
zin
)

(1.58)

So it turns out, the way to relate the error at layer i to the error at layer i + 1

is to multiply the latter with its non-transposed weights (in contrast to using the
transposed weights in the forward pass) and the derivative of the activation.

There is one final piece of the puzzle missing to completely define the back-
propagation algorithm: the relation between the error at the neuron and how
the weights need to be updated. By a similar application of the chain rule, one
can show that:

∂L

∂wi
mn

= xi−1
m δin (1.59)

Machine LeaRning & NeuRomoRphic Computing 33

The backpropagation algorithm can be summarized as follows:

1. calculate the error δLn at each neuron of the output layer using (1.54).

2. calculate the error δin at each neuron of each layer using all the errors δi+1
m

of all the neurons at the next layer using (1.58).

3. calculate the gradient of the loss with respect to the weight ∂L/∂wi
mn by

using the error in that layer and the activation at the preceding layer by
using (1.59)

4. update the weights by an algorithm like gradient descent like in (1.15).

1.7 Recurrent neural networks

We introduced neural networks as a brain-inspired paradigm. However there is
a missing piece… When reading this paragraph, your human brain is capable
of relating words with preceding words, sentences with preceding sentences to
make up one coherent story in your mind.

One of the main disadvantages of feed-forward neural networks discussed up
until now is the fact that they cannot easily do this. They cannot find relations in
temporal data. A solution to this is the so called Recurrent Neural Network (RNN),
where feedback loops are introduced in the system: neurons in a certain layer can
now be connected to neurons in a previous layer. This way, information injected
into the RNN will stay in the network for a certain time and interact in the neu-
rons of the RNN with new information. This makes RNNs the go-to choice for
problems like speech recognition, time series prediction, image captioning, text
translation, text generation, and so on [11].

Whereas the topology of FFNNs are relatively limited (each layer of neurons
is supposed to be connected to the next layer of neurons), the architecture of re-
current neural networks can be as complex as youwant, as for example in Fig. 1.13.

The easiest way to implement a recurrent neural network, however, is to just
connect a FFNN onto itself, as is illustrated in Fig. 1.14. This allows data Xt

that entered at time step t to mingle with data entering the FFNN on a later
time step. In fact, this representation of an RNN is not much different than the
representation of a traditional feed forward neural network! Consider for exam-
ple the rolled-out version of this network, as illustrated in Fig. 1.15. This chain
of subnetworks reveals how a recurrent neural network is related to sequential
data.

However, choosing a recurrent neural network topology brings a lot of prob-
lems, especially for the backpropagation algorithm. As we have seen, during
backpropagation, the weight matrix is applied multiple times to the error at the

34
Machine

LeaRning & NeuRomoRphic Computing

outputsinputs

Figure 1.13: A recurrent neural network can have any topology

ŷt

FFNN

Xts

Figure 1.14: Connecting a FFNN onto itself is the easiest way to create a recurrent
neural network.

ŷ0

FFNN

X0

ŷ1

FFNN

X1

ŷ2

FFNN

X2

ŷT

FFNN

XT

…

Figure 1.15: When an RNN is rolled out, it becomes clear that it in fact has a similar
network structure as a deep neural network. However, the same subnetwork is used over

and over in conjunction to letting new data Xt in every time step.

Machine LeaRning & NeuRomoRphic Computing 35

output of the system. Since a recurrent neural network can be interpreted as
a neural network with an infinite amount of layers, this leads to either vanish-
ing or exploding gradient updates if the weight matrix is not carefully chosen
[12]. This vanishing/exploding gradient problem prevents the network to learn
relations on larger timescales [13, 14].

1.7.1 Long Short Term Memory

Long Short Term Memory (LSTM) cells [15], are intricate building blocks (like
the FFNN in Fig. 1.15) for constructing RNNs. They are especially engineered
to learn relations between input data on a short scale (e.g. generating the next
word in a sentence) and on a longer scale (e.g. generating the next sentence in an
essay). It is important to note that the LSTM cell does not solve the vanishing/ex-
ploding gradient problem. It is just a way of constructing a network that learns
on two timescales by keeping two internal cell states. The exact inner workings of
the LSTM are beyond the scope of this chapter, but it is important to note that
they arguably are the most successful software-based recurrent neural network
to date.

1.7.2 Reservoir computing

Reservoir computing (RC) is a technique that has been independently proposed
in the early 2000s by Jaeger [16] and Maass [17]. They called it the Echo State
Network (ESN) and the Liquid State Machine (LSM) respectively.

RC is considered a solution to the vanishing gradient problem that plagues
recurrent neural networks. However, as we will see, it is more of a workaround.
It is based on the principle that complex classification with a linear classifier
becomes easier in higher dimensions, a principle we briefly touched upon in 1.3.

The way this works is as follows: consider a recurrent neural network with
a completely random topology, like in Fig. 1.13. Instead of trying to train the
weights of this network, we just accept the fact that it is not feasible to train
such a network. However, we do use the network. Indeed, the network is very
useful because it exhibits amemory (due to its recurrent nature). It is this combi-
nation of memory and non-linearity that will transform a low-dimensional time
dependent input signal to a higher dimensional spatially dependent output signal.
As we know by now, we can use a simple linear classifier — which in the context
of RC is called the readout — to interpret such a high-dimensional output. The
advantage of this approach is that it is very general: multiple readouts can be
trained to extract different features from the reservoir.

We can formalize the reservoir computing approach [6] by saying that the
reservoir needs to exhibit a so-called fading memory, which means that the reser-
voir asymptotically forgets past inputs. On top of that, the reservoir needs to

36
Machine

LeaRning & NeuRomoRphic Computing

exhibit a mixing property : the internal dynamics of the reservoir should be rich
enough to enable a linear classifier to easily separate the different classes.

This recurrent neural network approach was proposed during a time that
other solutions like LSTMs were still very difficult to train and hence took off
quite rapidly as a valid approach for tackling time-dependent problems with re-
current neural networks without having to deal with vanishing/exploding gra-
dients. However, due to improving computing power, better optimization tech-
niques and improved intricate RNN architectures like the LSTM, training RNNs
has now become easy enough that reservoir computing is — in software — not
being used all that often anymore. However, when computing power is limited
or fast training times are important, reservoir computing remains relevant, as
under these constraints it can outperform the more intricate [over-]engineered
approaches like LSTMS [18, 19].

outputsinput

Wout
Win

Wres

Figure 1.16: A low-dimensional time-dependent input signal Xt gets distributed by an
[optional] input layer into the reservoir. Inside the reservoir, the signal mixes with

previous versions of itself due to the highly dynamic architecture of the reservoir. At
each time, [a part of] the reservoir state is read out by the readout to make a time

dependent prediction ŷt

For a reservoir such as the one depicted in Fig. 1.16, operating in discrete time
and for a certain sequence of inputs xt, the resulting reservoir states ut and the
corresponding readout values yt are given by the following formulas [20]:

ut = Winxt−1 + fres(Wresut−1) (1.60)

ŷt = fact(Woutut) (1.61)

Here, Win and Wres perform a fixed random linear combination on the input
states and the reservoir states respectively, while Wout performs the readout op-
eration by doing an application-dependent linear combination on the reservoir
states. Moreover, fres and fact are a non-linear activation functions. Often, the
non-linearity of the system is directly related to the difficulty of the tasks it can
solve. Luckily, it turns out that for the telecom applications we will be targeting
in this thesis not that much non-linearity is necessary. In fact, for the photonic
hardware implementations targeted here, it turns out the quadratic non-linearity

Machine LeaRning & NeuRomoRphic Computing 37

of the detector is good enough and the reservoir operation can be described as

ut = Winxt−1 +Wresut−1 (1.62)

ŷt = Woutfdet(ut), (1.63)

Where fdet, the detector operation, is the only non-linear element in the whole
system. These kind of reservoir systems are called passive reservoirs as there are
no non-linearities in the reservoir itself. Obviously their dynamics are less rich
but in general they make up for it in much higher operation speeds as we will
see in the following chapters.

The fact that a reservoir does not need to be trained makes it an ideal candi-
date for hardware implementations. Examples of such reservoirs include mem-
ristor networks, mechanical systems, networks of randomly connected boolean
logic gates and of course linear and non-linear photonic systems.

1.8 Photonic neuromorphic computing

1.8.1 Photonic reservoir computing

Backed by the promise of the ultra-high-speed and high-bandwidth signal prop-
agation of photonics, the reservoir computer has already found its way into
several optical hardware implementations. These photonic reservoir computers
roughly split into two kinds: the single-node reservoir, based on delayed feed-
back [20–25] and the photonic reservoir on chip [26–28].

The single-node reservoir is often highly non-linear and uses delayed feed-
back to get an interesting mixing of the input states. Because of the delayed
feedback, a single node can act as multiple virtual nodes by time-multiplexing
the input signal. Examples of such nodes include lasers, Mach-Zehnder mod-
ulators and electronic FPGAs. They have typically quite good performance on
several benchmark tasks but are usually much slower than on-chip integrated
photonic reservoirs, making them much less suited for telecom applications.

On-chip photonic reservoirs typically consist of an interconnection of mul-
tiple nodes on a photonic chip. These nodes can be anything ranging from
Semiconductor Optical Amplifiers [26] (SOA) to microring resonators to pho-
tonic crystal cavities [28]. Any structure that possesses a fading memory and
is mixing the signal sufficiently can be considered for (photonic) reservoir com-
puting.

One of the advantages of photonic reservoir computing is the possibility of
removing the non-linearity inside the reservoir in favor of a non-linear measure-
ment operation at the readout [20, 27]. These kind of reservoir computers are
called passive photonic reservoir computers, and exhibit ultra-high speed of op-
eration because of the absence of internal non-linearities. In fact, the operation

38
Machine

LeaRning & NeuRomoRphic Computing

speed is only limited by the operation speed of the final photodetector. Removing
the non-linearities inside the reservoir is of course only possible because we are
working with coherent light, which possesses an amplitude and a phase, which
— as we have briefly touched upon in 1.3.5 and 1.3.6 — results in a non-linearly
mixed magnitude on detection.

One of the main on-chip photonic reservoir architectures is the Swirl Reser-
voir [27], which gets its name from the architecture depicted in Fig. 1.17, for
which the node interconnections swirl in a clockwise manner. The swirl reser-

Figure 1.17: Swirl reservoir architecture with 16 nodes.

voir is a completely passive reservoir that has been quite successful for some
basic telecom benchmark tasks, such as the time-delayed XOR task and header
recognition. In the next chapter, we will see how we can improve the perfor-
mance of the swirl reservoir on these benchmark tasks by slightly breaking the
philosophy of reservoir computing and allowing some phases inside the reservoir
to be optimized by using backpropagation through the reservoir; something that
will only be possible by optimization through backpropagation.

One of the problems with the swirl reservoir and in fact most physical reser-
voirs which are built on a 2D surface, is the limited interconnection topology:
each node of the reservoir is only connected to its neighbors. One may ask if the
conventional node structure […] is in fact the best topology for such a photonic
reservoir, as for example in photonic cavities, light is able to mix continuously,
possibly introducing a much richer interconnection topology. This is one of the
topics that will be explored in depth in chapter 3 and 4, where we will abandon
the node structure of photonic reservoirs in favor of such photonic cavities.

Machine LeaRning & NeuRomoRphic Computing 39

1.8.2 Neuromorphic computing with unitary matrices

Another photonic neuromorphic computing paradigm that has recently emerged
is neuromorphic computing with unitary matrices. It is in fact well known that
any unitary matrix can be constructed from cascading MZIs in a staggered fash-
ion [29, 30], as is illustrated in Fig. 1.18. However, it is only more recently that

=

θ

0.5 0.5

φ

Figure 1.18: Any unitary matrix can be constructed from cascading multiple MZIs
together.

this knowledge got transferred to the domain of deep learning, were it was shown
that these mesh architectures exhibit excellent properties for constructing recur-
rent neural networks [31], as their unitary nature limits the exploding/vanishing
gradient problem. Due to these findings, these structures — although already
quite well known in photonics [32–34] — were recycled to be used as deep neural
networks in photonic hardware [35, 36]. We will explore these kind of networks
in a little more depth in the next chapter.

1.9 Conclusion

In this chapter we introduced most of the machine learning theory that will be
used in subsequent chapters. We started by introducing simple linear models
and worked our way up through non-linear models to neural networks to finally
arrive at recurrent neural networks and reservoir computing. We also briefly
touched upon two photonic neuromorphic computing paradigms — photonic
reservoir computing and photonic meshes — that will serve as the starting point
of the next chapters.

40
Machine

LeaRning & NeuRomoRphic Computing

References

[1] Robert Tibshirani. Regression shrinkage and selection via the lasso: a ret-
rospective. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(3):273–282, 2011.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[3] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gra-
dient by a running average of its recent magnitude. COURSERA: Neural net-
works for machine learning, 4(2):26–31, 2012.

[4] Yurii Nesterov. A method for unconstrained convex minimization problem
with the rate of convergence O (1/k^ 2). In Doklady AN USSR, volume 269,
pages 543–547, 1983.

[5] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[6] David Verstraeten, Benjamin Schrauwen, Michiel d’Haene, and Dirk
Stroobandt. An experimental unification of reservoir computing methods.
Neural networks, 20(3):391–403, 2007.

[7] Frank Rosenblatt. The perceptron: a probabilistic model for information stor-
age and organization in the brain. Psychological review, 65(6):386, 1958.

[8] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[9] GeneHGolub and Christian Reinsch. Singular value decomposition and least
squares solutions. In Linear Algebra, pages 134–151. Springer, 1971.

[10] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning
representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[11] Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks.
Andrej Karpathy blog, 21, 2015.

[12] Sepp Hochreiter. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

[13] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen.
Diploma, Technische Universität München, 91(1), 1991.

REFERENCES 41

[14] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks, 5(2):157–166, 1994.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[16] H. Jaeger. The ‘echo state’ approach to analyzing and training recurrent neural
networks. Bonn, Germany: German National Research Center for Informa-
tion Technology GMD Technical Report, 148:34, 2001.

[17] W. Maass, T. Natschläger, and H. Markram. Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural computation, 14(11):2531–2560, 2002.

[18] Herbert Jaeger. Echo state network. Scholarpedia, 2(9):2330, 2007.

[19] Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout. An
overview of reservoir computing: theory, applications and implementations.
In Proceedings of the 15th European Symposium on Artificial Neural Net-
works. p. 471-482 2007, pages 471–482, 2007.

[20] Quentin Vinckier, François Duport, Anteo Smerieri, Kristof Vandoorne, Pe-
ter Bienstman, Marc Haelterman, and Serge Massar. High-performance
photonic reservoir computer based on a coherently driven passive cavity. Op-
tica, 2(5):438–446, 2015.

[21] Lennert Appeltant, Miguel Cornelles Soriano, Guy Van der Sande, Jan
Danckaert, Serge Massar, Joni Dambre, Benjamin Schrauwen, Claudio R
Mirasso, and Ingo Fischer. Information processing using a single dynamical
node as complex system. Nature communications, 2:468, 2011.

[22] Yvan Paquot, Francois Duport, Antoneo Smerieri, Joni Dambre, Benjamin
Schrauwen, Marc Haelterman, and Serge Massar. Optoelectronic reservoir
computing. Scientific reports, 2, 2012.

[23] Laurent Larger, Miguel C Soriano, Daniel Brunner, Lennert Appeltant,
Jose M Gutiérrez, Luis Pesquera, Claudio R Mirasso, and Ingo Fischer. Pho-
tonic information processing beyond Turing: an optoelectronic implementa-
tion of reservoir computing. Optics express, 20(3):3241–3249, 2012.

[24] Daniel Brunner, Miguel C Soriano, Claudio R Mirasso, and Ingo Fischer.
Parallel photonic information processing at gigabyte per second data rates us-
ing transient states. Nature communications, 4:1364, 2013.

42
Machine

LeaRning & NeuRomoRphic Computing

[25] Laurent Larger, Antonio Baylón-Fuentes, Romain Martinenghi, Vladimir S
Udaltsov, Yanne K Chembo, and Maxime Jacquot. High-speed photonic
reservoir computing using a time-delay-based architecture: million words per
second classification. Physical Review X, 7(1):011015, 2017.

[26] Kristof Vandoorne, Wouter Dierckx, Benjamin Schrauwen, David Ver-
straeten, Roel Baets, Peter Bienstman, and Jan Van Campenhout. Toward
optical signal processing using Photonic Reservoir Computing. Opt. Express,
16(15):11182–11192, Jul 2008.

[27] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Ver-
straeten, B. Schrauwen, J. Dambre, and P. Bienstman. Experimental demon-
stration of reservoir computing on a silicon photonics chip. Nature commu-
nications, 5, 2014.

[28] Martin Fiers, Thomas Van Vaerenbergh, FrancisWyffels, David Verstraeten,
Benjamin Schrauwen, Joni Dambre, and Peter Bienstman. Nanopho-
tonic reservoir computing with photonic crystal cavities to generate periodic
patterns. IEEE transactions on neural networks and learning systems,
25(2):344–355, 2013.

[29] Michael Reck, Anton Zeilinger, Herbert J Bernstein, and Philip Bertani. Ex-
perimental realization of any discrete unitary operator. Physical review let-
ters, 73(1):58, 1994.

[30] William R Clements, Peter C Humphreys, Benjamin J Metcalf, W Steven
Kolthammer, and Ian A Walmsley. Optimal design for universal multiport
interferometers. Optica, 3(12):1460–1465, 2016.

[31] Li Jing, Yichen Shen, Tena Dubček, John Peurifoy, Scott Skirlo, Yann LeCun,
Max Tegmark, and Marin Soljačić. Tunable efficient unitary neural networks
(EUNN) and their application to RNNs. arXiv preprint arXiv:1612.05231, 2016.

[32] David AB Miller. Perfect optics with imperfect components. Optica, 2(8):747–
750, 2015.

[33] Jacques Carolan, Christopher Harrold, Chris Sparrow, Enrique Martín-
López, Nicholas J Russell, JoshuaW Silverstone, Peter J Shadbolt, Nobuyuki
Matsuda, Manabu Oguma, Mikitaka Itoh, et al. Universal linear optics. Sci-
ence, 349(6249):711–716, 2015.

[34] Antonio Ribeiro, Alfonso Ruocco, Laurent Vanacker, and Wim Bogaerts.
Demonstration of a 4× 4-port universal linear circuit. Optica, 3(12):1348–
1357, 2016.

REFERENCES 43

[35] Yichen Shen, Nicholas C Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-
Jones, Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk En-
glund, et al. Deep learning with coherent nanophotonic circuits. Nature Pho-
tonics, 11(7):441, 2017.

[36] Nicholas C Harris, Gregory R Steinbrecher, Jacob Mower, Yoav Lahini, Mi-
hika Prabhu, TomBaehr-Jones, Michael Hochberg, Seth Lloyd, andDirk En-
glund. Bosonic transport simulations in a large-scale programmable nanopho-
tonic processor. arXiv preprint arXiv:1507.03406, 2015.

2
Photontorch

Optimizing photonic circuits is hard. When designing photonic circuits one of-
ten has to take into account imperfect component models and variation in the
components, an effect that quickly grows when many of these components are
interconnected. Having a simulator that can deal with these imperfections and
can possibly compensate for such variation could undeniably be a great asset.

For this reason, a new photonic circuit simulator was developed, called Pho-
tontorch, which was built on top of the machine learning library PyTorch1 [1],
which tries to at least partially resolve these issues by enabling very efficient
optimization of photonic circuits by backpropagation through their physical pa-
rameters.

In this chapter, we will gradually construct the building blocks for creating a
photonic circuit simulator (and optimizer). The main focus of this chapter is to
introduce Photontorch as a framework to implement photonic models on top of
a machine learning library like PyTorch, in order to get speed-ups due to GPU
acceleration, as well as the capability to use machine-learning optimization tech-
niques for circuit design. The main aim of this chapter is not to implement the
most accurate dispersive circuit-solver. Rather, we will follow an approach simi-
lar to that of the commercially available simulator Caphe [2].

1PhotonTorch = Photon + PyTorch.

46 PhotontoRch

2.1 The wave equation

Every electromagnetic phenomenon can be described by Maxwell’s equations:

∇× E = −µ0µr
∂H
∂t

∇ · (ϵ0ϵrE) = ρ (2.1)

∇×H = J+ ϵ0ϵr
∂E
∂t

∇ · (µ0µrH) = 0, (2.2)

where — in the most general case — ϵr and µr are the relative permittivity and
permeability tensors respectively2. However, when working with simple linear
optics in a dielectric material (such as for most integrated optics), µr can be
considered to be 1, as a nonzero µr would imply a magnetic material. Similarly,
the charge and current density ρ and J can also be set to zero. Moreover, for
most materials and photonic structures, ϵr can be represented by a (piecewise)
constant3 scalar (instead of a tensor). Knowing all this, Maxwell’s equations can
be significantly simplified:

∇ · E = 0 (2.3)

∇ ·H = 0 (2.4)

∇× E = −µ0
∂H
∂t

(2.5)

∇×H = ϵ0ϵr
∂E
∂t

(2.6)

By taking the curl of the last two identities (2.5) and (2.6), and using the first two
identities (2.3) and (2.4), we get the electromagnetic wave equations:

∇2E = µ0ϵ0ϵr
∂2E
∂2t

(2.7)

∇2H = µ0ϵ0ϵr
∂2H
∂2t

(2.8)

These wave equations imply a propagation speed of

v = 1/
√
µ0ϵ0ϵr (2.9)

= c/n, (2.10)

where we substituted c = 1/
√
µ0ϵ0 as the speed of light in vacuum (ϵr = 1).

Performing this substitution implicitly also yields the relation between the re-
fractive index of the material — which is defined as the factor with which the
speed of light in a certain material is slower compared to the speed of light in
vacuum — and its relative permittivity ϵr :

n =
√
ϵr (2.11)

2More on that in Chapter 4
3This implies that ∇ϵr = 0

PhotontoRch 47

This yields for the wave equations in a dielectric material:

∇2E =
n2

c2
∂2E
∂2t

(2.12)

∇2H =
n2

c2
∂2H
∂2t

. (2.13)

2.2 Waveguide modes

Although the wave equations seem decoupled, they are not: E andH are coupled
through the curl equations (2.5) and (2.6). In waveguides and in general all struc-
tures with an axis of invariance (the propagation axis), the above wave equations
yield orthogonal modes, for which however at a discontinuity boundary condi-
tions apply. These boundary conditions arise from the Maxwell equations at the
interface between two different refractive indices.

Ea
∥ − Eb

∥ = 0 (2.14)

Ha
∥ −Hb

∥ = 0 (2.15)

ϵaEa
⊥ − ϵbEb

⊥ = 0 (2.16)

Ha
⊥ −Hb

⊥ = 0 (2.17)

where ∥ denotes a component parallel to the interface and ⊥ denotes a compo-
nent perpendicular to the interface.

The general idea for solving these coupled wave equations in this case is by
finding the (eigen)modes Ψ which still satisfy the (uncoupled) wave equation:

∇2Ψ(x, y, z, t) =
n(x, y, z)2

c2
∂2Ψ

∂2t
(x, y, x, t) (2.18)

Let us consider for example a waveguide, i.e. a structure that is invariant along
a certain direction. A general solution for a waveguide mode propagating in the
z-direction is:

Ψ(x, y, z, t) = A(x, y) exp (i(kz − ωt)) (2.19)

k is called the propagation constant or the wave number of the mode and is more
often expressed in terms of the effective index and the wavelength of the light:

β =
2π

λ
neff. (2.20)

Finding themodes and the corresponding effective indices analytically is beyond
the scope of this chapter. It suffices to know that for simplewaveguide structures,
viewing the waveguide as an approximate slab-structure is often sufficient to
find an approximate value for the effective index. For a more accurate value
for the effective index, or for more complicated waveguide structures, dedicated
numerical mode solvers are necessary.

48 PhotontoRch

2.3 Scattering matrices for linear components

In the previous section a short overview was given on how Maxwell’s equations
are used to describe optical systems. We briefly touched upon how this works
for a waveguide and — even without going into too much detail — we saw that
this is a quite tedious approach.

In fact, only for the simplest (and smallest) systems this is a feasible approach.
If the system becomes more complex, one often resorts to numerical approxima-
tions, like the Finite-Difference Time Domain (FDTD) method, which discretizes
Maxwell’s equations on a grid4. However, when simulating a whole circuit of
optical components, even the FDTD method becomes inconceivable.

However, this does not mean that the only option to figure out the behavior of
a large photonic circuit is to measure it. One can use the measured or simulated
properties of single component in the circuit to obtain the behavior of the larger
circuit. One way to do this is by the scattering matrix (S-matrix) formalism.

The S-matrix formalism considers each component in the circuit as a black
box, which relates the fields x′ leaving the component to the fields x entering the
component by a linear S-matrix. These S-matrices are then interlinked according
to the circuit topology5 to obtain the S-matrix of the larger circuit.

Consider the complex-valued optical state vector x, which describes the
phase and amplitude in each port of a component, i.e. in each input/output mode
of the component. If the component is linear, then — as also illustrated in Fig. 2.1
— the S-matrix accurately describes how the fields entering the component x are
related to the fields exiting the component x′.

x′ = Sx. (2.21)

However, this S-matrix cannot take any arbitrary form. There are in fact quite
some constraints on the S-matrix for most optical components.

The most important property of optical components is reciprocity. A compo-
nent is reciprocal if it is made from materials for which the permittivity ϵ and the
permeability µ are symmetric. Most — if not all — optical components satisfy
this requirement6. Reciprocity implies that transmission between port i and port
j does not depend on the propagation sense, hence we have:

S = ST (2.22)

4More on this in Chapter 4
5How this exactly works will be discussed later in 2.4 and 2.5.4
6Materials which are not reciprocal need to have magnetic properties and are often used for creat-

ing optical isolator: components that only transmit light in a single direction. However, the study of
these kind of components is beyond the scope of this work, hence reciprocity is assumed throughout.

PhotontoRch 49

x1

x′
1

x2

x′
2

x3

x′
3

x4

x′
4

comp

· · ·

Figure 2.1: In the S-matrix formalism, a component is considered a black box which
changes the input fields xi to the output fields x′

i.

Furthermore, for passive components, i.e. components that do not add energy
to the circuit, we have that |x′| < |x|, and thus:

xHx− x′Hx′ = xH(I − SHS)x ≥ 0, (2.23)

which implies that the matrix I − SHS is semi-positive definite. In the special
case of lossless components, the requirement (2.23) turns into an equality

SHS = I, (2.24)

implying that the action of a lossless passive component is unitary.

2.3.1 Waveguide S-matrix

1 2
wg

Figure 2.2: Waveguide schematic

The S-matrix of a lossless waveguide without reflection can be represented
by the following S-matrix, which follows from (2.19):

Swg =

(
0 exp(2πiλ neffL)

exp(2πiλ neffL) 0

)
, (2.25)

where L is the length of the waveguide, λ is the wavelength of the light and
neff is the (possibly wavelength-dependent) effective index of the waveguide; a
quantity that can be obtained from an eigenmode solver.

Looking at the form of the S-matrix, we see it makes sense: the field x1 at
port 1 becomes the output field x′

2 at port 2 and vice-versa. Moreover, a phase

50 PhotontoRch

factor proportional to the length of the waveguide is introduced, just like we
would expect.

If loss has to be taken into account, the S-matrix can be multiplied by a global
attenuation factor A. For example, for a waveguide with N dB/m loss7:

A(L) = 10−NL/20 (2.26)

2.3.2 Directional coupler S-matrix

1 2dc

34

Figure 2.3: Directional coupler (dc) schematic

A directional coupler is defined as a component that couples two waveguides
together. In terms of the four ports of this device, the S-matrix can be written
down as8

Sdc =


0 τ iκ 0
τ 0 0 iκ
iκ 0 0 τ
0 iκ τ 0

 (2.27)

This S-matrix satisfies (2.23). The parameters κ and τ can be related to the cou-
pling and transmission of the directional coupler. Although these parameters
could in principle chosen to be complex-valued, they are often represented by
real numbers, as — when building larger circuits — any additional phase can be
can be absorbed by a waveguide S-matrix. For the same reason, the directional
coupler is often considered to be lossless, which implies due to (2.24) that

τ2 + κ2 = 1, (2.28)

just like we would expect.
In practice, the phenomenological parameters κ and τ depend on all kinds

of different physical parameters, such as the coupling length of the directional
coupler, the gap between the waveguides and so on. Just like for the effective
index of a waveguide, it is often useful to abstract away a lot of those details
and distill the S-matrix down to its core properties, knowing that these abstract
parameters can always be related to physical properties if need be.

7The factor 1/20 is coming from the fact that we are working with light amplitude, not the inten-
sity (which would give a factor 1/10).

8Note that the port order as illustrated in Fig. 2.3 is important, as a different port order will result
in a differently ordered S-matrix. The two should always be defined together.

PhotontoRch 51

2.4 Circuits of linear components

When defining a circuit ofN components with S-matrices S1, S2, . . . , SN acting
on the incoming fields represented by the vectors x1, x2, . . . , xN , one can write
the collective action of these components as:

x′
1 = S1x1

x′
2 = S2x2

...
x′
N = SNxN

(2.29)

This can be put into matrix form by defining the joint S-matrix of all the com-
ponents to be the block-diagonal matrix with each block being the S-matrix of
each component individually.

S =


S1

S2

. . .
SN

 , (2.30)

In that way, when acting on all the fields at the same time, one retrieves (2.21),
i.e. the same S-matrix equation as for a single component:

x′ =


x′
1

x′
2
...

x′
N

 =


S1

S2

. . .
SN




x1

x2

...
xN

 = Sx (2.31)

Note that Sn and xn for n ∈ [1, N] are matrices and vectors themselves, and
thus we have for the total number of elements of the combined S-matrix, i.e. the
total number of ports P that P ≥ N .

However, this is not the complete story, as the above definition for the S-
matrix for multiple components does not include any connectivity information
between the components. To achieve this, a connection matrix C has to be de-
fined as well. The connection matrix describes instantaneous interconnections
between the ports of individual components, as is illustrated in Fig. 2.4. The C-
matrix thus describes how the output field vector x′ gets transformed back into
an input field vector x. Furthermore, it also describes how fields that do not
belong to the circuit, the external fields xext, are connected to the circuit:(

x
x′
ext

)
= C

(
x′

xext

)
= C

(
Sx
xext

)
(2.32)

Per definition, we have that C = CT as each connection is assumed bidirec-

52 PhotontoRch

4
5

1

3

2

8

6

C14 = C41 = 1

C68 = C86 = 1

7

C57 = C75 = 1
C23 = C32 = 1

S1

S2

Figure 2.4: A visual representation of (2.32): two components with S-matrices S1 (ports
1,2) and S2 (ports 3,4,5,6) are interconnected by a connection matrix C , which also

connects the rest of the ports to the output ports (7,8).

tional. Non-bidirectional connections can be implemented with non-reciprocal
S-matrices. Furthermore, the connection matrix can be split up into a part Cint
responsible for the interconnections between the individual components and a
part Cext that connects the leftover internal ports (which are not interconnected
to other components of the circuit) to the external circuit ports . This leads to
the following equation in terms of the split-up connection matrix:(

x
x′
ext

)
=

(
Cint Cext
CT

ext 0

)(
Sx
xext

)
. (2.33)

Note that the input fields of the circuit are the output fields of the external ports
and vice versa, hence the apparent (but correct) reversal of xext and x′

ext which
we define here to relate to the circuit (not to the output ports). This yields two
matrix equations, the first of which can be inverted such that we can find a
relation between the input and output fields of the circuit:

x′
ext = CT

extS(I − Cint)
−1Cextxext (2.34)

This equation is entirely independent of the internal fields x of the circuit, and
relates the fields coming into the circuit xext to the fields going out of the circuit
x′
ext in a linear way. This allows us to define the reduced S-matrix of a linear

circuit as follows:

Scircuit = CT
extS(I − CintS)

−1Cext (2.35)

This formula basically solves the circuit in the frequency domain and is an al-
ternative to the more traditional transfer matrix method [3]. Moreover, this is
a very useful formula as it allows to reduce the number of nodes (and thus the
memory requirements in simulation) of any linear photonic circuit.

2.4.1 Ring resonator S-matrix

To see how this scattering matrix formalism can be useful, let us consider a ring
resonator. A ring resonator can be considered to be a directional coupler which
is connected onto itself by a waveguide as illustrated in Fig. 2.5.

PhotontoRch 53

3 4dc

56

1 2
wg

Figure 2.5: A ring resonator consists of a directional coupler connected onto itself by a
waveguide.

Let us first address the more traditional way of approaching this problem.
In this ring resonator, light resonates inside the ring. As discussed in 2.3.1, the
change of amplitude of the light after transmission through the waveguide can
be described as

ϕ = S
wg
21 = S

wg
12 = A(L) exp

(2πi
λ

neffL
)

(2.36)

with A(L) a loss-factor depending on the length of the waveguide. Using this
knowledge, assume light is inserted into the ring resonator along port 6 in the
ring resonator illustrated in Fig. 2.5; the light will be coupled to port 4 with a
coupling efficiency iκ. After this, the light will enter the waveguide (along port
2). After transmission through the waveguide — resulting in the extra phase ϕ

from (2.36) — the light leaves the waveguide (at port 1) and enters the directional
directional coupler again through port 3, after which it gets transmitted to port 4
with a transmission efficiency τ . This process repeats over and over, which yields
for the light amplitude and phase at port 3 the following infinite sum:

x3 = x6iκϕ(1 + τϕ+ (τϕ)2 + · · ·) (2.37)

= x6iκϕ
1

1− τϕ
, (2.38)

which means that, to have the amplitude at the output of the ring resonator —
port 5— this quantity has to be multiplied one last time by iκ, while also adding
the direct straight connection (6 → 5), introducing a separate factor τ :

x5 = −x6κ
2ϕ

1

1− τϕ
+ τx6 (2.39)

= x6
τ − ϕ

1− τϕ
(2.40)

When substituting ϕ, this is recognized as the widely known transmission of an
all-pass filter:

xout =
τ −A(L) exp

(
2πi
λ neffL

)
1− τA(L) exp

(
2πi
λ neffL

)xin (2.41)

54 PhotontoRch

This approach is, however, tedious and prone to errors. Moreover, it does not
generalize well tomore complicated circuits. Let us see how the reduced S-matrix
approach handles this in a more general and systematic way.

Before we do anything, we need to modify Fig. 2.5 a bit. As discussed before,
the approach requires the unconnected internal ports to be connected to output
ports of the circuit, which in the new figure Fig. 2.6, are labeled as port 7 and 8.

3 4dc

6 5

1 2
wg

7 81 2

Figure 2.6: A ring resonator consists of a directional coupler connected onto itself by a
waveguide. The outputs of the directional coupler are coupled to the output ports 7 and
8, which after reducing the S-matrix can be relabled as port 1 and 2 of the ring resonator

circuit.

When the circuit is defined like this, we have a circuit with 8 ports: 6 internal
ports (the actual circuit) and 2 external ports. The joint S-matrix is defined as
the block-diagonal matrix of the 2 component S-matrices:

S =


0 ϕ 0 0 0 0
ϕ 0 0 0 0 0
0 0 0 τ iκ 0
0 0 τ 0 0 iκ
0 0 iκ 0 0 τ
0 0 0 iκ τ 0

 , (2.42)

The complete connection matrix of the circuit is defined as follows:

C =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


=

(
Cint Cext
CT

ext 0

)
(2.43)

When the equation for the reduced S-matrix (2.35) is applied, we get after some
derivations:

Sring =

(
0 − κ2ϕ

1−ϕτ + τ

− κ2ϕ
1−ϕτ + τ 0

)
, (2.44)

PhotontoRch 55

which corresponds perfectly with (2.39).
It is important to note however, that although this S-matrix is certainly cor-

rect in the frequency domain, it might be an incorrect representation in the time
domain. This is because when reducing the S-matrix, one implicitly assumes
no delays in the ring. When the delay of the ring itself is important, i.e. when
the bandwidth of the time-dependent signal is comparable to the bandwidth of
the ring resonator, a more elaborate port-reduction is necessary, which will be
introduced in 2.5.4.

2.4.2 Mach-Zehnder Interferometer S-matrix

TheMach-Zehnder Interferometer (MZI) is a typical building block of many pho-
tonic circuits. It is often used as a tunable directional coupler, as tuning the cou-
pling of a directional coupler directly is often infeasible to perform accurately.

The most general MZI is often defined as two 50/50 directional couplers con-
nected to each other by two waveguides with a mutual phase difference of 2θ,
while sometimes an additional input phase ϕ is also taken into account, as illus-
trated in Fig. 2.7.

3 4

6 5

1 2
φ

7 8
13

12

9 10

11
14

15

16

1

2

3

4
2θ

50/50 50/50

Figure 2.7: In simulation, a general MZI can be constructed from two waveguides and
two 50/50 directional couplers.

Applying the S-matrix reduction (2.35) on this circuit yields for its S-matrix:

SMZI = −ieiθ


0 0 −eiϕ sin(θ) eiϕ cos(θ)
0 0 cos(θ) sin(θ)

−eiϕ sin(θ) cos(θ) 0 0
eiϕ cos(θ) sin(θ) 0 0

 . (2.45)

Ignoring the global phase factor −ieiθ and just focusing on the matrix transfor-
mation M from ports (1, 2) → (3, 4), we have

M =

(
−eiϕ sin(θ) eiϕ cos(θ)

cos(θ) sin(θ)

)
, (2.46)

which is known as the most general representation of the SU(2) group [4],
which means that by cascading these components, one can create any unitary
matrix [5, 6], a property we will use later in section 2.8.4 to simulate a Unitary
Recurrent Neural Network (URNN) with photonic components in Photontorch.

56 PhotontoRch

2.5 Towards a general circuit

2.5.1 Delay-introducing linear components

When considering linear photonic components in the time domain, it is very
often the case that — although they act linearly — some components introduce
a delay. The simplest example of this is a waveguide, for which the S-matrix
accurately describes the phase change this component introduces, but not the
time delay.

To accurately simulate such components in the time domain, in principle,
proper Infinite Impulse Response (IIR) or Finite Impulse Response (FIR) methods
should be used. However, for many low-dispersive circuits, the approach fol-
lowed by Photontorch is to model each non-dispersive component at hand by a
single delay per port. The choice of only using a single delay per port of course
has the consequence that any Group Velocity Dispersion (GVD) and by extension
any higher order dispersion effects are not taken into account. To accurately and
efficiently model dispersive circuits, methods like vector fitting (VF) [7, 8] should
be used. As mentioned in the upcoming section 2.5.2, Photontorch is flexible
enough to incorporate alternative governing equations by an approach like VF
and to define a different non-linear component implementing those equations.
However, this was not the main focus of this chapter.

The most simple relation for a time-delaying component that can still be de-
scribed by an S-matrix is the following, where we assume the component or net-
work of components introduces a time-delay dt:

x′(t) = Sx(t− dt). (2.47)

However, this equation is not general enough, as in general each port p ∈ [1, P]

of a component or network of components can have a different delay:
x′
1(t)

x′
2(t)
...

x′
P (t)

 = S


x1(t− dt1)
x2(t− dt2)

...
xP (t− dtP)

 (2.48)

However, this is something that is quite easily solved by keeping a buffer inmem-
ory from where the relevant fields are sampled before applying the S-matrix. Let
us define the buffer operation to be:

B ⋆ x(t) =


x1(t− dt1)
x2(t− dt2)

...
xP (t− dtP)

 . (2.49)

PhotontoRch 57

Then, equation (2.48) becomes:

x′(t) = S (B ⋆ x(t)) (2.50)

In fact, one can argue that even this relation is not general enough, as one can
imagine a different delay for each interconnection between two ports. This can
be represented by a delay matrix D with a similar form as the S-matrix:

x′(t) = S (D ⋆ x(t)) (2.51)

This delay matrix would then basically introduce a different delay for each non-
zero element of the S-matrix.

In Photontorch by default, delays are implemented with the buffer operation
(2.50), as this operation can much more easily be parallelized and applied for the
whole circuit simultaneously (see also 2.6). Moreover, in most cases, the node-
based delay on the component level is sufficient anyway.

As a shorthand notation, we will write

x′(t) = S ⋆ x(t) (2.52)

Were S⋆ is a general notation for either one of the previous two operations. Note
that this operation obviously reduces to the instantaneous S-matrix operation
when every dtp = 0.

2.5.2 Non-linear components

So far, we have a decent framework for simulating linear components with and
without time delay. We can extend this even further to include non-linear time-
dependent components, i.e. components for which the action changes with time.
These kind of components can often be described by an internal state u, which
is governed by an ordinary differential equation (ODE):

∂u

∂t
(t) = f(t, u, x) (2.53)

This ODE depends on time, the internal state u and the incoming fields x. An
equation like this can be turned into an update equation by using Euler or Runge-
Kutta integration. On top of the ODE, one needs a second relation, which relates
the internal state of the component to the outgoing field amplitudes x′:

x′ = g(t, u, x). (2.54)

For many non-linear components, such as Semiconductor Optical Amplifiers
(SOA) the relation g turns out to be an exponential relationship which only de-
pends on u [9]. This, of course, has the nice interpretation that the internal state
can be interpreted as the gain of the SOA.

58 PhotontoRch

2.5.3 Network terminations

When discussing the circuit of linear components in 2.4, we introduced the con-
cept of network output nodes. In the discussion there, they were treated dif-
ferently from the real network nodes, which are part of the components of the
network. However, it is sometimes useful to think of these output nodes as com-
ponents themselves, which are described by the following relation:

x′(t) = s(t). (2.55)

Here, s(t) is a time-varying source-function. This, in fact, looks like a simplified
version of equation (2.54) above with the sole difference that it does not depend
on an internal state, nor does it depend on incoming or outgoing fields, which
means that the S-matrix describing such a component is zero. We’ll call these
kind of components network terminations as they act as a sink to all fields coming
in due to their zero S-matrix and as a source due to the possibly non-zero source
term s(t).

2.5.4 A general circuit

Taking everything we have seen so far into account, we can propose a general
relation between input fields and output fields of a possibly non-linear and time-
dependent circuit:

x′(t) = S ⋆ x(t) + g (t, x(t), x(t− dt), . . .) (2.56)

Also, just like for the linear circuit, we can define the connection matrix C to
map the outgoing fields back onto the ingoing fields:

x(t) = Cx′(t) (2.57)

When using terminations for every open port in the circuit, we must have that∑
i

Cij =
∑
i

Cji = 1 ∀j, (2.58)

which means that the network cannot be connected to other components, as
it has no free ports left. We will call a network like this fully-connected. For
these kind of networks, we can find a rearrangement of the ports in such a way
that they are split up into memory-less (ml) ports, i.e. ports that only rely on
an instantaneous S-matrix operation and memory-containing (mc) ports, which
are all other ports belonging to components which are time-delayed and/or non-
linear:(

xml

xmc

)
=

(
Cmlml Cmlmc

Cmcml Cmcmc

)(
Smlml 0
0 Smcmc

)
⋆

(
xml

xmc

)
+

(
0
g

)
(2.59)

=

(
Cmlml Cmlmc

Cmcml Cmcmc

)(
Smlmlxml

Smcmc ⋆ xmc

)
+

(
0
g

)
(2.60)

PhotontoRch 59

For these kind of top-level networks, the number of ports can be reduced just
like in the purely linear case by using the fact that the ml part of the equation
is independent of time and thus can be inverted into an equation which only
describes the connectivity behavior between the mc ports to which a generalized
source term g is added:

xmc =
(
Cmcmc + Cmcml · Smlml · (1− CmlmlSmlml)

−1
Cmlmc

)
Smcmc ⋆ xmc + g

= C̃Smcmc ⋆ xmc + g, (2.61)

Here we can define the reduced connection matrix C̃ as:

C̃ =
(
Cmcmc + Cmcml · Smlml · (1− CmlmlSmlml)

−1
Cmlmc

)
, (2.62)

which describes all the instantaneous connections in the circuit9. Note that al-
though the name implies that it is a connection matrix, this reduced connection
matrix is not a binary matrix: it contains all the S-matrix information of the
ml nodes as well. We have now that Smcmc⋆ only encodes delayed interactions.
Moreover, if we assume that g also only encodes delayed interactions10, then the
right hand side of (2.61) only depends on times in the past:

xmc(t) = C̃Smcmc ⋆ xmc(t) + g(t, x(t− dt), ...) (2.63)

This means that we have found an update equation for time domain simulations.
In the following, we will drop the superscripts and work only with the mc nodes,
assuming the reduction is already performed.

2.5.5 Carrier Modulation

A simplification that is often made is to simulate only the envelope of the signal
by ignoring the carrier frequency eiωt. Especially for single-frequency signals,
this is a practical approach as it allows for a much larger time step to be used
in simulation. For signals with a certain bandwidth, these carrier frequencies
should be included as otherwise the carrier frequency beating will be ignored;
an effect that is important when studying non-linear optical effects such as four-
wave mixing.

2.5.6 A double ring in the time domain

To see how accurate the currently implemented circuit approach is in the pres-
ence of group velocity dispersion, we simulate the double-ring circuit visualized

9This expression contains an inverse, which is almost never a good idea to perform explicitly. In
stead a (differentiable) solver is used.

10Most realistic non-linear photonic components introduce a delay anyway.

60 PhotontoRch

in

through

add

drop

Figure 2.8: A double ring add-drop filter. The first ring has a circumference of 20µm,
while the second ring has a circumference of 20.01µm.

in Fig. 2.8 in the time domain and compare the time traces to the time traces of an
identical circuit simulated with Lumerical Interconnect, which uses an FIR-based
approach.

0 25 50 75 100 125

Time [ps]

0.00

0.01

0.02

0.03

A
m
pl
it
ud

e

I

Q

(a)

0 25 50 75 100 125

Time [ps]

0.00

0.01

0.02

0.03

A
m
pl
it
ud

e

PT 0

IC 0

(b)

0 25 50 75 100 125

Time [ps]

0.00

0.01

0.02

0.03 PT 0

IC 30

IC 100

(c)

Figure 2.9: (a) 4-QAM modulated input sent through the double ring circuit.
(b) Response without GVD for Photontorch (PT) and Interconnect (IC). (c) Response
with GVD for Interconnect (30 and 100 ps/(nm · km)) compared to the Photontorch

response (no GVD).

The structure simulated has two rings with slightly different circumferences
(20.00µm and 20.01µm respectively). The rings have an effective index of 2.35
and a group index of 4.3 at a wavelength of 1550 nm. A 4-QAM modulated input

PhotontoRch 61

signal (shown in Fig. 2.9a) is sent through the circuit and the responses are shown,
respectively for no GVD (Fig. 2.9b) and GVD = 30 ps/(nm · km) and GVD =

100 ps/(nm · km) (Fig. 2.9c).
It is clear that, for a dispersive circuit like the ring-circuit here, having a simu-

lator that accurately models the group velocity dispersion is important for higher
values of the dispersion.

2.6 Highly parallel simulations with Photontorch

As of 2019, there are a handful of simulators for designing photonic integrated
circuits, such as Aspic [10], Luceda Caphe [2], Lumerical Interconnect [11] and
VPI Photonics [12]. All are excellent circuit simulation tools for their particu-
lar purpose. However, some of these photonic circuit simulation tools are not
well suited for parallel simulations and for many of them, optimizing a circuit
means nothing more than just sweeping the parameters, which quickly becomes
unwieldy when the number of parameters or components in the circuit starts to
grow.

Photontorch, however, is written in Python and uses PyTorch tensors [13] to
describe the parameters and S-matrices of the components. PyTorch tensors are
highly optimized arrays, which, as opposed to the more commonly used Numpy
ndarrays [14], can be placed on the Graphical Processing Unit (GPU) of a com-
puter, automatically enabling highly parallelizable simulation of photonic cir-
cuits simulations.

However, to harness the true power of those GPUs, some modifications to
the update equation (2.63) need to be implemented. The main difference be-
ing that the field vector x inside the circuit will be defined in Photontorch as a
multidimensional tensor with two extra dimensions: the number of wavelengths
or modes m and the number of simulations done in parallel, i.e. the number of
batches b. Think of the latter as the result of multiple different input waveforms,
computed in parallel.

Furthermore, the wavelength dependence of the S matrix requires us to de-
fine a different S matrix for the circuit for each wavelength or modem, resulting
in a 3d tensor with one of the dimensions the number of wavelengths. The par-
allelized version of the update equations (2.63) for a network with N memory
containing nodes becomes in this case:

x(q+1)mnb =

N∑
i

N∑
j

C̃mniSmij ⋆ xqmjb + g(qdt, x(q−1)mnb, . . .), (2.64)

Here, we made the additional discretization in time such that

xqmnb = xmnb(qdt). (2.65)

62 PhotontoRch

in

through

drop

add

Figure 2.10: A CROW is an add-drop filter with extra rings. Each CROW with n rings
has n+ 1 couplings (red) and n phase shifts (blue).

This parallelization means that as long as the GPU-memory is not full, one can
increase the number of simulations done in parallel both in the frequency do-
main (number of wavelengths/modes) and in the time domain (number of dis-
tinct input waveforms or batches) without much overhead, which is especially
important during optimization of circuits.

Note furthermore that one can parallelize both over the modes and batches
at the same time, which is especially useful for time domain simulations if the
responses of different waveforms at different wavelengths need to be evalu-
ated at the same time. Furthermore, since wavelengths are evaluated simul-
taneously, nothing is stopping us from defining wavelength-mixing (non)linear
components.

2.7 Performance metrics

In this section, the performance of CPU-based computation will be compared
to the performance of GPU-based computation. We will make a distinction be-
tween parallelized execution, where the update equations (2.64) are followed,
and non-parallelized execution, where the update equations (2.63) are followed.
In the latter case, each additional wavelength or batch has to be sent through
the circuit in sequence, which will increase the simulation time linearly with a
unit slope.

We choose to benchmark the performance by simulating the large Coupled
Resonator Optical Waveguide (CROW) illustrated in Fig. 2.10. A CROW is a
good circuit for benchmarking simulation speed, as it allows to easily add new
rings to increase the difficulty of the simulation. Other parameters that can
be tweaked during a CROW circuit simulation are the number of wavelengths
simulated simultaneously and the number of parallel simulations performed at
once (batched execution). All simulations were performed on a normal desktop
computer with an Intel i7-4790K CPU with 16GB RAM. For the GPU simulations
we used an Nvidia GTX-1060 (6GB) GPU.

We first simulate a CROW formultiple wavelengths in the frequency domain.
In Fig. 2.11a, we clearly see an almost linear behavior in terms of the GPU per-
formance after adding additional rings to the network, whereas CPU simulation

PhotontoRch 63

0 200 400 600 800 1000 1200

Rings

0

5

10

15

20

Ti
m
e
to

si
m
ul
at

e
[s
]

(c)(b)

(a)

GPU [1λ]

GPU [2λ]

GPU [3λ]

GPU [4λ]

GPU [5λ]

CPU [1λ]

CPU [2λ]

CPU [3λ]

CPU [4λ]

CPU [5λ]

0 250 500 750 1000

Wavelengths

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m
e
to

si
m
ul
at

e
[s
]

(b)

GPU

CPU

CPU [sequential]

1 2 3 4 5

Wavelengths

0

5

10

15

20

Ti
m
e
to

si
m
ul
at

e
[s
]

(c)

Figure 2.11: Simulation times to simulate a CROW circuit in the frequency domain. (a)
A CROW simulated on a GPU shows an almost linear increase in simulation times,
whereas CPU simulation times increase much faster. (b) We can zoom in on the

beginning of this graph, where we simulate a CROW with just 10 rings, but for many
waveguides simultaneously. We see that especially in this regime, being able to simulate

for many wavelengths concurrently yields enormous benefits over the sequential
simulation approach often used by other frameworks. (c) Even when the number of

rings increases to 850 it stays more interesting to use the concurrent approach.

64 PhotontoRch

0 100 200 300

rings

0

10

20

30

40

ti
m
e
to

si
m
ul
at

e
[s
]

(a)

GPU [1λ]

GPU [3λ]

GPU [6λ]

CPU [1λ]

CPU [3λ]

CPU [6λ]

wavelengths
246

8
10

batches
0 20 40 60 80 100 ti

m
e
to

si
m
ul
at

e
[s
]

2

4

6

8

10

(b)
GPU

CPU

Figure 2.12: Using a GPU becomes even more appropriate when simulating in the time
domain. (a) Here, the performance was tracked for a single simulation (batch) of 2000
time steps for 1, 3 and 6 wavelengths at once respectively. (b) The performance for

simulating a 10-ring CROW for multiple wavelengths and multiple parallel simulations.

time increases much faster. This is of course because simulating the frequency
domain response of a circuit basically comes down to calculating the reduced
connection matrix (2.62) of the circuit, something that becomes quadratically
more difficult for an increasing number of nodes. Due to its inherent parallel na-
ture, this operation can be done more efficiently on a GPU. Moreover, simulating
additional wavelengths at once is always faster than the sequential simulation,
as can be seen in Fig. 2.11b and Fig. 2.11c.

To benchmark the time-domain performance, we chose to simulate a CROW
for 2000 time steps for an increasing number of rings and wavelengths, as can
be seen in Fig. 2.12a. It is clear from this figure that simulation times for the
CPU start to approach the unit slope early on, while for the GPU this transition
happens a lot later.

When simulating just 10 rings formultiple batches andmultiple wavelengths,
we clearly see in Fig. 2.12b that the GPU performance is barely affected.

The simulation time for the 10-ring CROW for a single wavelength and sin-
gle batch on a CPU using just one core is about 200ms. Assume now that we
want to perform 100 simulations (batch size of 100) at once, each for 10 different
wavelengths. The naive sequential execution would result in a 200 s execution
time, while the parallelized execution times clock down at 10 s and 1 s for the
CPU and GPU respectively, as can be seen in Fig. 2.12b. This means that we get
up to a 200× speed-up for the GPU, while even for the CPU a speed-up of 20×
can be achieved because of the efficient multi-threading.

The performance of Photontorch (both onCPU andGPU) for simulating such

PhotontoRch 65

64 128 256 512 1024

rings

1

10

100

si
m
ul
at

io
n
ti
m
e
[s
]

Photontorch [CPU]

Photontorch [GPU]

Interconnect

Caphe

(a)

64 128 256 512

rings

1

10

100

si
m
ul
at

io
n
ti
m
e
[s
]

(b)

1 2 10 20 40 100

wavelengths

1

10

100

1000

si
m
ul
at

io
n
ti
m
e
[s
]

(c)

1 2 10 20 40 100200400

batch size

1

10

100

1000

si
m
ul
at

io
n
ti
m
e
[s
]

(d)

Figure 2.13: The performance for Photontorch simulating a CROW, both in the
frequency domain and the time domain, was also compared to Lumerical Interconnect

and Caphe. (a) The time needed to find the frequency response for a CROW of
increasing number of rings. The performance of Photontorch lies somewhere in between

the Caphe and Interconnect. (b) The time needed to do a time-domain simulation of
3000 time steps for an increasing number of rings. The simulation time of Photontorch
is practically zero up to about 100 rings. (c) Performance for a multi-mode time-domain

simulation for a CROW of 64 rings and an increasing number of wavelengths. (d)
Performance for a time-domain simulation of a CROW with 64 rings for a single

wavelength but for an increasing number of input waveforms (batch size).

66 PhotontoRch

a CROW was also compared to other photonic simulators, such as Lumerical
Interconnect and Luceda Caphe.

First, the response of a CROW in frequency domain was calculated. For this
task, Photontorch is outperformed by Caphe, but performs significantly better
than Interconnect, as can be seen in Fig. 2.13a. Caphe performs better in this
regard due to its possibly more efficient solver to solve for a large system of
equations necessary to find the reduced connection matrix of the CROW11. This
solver utilizes a factorization method for sparse systems [2], which is currently
not available in Photontorch’s PyTorch backend, but could conceivably be added.

However, once the reduced connectionmatrix for the circuit is found, Photon-
torch vastly outperforms both Caphe and Interconnect in time-domain simula-
tions of the CROW, as can be seen in Fig. 2.13b-d, where a CROW was simulated
for 3000 time steps. Indeed, in Fig. 2.13b, one sees that Photontorch outperforms
both Caphe and Interconnect for a time-domain simulation of a CROW with
an increasing number of rings. Moreover, simulating additional wavelengths at
once for a CROW with 64 rings is always faster than the sequential simulation
required by Caphe and Interconnect, as can be seen in Fig. 2.13c. Similarly, sim-
ulating multiple input wave forms at once (batched execution) for a CROW with
64 rings at a single wavelength generates almost no overhead in Photontorch,
especially on a GPU, as can be seen in Fig. 2.13d. Note however that Intercon-
nect uses an FIR-based approach, which — as we’ve seen in 2.5.6 — can be more
accurate than the Caphe/Photontorch approach.

2.8 Optimization of photonic circuits through
backpropagation

Apart from its parallel nature, Photontorch can also be used to efficiently opti-
mize large photonic circuits through backpropagation. As we have seen in 1.6,
backpropagation is a well-established optimization method which is tradition-
ally used to optimize the many parameters of large deep neural networks. Many
deep learning frameworks exist today to help with the process of backpropa-
gation. Generally speaking, these deep learning frameworks keep track of the
gradients of each operation and of the order of operations (the computational
graph) to enable automatic backpropagation.

Photontorch uses exclusively PyTorch [13] operators and data structures,
which means that for each circuit operation, PyTorch will know how to perform
the backpropagation through it. This allows us to optimize complex photonic
circuits as if they were recurrent neural networks. This is a completely new op-
timization paradigm for physical systems enabled by the rapid advancement of

11To preserve differentiability, Photontorch is required to use a standard PyTorch solver.

PhotontoRch 67

deep learning. This way of optimizing photonic circuits is in many cases vastly
more efficient than sweeping the parameters of the circuit or optimizing through
genetic algorithms, as a much smaller portion of the parameter space has to be
explored.

Photonic circuits are typically recurrent in nature, which will have an effect
on how effective backpropagation is, as exploding gradients and vanishing gra-
dients are common problems for large recurrent neural networks [15]. In deep
learning these problems are often solved by using specialized recurrent mod-
ules such as the well-known Long Short-Term Memory (LSTM) cell [16] or the
Gated Recurrent Unit (GRU) [17]. However, recent advances have shown that
recurrent deep learning with unitary matrices [18, 19] do not suffer from these
problems. Lossless photonic components are per definition unitary, which will
allow us to still find a suitable optimum for many circuit optimization problems
through backpropagation. In the case of lossy structures, the losses are typically
low enough to consider the photonic circuit quasi-unitary.

We show the relevance of this optimization scheme by optimizing a CROW
in the frequency domain to act like a band-pass filter. We further show that
the optimization can also be applied in the time domain. To illustrate this, we
optimize some parameters and weights of a photonic reservoir computer [20].
As it will turn out, having a photonic circuit for which the action is differen-
tiable will turn out to be very useful to obtain some connection weights between
two cascaded reservoirs. Finally we show that this framework can also be used
to optimize optically implemented unitary matrices by training a network of
cascaded MZIs [5, 6, 19, 21, 22] to perform the permuted pixel-by-pixel MNIST12

digit recognition task [19, 23], a well-known machine learning benchmark task
for recurrent neural networks. Implementing and tuning large networks like this
in photonics is not yet easy, however these photonic structures can serve as inspi-
ration for different architectures of neural networks [19, 22] to be implemented
in software, which can be designed by Photontorch.

2.8.1 Optimizing a CROW in the frequency domain

We use the CROW defined before (in 2.7) to create a band pass filter around
λ0 = 1555 nm. We assume the CROW, as illustrated in Fig. 2.14, has 10 rings,
each with a radius of 8µm. After optimizing both the phases and the couplings,
we find an optimum through gradient descent, as can be seen in Fig. 2.15.

Note that this bandpass filter is probably not the best bandpass filter one can
achieve. Due to the recurrent nature of the circuit, there is a very real chance

12This task is named after the MNIST (Modified National Institute of Standards and Technology)
database of over 50,000 handwritten digits. It’s arguably the most well-known machine learning
dataset to date and (in it’s permuted pixel-by-pixel form) an excellent benchmark task for recurrent
neural networks.

68 PhotontoRch

2πr
4 2πr

4

2πr
4

2πr
4

Figure 2.14: A CROW circuit in Photontorch with ring radius r is built up from several
directional couplers for which each arm has a length of 2πr/2. These directional

couplers with non-zero arm length are basically Photontorch sub-circuits containing 4
waveguides (each with length 2πr/4 connected to each of the ports of the directional

coupler without length).

1530 1540 1550 1560 1570 1580

Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
is
si
on target

add

pass

drop

Figure 2.15: The parameters for a CROW-based bandpass filter can be obtained
through backpropagation.

that the optimization through backpropagation got stuck in a local optimum.
However, that is besides the point, as the real power is that a decent optimum
was found without having to study the rings themselves. Indeed, we do not
need to know the Free Spectral Range (FSR) of the rings, neither do we know
the Full Width at Half Maximum (FWHM) to carefully craft a solution. We just
define a CROW and let the optimizer find the necessary parameters in less than
a minute13. If we were interested in a different wavelength range or a different
bandwidth of the filter, we just need run the optimizer with a different target
function.

13On a Nvidia GTX160 GPU.

PhotontoRch 69

2.8.2 Optimizing a ring network in the frequency domain

The CROW is a photonic circuit for which many analytical solutions exist and
hence is probably not the most interesting example. However, the analytical
approach becomes significantly more cumbersome when the network gets more
complex. A step up in complexity from the 1D CROW structure is a for example
the 2D ring network14 shown in Fig. 2.16.

Figure 2.16: A ring molecule on a square lattice with rings of radius r can be built up
from the same basic building blocks as a CROW organized in a staggered way. This

time, the arm length of each of the directional couplers is 2πr/4.

In the ring network, 50µm rings with effective index neff = 2.34 and group
index ng = 3.4 are placed on a 6× 6 grid. Light is injected anti-clockwise in the
top right ring and the the clockwise output at the bottom left ring is optimized to
correspond to a bandpass filter. Each directional coupler in the network can be
modeled by a coupling and an additional phase factor at one of its 4 arms, which
for the 6× 6 network yields 168 independent parameters that can be optimized.

Just like for the 1D CROW, the 2D Ring network is quite easily optimized
for the target at hand, as can be seen in Fig. 2.17. When looking at the final
transmission at a log scale, as illustrated in Fig. 2.18, it is clear that what we have
found is probably not a global optimum, as the extinction ratio (ER) is definitely
not great right next to the pass band. However, here we make the same remark
as before: in these kind of optimizations, the universality of the optimization is
very powerful; something that probably will be more clear after an optimization
in the time domain.

2.8.3 Optimizing a ring network in the time domain

Take for example a set of 1000 measured pulses of two distinct types, as illus-
trated in Fig. 2.19a. Both pulse types have a Gaussian-like profile, but the second
one is modulated by a certain high frequency.

14Also sometimes called a ring molecule.

70 PhotontoRch

1550 1555 1560
Wavelength [nm]

0.0

0.5

1.0

Tr
an

sm
is
si
on

(a) Initial transmission

1550 1555 1560
Wavelength [nm]

0.0

0.5

1.0

Tr
an

sm
is
si
on

(b) Final Transmission

Figure 2.17: After some optimization, the ring network can easily be optimized as a
bandpass filter.

1550 1555 1560
wavelength [nm]

−40

−20

0

Tr
an

sm
is
si
on

[d
B
]

target
out

Figure 2.18: Transmission of the output port of the ring network on a logaritmic scale.

PhotontoRch 71

The goal is now to recognize these pulses by simulating and optimizing a
ring network. A traditional way to do this could be with an optimization in the
frequency domain which finds a bandpass filter that filters out the modulation
frequency of the second pulse. However, this is a highly engineered-approach.
Instead, we choose to brute-force optimize this directly in the time domain. In-
deed, we will simulate a 3× 3 ring network for which the ring delay corresponds
to the pulse length (T = 1 ns), which for an effective index of neff = 2.4 and a
group index of ng = 4.3 yields a quite large ring length of 1.4mm. Simulating
the circuit is done with a timestep of 1 ps as this corresponds to the sampling rate
of the input signal. […] The network is optimized to follow the target function
as illustrated in Fig. 2.19a. After some training, the detected signal follows the
target function quite well, as can be seen in Fig. 2.19b

0 500 1000 1500 2000

time [ps]

0.0

0.5

1.0

1.5

2.0

si
gn

al

0.00

0.25

0.50

0.75

1.00

ta
rg

et

signal target

(a)

0 1 2 3 4 5 6 7 8 9 10

time [ns]

0

1

2

In
pu

t
[m

W
]

0.00

0.05

0.10

O
ut

pu
t
[m

W
]

(b)

Figure 2.19: Pulse classification of two types of pulses. (a) The two pulses with their
respective target function. (b) A stream of 10 pulses before entering and after leaving the

(trained) ring network.

By looking at the resulting response in the frequency domain in Fig. 2.20,
we see a whole different response than anything anyone would have strived to-
wards if traditional optimization techniques would have been used. This proves

72 PhotontoRch

that Photontorch can be a valuable help during the design and optimization of
photonic circuits, as it opens pathways to places in the parameter space that
would not have been considered otherwise.

1549.5 1550.0 1550.5

Wavelength [nm]

0.00

0.25

0.50

0.75

1.00

In
te
ns

it
y
[a

.u
.]

Figure 2.20: Frequency response of the 3× 3 ring network optimized to recognize two
different pulse types.

2.8.4 Optimizing photonic meshes

Optically implemented unitary matrices were first proposed by Reck et al. [5]
in 1994 and were recently further improved upon by Clements et al. [6]. This
led to a proof-of-concept of photonic deep learning [22], which is not only di-
rectly applicable in photonics, but also in the field of deep learning itself, where
it was shown that these photonics-inspired Unitary Recurrent Neural Networks
(URNN) can yield better results in recurrent architectures [19] than the more
traditionally used Long Short-Term Memory (LSTM) cells [16], as they do not
suffer from common problems in recurrent neural networks, such as vanishing
gradients [15].

In 2.4.2, we mentioned that the MZI has an S-matrix which corresponds to
the most general representation of the SU(2) group. Let us choose this compo-
nent as our building block for creating a general unitary matrix. To create such
a matrix, we will cascade the MZIs together as illustrated in Fig. 2.21 to create a
mesh-like structure, hence their name: photonic meshes. The number of consec-
utive MZI layers in such a photonic mesh is — in the context of photonic deep
learning — sometimes called the capacity of the network. The capacity is a free
parameter of the system and it turns out that one needs a full-capacity network
to span the full unitary matrix space. Full capacity means that the number of
MZI layers needs to be equal to the rank of the unitary matrix. However, net-
works with less capacity can also be used for plenty of photonic deep learning
applications.

PhotontoRch 73

=

θ

0.5 0.5

φ

Figure 2.21: Any unitary matrix can be created by cascading several layers of MZIs
together in what is called a photonic mesh. To span the full unitary matrix space, the

number of MZI layers needs to be equal the rank of the matrix to represent.

Pixel-by-pixel MNIST task

By connecting the photonic mesh structure back onto itself, one can create the
recurrent structure visualized in Fig. 2.22. This recurrent structure is in fact a pho-
tonic implementation of a Unitary Recurrent Neural Network (URNN), which we
will use with great results in the permuted pixel-by-pixel MNIST task [18, 19], a
common benchmark task for recurrent neural networks, where one tries to per-
form digit recognition on an image of a digit with 28 × 28 pixels that is sent
pixel-by-pixel through the neural network in a fixed but randomized order as is
illustrated in Fig. 2.23.

The architecture of the URNN, illustrated in Fig. 2.22, is defined as follows.
We have a single input (which will take the image pixels one by one), which
gets transformed to a 256D state by an array of optimizable weights. This 256D
state gets then fed into the unitary matrix network of capacity 3, i.e. in three
layers of each 128 MZIs (each MZI has two inputs). The outputs of this URNN
get split: one part gets fed into the output layer and one part gets sent back to
the input of the unitary matrix. The output layer in itself is again an array of
256 × 10 weights, which makes a linear combination for each of the possible
digit responses. The output number with the largest resulting amplitude is the
answer of our network.

The input and the output layer can in principle be represented by a photon-
ically implemented unitary matrix as well, but we chose not to do this in this
proof of concept application as to not make the model overly complex. The total

74 PhotontoRch

In
pu

t

A
ct
iv
at

io
n

O
ut

pu
t

Figure 2.22: By looping the unitary matrix onto itself, one creates a URNN. The network
represented here contains an input layer, which transforms the 1D time dependent input

data to a 256D state. This state then gets sent through the unitary matrix, which is
connected onto itself. The output weights transform the recurrent layer back into a 10D
state: one output for each digit to recognize. To boost the power of the recurrent neural

network, an activation or non-linear element was added into the recurrent loop.

Figure 2.23: An image of a digit consisting of 28× 28 pixels is first randomized by a
fixed permutation before it is flattened and sent through the network pixel by pixel.

PhotontoRch 75

number of parameters represented by photonic components, i.e. the cascade of
MZIs, is thus 2× 128× 3 = 768, as each MZI contains two optimizable param-
eters: the input phase difference ϕ and the phase difference between its arms θ.
Optimizing this many parameters with a conventional circuit simulator would
be a nightmare, however it is quite easily done with Photontorch.

To boost the performance of the network defined above, a non-linear layer
has to be added to the recurrent loop. This non-linear element was implemented
in simulation by the modrelu [19] function. However, Photontorch allows in
principle to easily swap out this non-linearity for a more physically achievable
non-linearity, for example implemented by a Semiconductor Optical Amplifier
(SOA).

The final accuracy on the MNIST digits for the permuted pixel-by-pixel
MNIST task is 92%, as can be seen in Fig. 2.24. This is on par with previously
documented results for unitary matrices [18, 19]. However, in this case, the core
of the network was defined solely using Photontorch components, which makes
it a very modular approach. This allows for example to change the network at
certain locations by changing some of the MZIs to more complex components.
Moreover, Photontorch allows to easily experiment with completely different
photonics-inspired neural network designs that are less easily implemented with
conventional modelling tools.

It is important to note that this architecture was not intended to be a realisti-
cally realizable photonic architecture, but rather a showcase for the optimization
strength of Photontorch. The network is not realistic as, for one, theModReLU is
a non-physical activation function. Moreover, the timestep was way too large for
realistic simulations: each timestep corresponds to sending a single (full) pixel
sent through the network. Additionally, the 1 × 256 splitter and the 256 × 10

combiner were modeled by normal weight matrices. A normal weight matrix can
be decomposed with the singular value decomposition into two unitary matrices
(and a diagonal matrix of singular values). Hence the splitter and combiner each
would need to be composed of twoMZI meshes (and an array of amplifiers) to be
realizable in photonics. This would make the design considerably more compli-
cated. Finally, no delays inside the mesh was modeled. The only delays modeled
arise from the feedback loop, which corresponds to a single timestep.

Improved optics by component redundancy

One way these photonic meshes can be used is to introduce component redun-
dancy in the network yielding noise-resilient photonic circuits. Take for example
a directional coupler. The actual coupling of a directional coupler might vary
through process variations, temperature, the wavelength of the light and so on.
Designing circuits that are resilient to these changes and variations is a real chal-
lenge. As an example on how Photontorch can be used in this regard, we will

76 PhotontoRch

0 10000 20000 30000 40000

Training Steps

0

2

C
ro

ss
En

tr
op

y
Lo

ss

70%

80%

90%

100%

A
cc

ur
ac

y

Figure 2.24: Training for the pixel-by-pixel MNIST task with a capacity-3 unitary neural
network.

optimize a 4 × 7 photonic mesh of directional couplers to act as a single 50/50
directional coupler.

Such a mesh consisting of 11 directional couplers, will then be used as il-
lustrated in Fig. 2.25: light entering along the first directional coupler is split
through the circuit to finally arrive at the final directional couplers labeled 10

and 11. Since we are trying to emulate a 2× 2 component, we have two output
ports too many: we will try to keep the output at the odd numbered ports at 0,
while the output at the even numbered ports will be targeted.

ŷ2 (output)

ŷ1 (ignored)

ignored

inputs

ŷ4 (output)

ŷ3 (ignored)

1

2

3

4

5

6

7

8

9

10

11

Figure 2.25: A 4× 7 mesh of imperfect directional couplers acting as a single tolerant
directional coupler with 50/50 coupling.

We furthermore assume that the directional couplers have some fabrica-
tion errors which result in a coupling which is normally distributed around
the desired coupling with a standard deviation of σκ2 = 0.05. Moreover, we
assume that neither perfect coupling nor zero coupling can be achieved, i.e.
κmin = 0.1;κmax = 0.9.

We then try to find the parameters which yield themesh resilient to this noise
on the coupling. To do this, the mesh is first optimized without any noise, which
gives the baseline parameters of the circuit listed in Table 2.1. Then, a large num-
ber of meshes is generated with randomly permuted coupling according to the
mentioned Gaussian distribution around the baseline. This yields a batch of B
meshes with slightly different coupling arising from the same baseline coupling.
The baseline parameters of the randomized batch are subsequently optimized on

PhotontoRch 77

κ 1 2 3 4 5 6 7 8 9 10 11
baseline 0.63 0.50 0.25 0.68 0.32 0.23 0.67 0.29 0.70 0.76 0.47
adjusted 0.12 0.50 0.76 0.90 0.25 0.10 0.90 0.69 0.77 0.90 0.24

Table 2.1: Coupling coefficients for a noise-resilient mesh

the output of the randomized batch with the following loss function:

L =α

(
1

B

B∑
b=1

4∑
i=1

(
ŷbi − yi

)2)

+β

(
1

B

B∑
b=1

(
ŷb2 −

1

B

B∑
n=1

ŷn2
)2

+
(
ŷb4 −

1

B

B∑
n=1

ŷn4
)2)

. (2.66)

The first term is nothing more than the mean squared error between the targets
yi at each of the four output ports y = (0, 0.5, 0, 0.5) and the output ŷb for
each of the networks in the batch, scaled by a hyper-parameter α. The second
term describes the variance in the output at the ports we are interested in (2 and
4), scaled by a hyper parameter β. Both these terms are important, as the first
term ensures the intended transmission at 50%, while the second termminimizes
the variation. The hope is, that by ignoring the variance in the parameters for
the odd-numbered output ports, some of the variation in the even-numbered
output ports gets transferred to them, reducing the variance in the ports we are
interested in. The hyperparameters — which are completely free to choose —
were in this case chosen to be α = 1 and β = 6.

By definition, we will not be able to achieve better than 0.05 standard devi-
ation on the coupling for a single directional coupler, as illustrated in Fig. 2.26a
but by connecting them together in the mesh structure, we are able to achieve
less variation, as illustrated in Fig. 2.26b. Indeed, by defining the inputs and out-
puts of the 50/50 splitter as illustrated in Fig. 2.25, the standard deviation can
be reduced to 0.016.

This improved optics by using more components comes at a price however,
which in this case is twofold. First of all, the total output power at the ports at
interest will be reduced, as some of the light will inevitably end up at the output
ports we are not interested in. This can also be seen somewhat when comparing
Fig. 2.26a and Fig. 2.26b. This difference will obviously be greatly amplified when
losses are taken into account, which — in a realistic setting — will probably kill
this concept. Moreover, the overhead and increased chip real estate of having
to fabricate 11 directional couplers instead of a single one is not insignificant.
However, it serves as an inspiration of how better optics can possibly be achieved
when redundancy is built into the circuit.

78 PhotontoRch

0 500 1000

Batch index

0.00

0.25

0.50

0.75

1.00

In
te
ns

it
y
[a

.u
.]

1 2

(a)

0 500 1000

Batch index

0.00

0.25

0.50

0.75

1.00

In
te
ns

it
y
[a

.u
.]

ŷ2 ŷ4

(b)

Figure 2.26: Transmission for (a) a batch directional couplers with coupling normally
distributed around 50% with a standard deviation of 5%; (b) a batch of mesh circuits
containing directional couplers with the same deviations but optimized to reduce

variation in the output.

outputsinput

Wout
Win

Wres

Figure 2.27: A single-input reservoir computer. A single input is distributed over the
nodes of a reservoir by a fixed set of input weights Win. The reservoir has a complex

recurrent interconnection topology characterized by its intermediate weights Wint. The
reservoir states are read out by a trainable set of readout weights Wout.

2.8.5 Improving the performance of a single passive reser-
voir

As was explained in the previous chapter, reservoir computing is an almost two-
decade-old machine-learning concept [24, 25]. It is defined by distributing an
input signal over a series of nodes which are recurrently connected, as shown in
Fig. 2.30. The connections between the recurrent nodes are not optimized and
form the so-called reservoir. In fact, only the output connections that combine
the states in the recurrent nodes into a useful output signal are optimized for
the task at hand. The reservoir is called passive if no active elements or non-
linearities are present inside it. Such passive reservoirs rely solely on the non-
linear operation at the photodetector and are easily implemented in photonic
circuits with splitters and combiners [20].

PhotontoRch 79

In most on-chip reservoirs, the reservoir states are first detected before they
are linearly combined into an output signal (the so-called electrical readout). Al-
though this first-detect-then-weight approach produces good results, it is not
very feasible for large reservoirs, as one would need as many detectors as there
are reservoir nodes. On top of that, using multiple detectors and analog-to-
digital converters goes against the idea of having an energy-efficient solution
to many problems. For an all-optical implementation, it is beneficial to move the
many detectors at the nodes of the reservoir to one single detector at the output,
after an optically implemented weighting procedure, implemented e.g. by ampli-
tude and phase modulators (a so-called optical readout). These complex-valued
readout weights should be trained to minimize the Mean Squared Error (MSE)
between the detector output and the target signal.

The traditional approach to train reservoirs uses ridge regression [26] to op-
timize a real-valued sum with real-valued weights [27]. Just like we mentioned
in 1.3.5, while it is possible to use a complex extension of linear regression to op-
timize a complex-valued sum with complex-valued weights, this is not entirely
what we need in order to train the optical readout.

Indeed, we only care about the amplitude of the signal after the detector15,
Whereas complex-valued ridge regression would only be able to aim for a given
complex summed signal before the detector. However, there are many different
complex-valued signals (each with a different phase) before the detector that
give rise to the same intensity after the detector. In order to be able to use ridge
regression, we would need to arbitrarily fix the phase of the signal before the
detector, effectively limiting the space of complex optical weights.

This is where Photontorch can be of invaluable help, as it enables to perform
backpropagation through the detector without having to make any assumption
on the phase before the detector. Moreover, since Photontorch enables back-
propagation through the whole circuits, we should also be able to fine tune the
reservoir to better perform the task at hand.

This is where Photontorch can be of invaluable help, as it enables to perform
backpropagation through the detector without having to make any assumptions
on the phase before the detector. Moreover, since Photontorch enables back-
propagation through the whole circuit, we should also be able to fine-tune the
reservoir to better perform the task at hand.

To test this premise, we fine-tune a typical swirl-reservoir, much like the one
in Fig. 1.17, but this timewith 36 nodes (6×6) using Photontorch on the XOR task,
where the output of the reservoir should predict the XOR of two subsequent bits
in the input bit stream sent through the reservoir at 50Gbps. All interconnec-

15The detector is, throughout the simulations, modeled with a load resistanceRL = 1 kΩ, respon-
sivity η = 0.5A/W and frequency cut-off fc = 50Gbps, implemented by an order-4 Butterworth
filter.

80 PhotontoRch

tions between the nodes of the reservoir correspond to a single bit period of 20 ps
(1.4mm). We will quantify how well the MSE between the target stream and the
response of the reservoir-readout-detector combination on an input stream of
105 bits improves by optimizing the phases of six randomly chosen interconnec-
tions between reservoir nodes compared to having no internal optimization of
the reservoir (but with optimization of the readout).

0 30 60

Training Steps

0.1

0.2

0.3

Va
lid

at
io
n
M

SE

0 phases

6 phases

Figure 2.28: Learning curves of the reservoir optimization through backpropagation. A
reservoir where only the readout is optimized is compared to a reservoir where both the

readout and 6 internal phases were optimized.

As can be seen in Fig. 2.28, the reservoir performance can be somewhat im-
proved by allowing some fine-tuning of the reservoir. Moreover, we clearly see
that the acceptable performance with for example MSE < 0.1 is achieved much
faster when fine-tuning is allowed. A typical signal from an optimized fine-tuned
reservoir is illustrated in Fig. 2.29

200 300 400 500 600 700 800

Time [ps]

0

1

B
it

Va
lu
e

Input Target Output

Figure 2.29: Optimal performance on the XOR task where the reservoir was fine-tuned
by allowing the optimization of 6 internal phases.

PhotontoRch 81

2.8.6 Improving the performance by cascading two passive
reservoirs

Because we can now backpropagate through the reservoir, we’re now able to cre-
ate evenmore interesting structures. In stead of optimizing a single reservoir, one
can now for example choose to optimize two cascaded reservoirs, as illustrated
in Fig. 2.30. This was previously completely impossible as the action of the last
reservoir could not be inverted and hence a set of intermediate connection weights
Wint could not be found.

inputs outputs

Wout
Win Wint

Wres Wres

Figure 2.30: Two reservoirs are cascaded by a trainable set of intermediate weights
Wint.

We combine two reservoirs of half the size of the reservoir introduced in the
previous section to still arrive at a total of 36 nodes (2 times 18 nodes) but this
timewith a set of intermediate weights in betweenwhich interconnect each node
of the first reservoir to each node of the second reservoir.

Looking at Fig. 2.31a, we see that it does not perform much better than the
original 36 node reservoir (without internal phases optimized). This is probably
because 2×18 reservoirs inherently possess less richness than a 36 node reservoir.
However, we expect it to have more memory, as a signal has to pass through two
recurrent reservoir blocks before being detected.

Two justify this claim, we perform the more difficult task where the XOR of
two bits with one bit in between is taken as a target. For this task, more memory
is needed, as the reservoir needs to retain 3 bits of information in stead of 2.
The learning curve for this task is visualized in Fig. 2.31b. Here we clearly see
better performance for the cascaded reservoir (but only if we allow the set of
intermediate weights to be optimized).

2.9 Conclusion

Grown from the necessity to simulate (and optimize) photonic neuromorphic
architectures going beyond traditional reservoir computing, the presented Pho-
tontorch framework is the first photonic simulator to our knowledge that enables

82 PhotontoRch

0 30 60

Training Steps

0.1

0.2

0.3

Va
lid

at
io
n
M

SE

single [36 nodes]

cascaded [2 × 18 nodes]

cascaded [2 × 18 nodes]; no Wint

(a)

0 30 60

Training Steps

0.1

0.2

0.3

Va
lid

at
io
n
M

SE

single [36 nodes]

cascaded [2 × 18 nodes]

cascaded [2 × 18 nodes]; no Wint

(b)

Figure 2.31: Learning curves obtained by optimizing the cascaded reservoir
optimization through backpropagation. A reservoir where only the readout is optimized

is compared to a cascaded reservoir where both the readout and the intermediate
weights are optimized. (a) Performance on the XOR of two adjacent bits.

(b) Performance on the XOR of two bits with one bit in between.

true optimization of large photonic circuits by backpropagation through its phys-
ical parameters.

The simulator thereby adds a completely new approach to the photonic simu-
lation landscape in twomajor ways: it facilitates the simulation of large photonic
circuits in a truly parallel way on a GPU and — perhaps more importantly — it
enables a completely newway of optimizing photonic circuits through backprop-
agation. Moreover, by relying on a well-established machine learning library like
PyTorch, potentially new (optimization) techniques discovered for deep-learning
can now be instantly applied to the optimization of photonic circuits.

We demonstrated by providing concrete examples that this deep-learning
based photonic circuit simulator can be of great value to optimize photonic cir-
cuits. Indeed, Photontorch shows a lot of promise for such photonic circuit sim-
ulation and optimization. It is an ideal choice when simulating low-dispersive,
passive circuits for multiple wavelengths in the time domain. Additionally, the
inherent parallel nature also allows to simulate the batched response to different
independent input waveforms simultaneously at almost no overhead.

The main feature of Photontorch is its close relation to PyTorch autograd
tensors, allowing it to leverage backpropagation through each photonic compo-
nent to optimize the parameters of large photonic circuits. We expect this to
be incredibly useful for prototyping photonic circuits, as well as for optimizing
the parameters in arbitrary photonic circuits containing both passive and active
elements, such as - but definitely not excluded to - the large mesh network used
for the state-of-the art performance on the pixel-by-pixel MNIST task discussed
in this chapter.

This feature might act as a double-edged sword, however, as having to de-

PhotontoRch 83

scribe each operation in terms of differentiable PyTorch tensors inherently limits
what kind of computations can be done efficiently, while in addition, GPUs gen-
erally are more efficient for linear operations. This means that - although Pho-
tontorch is certainly capable of doing so - circuits with many active components
will not be simulated as efficiently as the highly optimized CPU-code found in
some other simulators.

Apart from the simple examples given in this chapter to show how the pre-
sented simulator can be used, Photontorch was also used to improve and extend
the traditional on-chip passive photonic reservoir architecture by enabling op-
timization inside the recurrent circuit and by connecting two non-optimized re-
current circuits through an optimizable intermediate connection. Both designs
performed better than the original reservoir after the optimization: an optimiza-
tion that was only possible by backpropagation through the physical parameters
of the circuit.

That is probably the final strength of the Photontorch framework: although it
grew from the necessity to simulate photonic neuromorphic structures in the time
domain, today it is certainly capable to simulate any photonic circuit whatsoever,
both in the frequency domain and in the time domain.

84 PhotontoRch

References

[1] Floris Laporte, Joni Dambre, and Peter Bienstman. Highly parallel simula-
tion and optimization of photonic circuits in time and frequency domain based
on the deep-learning framework PyTorch. Scientific reports, 9(1):5918, 2019.

[2] Martin Fiers, Thomas Van Vaerenbergh, Ken Caluwaerts, Dries Vande Gin-
ste, Benjamin Schrauwen, Joni Dambre, and Peter Bienstman. Time-
domain and frequency-domain modeling of nonlinear optical components at
the circuit-level using a node-based approach. JOSA B, 29(5):896–900, 2012.

[3] Max Born and Emil Wolf. Principles of optics: electromagnetic theory of
propagation, interference and diffraction of light. Elsevier, 2013.

[4] Bernard Yurke, Samuel L McCall, and John R Klauder. SU (2) and SU (1, 1)
interferometers. Physical Review A, 33(6):4033, 1986.

[5] Michael Reck, Anton Zeilinger, Herbert J Bernstein, and Philip Bertani. Ex-
perimental realization of any discrete unitary operator. Physical review let-
ters, 73(1):58, 1994.

[6] William R Clements, Peter C Humphreys, Benjamin J Metcalf, W Steven
Kolthammer, and Ian A Walmsley. Optimal design for universal multiport
interferometers. Optica, 3(12):1460–1465, 2016.

[7] Bjorn Gustavsen and Adam Semlyen. Rational approximation of frequency
domain responses by vector fitting. IEEE Transactions on power delivery,
14(3):1052–1061, 1999.

[8] Yinghao Ye, Domenico Spina, Yufei Xing, Wim Bogaerts, and Tom Dhaene.
Numerical modeling of a linear photonic system for accurate and efficient time-
domain simulations. Photonics Research, 6(6):560–573, 2018.

[9] Govind P Agrawal and N Anders Olsson. Self-phase modulation and spectral
broadening of optical pulses in semiconductor laser amplifiers. IEEE Journal
of quantum electronics, 25(11):2297–2306, 1989.

[10] Daniele Melati, Francesco Morichetti, Antonio Canciamilla, Davide Ron-
celli, Francisco M Soares, Arjen Bakker, and Andrea Melloni. Validation of
the building-block-based approach for the design of photonic integrated cir-
cuits. Journal of Lightwave Technology, 30(23):3610–3616, 2012.

[11] Lumerical. A commercial-grade circuit simulator for the design, simulation
and analysis of photonic integrated circuits. https://www.lumerical.
com/tcad-products/interconnect/. Accessed: 2019-11-01.

https://www.lumerical.com/tcad-products/interconnect/
https://www.lumerical.com/tcad-products/interconnect/

REFERENCES 85

[12] VPI. Photonics design automation. http://www.vpiphotonics.com. Ac-
cessed: 2018-12-10.

[13] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in PyTorch. Neural Information Pro-
cessing Systems, 2017.

[14] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,
2006.

[15] Sepp Hochreiter. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[17] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[18] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recur-
rent neural networks. In International Conference on Machine Learning,
pages 1120–1128, 2016.

[19] Li Jing, Yichen Shen, Tena Dubček, John Peurifoy, Scott Skirlo, Yann LeCun,
Max Tegmark, and Marin Soljačić. Tunable efficient unitary neural networks
(EUNN) and their application to RNNs. arXiv preprint arXiv:1612.05231, 2016.

[20] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Ver-
straeten, B. Schrauwen, J. Dambre, and P. Bienstman. Experimental demon-
stration of reservoir computing on a silicon photonics chip. Nature commu-
nications, 5, 2014.

[21] David A. B. Miller. Perfect optics with imperfect components. Optica,
2(8):747–750, Aug 2015.

[22] Yichen Shen, Nicholas C Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-
Jones, Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk En-
glund, et al. Deep learning with coherent nanophotonic circuits. Nature Pho-
tonics, 11(7):441, 2017.

[23] Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A Simple Way to Ini-
tialize Recurrent Networks of Rectified Linear Units. CoRR, 2015.

http://www.vpiphotonics.com

86 PhotontoRch

[24] H. Jaeger. The ‘echo state’ approach to analyzing and training recurrent neural
networks. Bonn, Germany: German National Research Center for Informa-
tion Technology GMD Technical Report, 148:34, 2001.

[25] W. Maass, T. Natschläger, and H. Markram. Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural computation, 14(11):2531–2560, 2002.

[26] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[27] Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout. An
overview of reservoir computing: theory, applications and implementations.
In Proceedings of the 15th European Symposium on Artificial Neural Net-
works. p. 471-482 2007, pages 471–482, 2007.

3
On-chip Reservoir Computing with

Photonic Cavities

So far, when talking about neuromorphic computing, we have only considered
conventional photonic integrated circuits built from conventional components
such as waveguides and directional couplers. In this chapter we will explore
a more unconventional route: on-chip photonic cavities as reservoir mixing
units [1]. We will explore these cavities both through thorough numerical simu-
lations and in measurements.

3.1 Introduction

Although photonic on-chip reservoirs like the swirl reservoir discussed in 1.8.1
have some major advantages over other photonic reservoir architectures, such
as ultra-high speed operation, they still suffer from some serious drawbacks.
Those drawbacks include a very limited interconnection topology, a low density
of nodes per chip surface area and high losses due to the many 3 dB-combiners.
To address these issues, we propose a new passive design on a silicon photonics
chip that seeks to improve on the reservoir-on-chip technology. The proposed
reservoir consists of a cavity with a special shape tuned to foster interesting mix-
ing dynamics [2–5]. Two types of cavities will be explored: photonic crystal cavi-
ties, which exhibit low losses and highQ-factors and— for ease of manufacturing
— cavities based on dielectric index contrast at a single interface.

88 Photonic Cavities

One of the advantages of choosing a cavity as photonic reservoir is the ex-
tremely small on-chip footprint, with dimensions smaller than 0.1mm2, which is
at least an order of magnitude smaller than the previous reservoir-on-chip design
discussed in 1.8.1. As we will see below, this photonic crystal design promises
very low loss combined with excellent performance on the XOR Task and header
recognition task while still accepting bitrates in a wide region of operation.

3.2 Reservoir designs

3.2.1 Photonic crystal cavity reservoir

The first incarnation of the design consists of an on-chip photonic crystal cavity
in the shape of a quarter-stadium resonator as illustrated in Fig. 3.1 and Fig. 3.2.
This specific shape is known to foster interestingmixing of the fields in an almost
chaotic manner [2–4]. The use of a photonic crystal cavity has the potential for
low loss and with it a long reservoir memory, but at the cost of a more difficult
fabrication process. This is why this cavity type was only studied in simulation.
It serves however as a good test case to later on compare other designs to.

Figure 3.1: Snapshot of the field profile in 10µm× 5µm photonic crystal cavity. The
mixing of the signal can clearly be witnessed by inspecting the field profiles.

On-chip ReseRvoiR Computing with Photonic Cavities 89

Figure 3.2: Snapshot of the field profile in 60µm× 30µm photonic crystal cavity. The
mixing of the signal can clearly be witnessed by inspecting the field profiles. At one of

the arms, the color map range was decreased by a factor ten to better show the radiation
losses due to mode mismatch between the W1-defects and the waveguide.

90 Photonic Cavities

The photonic crystal cavity which was simulated for different sizes ranging
from 20µm × 10µm to 100µm × 50µm was designed for the 220 nm silicon
photonics platform, consisting of holes etched in a 220 nm silicon slabwith radius
r = 0.27a, with a = 420 nm the pitch of the photonic crystal. The light is sent
through one of the seven standard standard 450 nm wide waveguides, which
are connected to W1-defects in the wall of the photonic crystal cavity. The light
inside the cavity subsequently leaks out of the cavity via all of the defects. The six
other defects are used for readout. It is clear that this cavity is a great candidate
for a reservoir, because alongside its mixing property, it also possesses a fading
memory : the signal is bound to remain in this cavity for a certain amount of time
directly proportional to the Q-factor and the dimensions of this cavity. Moreover,
light is trapped inside the cavity and can only leak out using the wall defects,
where they contribute to the useful output signal. This results in potential low
losses in the system.

3.2.2 Cavities based on index contrast

Other cavity types that will be explored are the cavities based on index contrast
as illustrated in Fig. 3.3. One of these cavities, Fig. 3.3a, has a similar quarter
stadium shape as the photonic crystal cavity, while the other, Fig. 3.3b is based
on a disk with a chamfer [5]. As these cavities only depend on the etching of
the trenches around them, they will be a lot easier to manufacture. This ease of
manufacturing might come at a price though. Since we no longer have the om-
nidirectional reflection of the photonic crystal, losses will be higher and thus the
cavities might exhibit less memory. As these cavities rely less on a specific etch-

(a) Quarter stadium shape (b) Chamfer design

Figure 3.3: Two cavity shapes that induce interesting mixing dynamics. Both shapes
are based on index contrast: a simple trench was etched around the cavity to keep the

light in.

ing process, multiple silicon photonic platforms could be more easily targeted.
We made cavities for the 400nm and the 220nm silicon photonic platform in two

On-chip ReseRvoiR Computing with Photonic Cavities 91

different shapes: the quarter stadium shape [2–4] just like for the photonic crys-
tal cavities and the circle with a chamfer [5].

3.3 Simulations

PRBS
Reservoir detected stream

readoutdetector

(a) Idealized measurement setup

PRBS

Reservoir

detector

detected stream

readout

raw
pulse
response

single
pulse

(b) Simulation approximation

Figure 3.4: (a) Measurement setup and (b) the approximation in simulation: the
response of a single bit is recorded and is coherently added together according to a

PRBS.

To obtain the response of the reservoirs to an arbitrary bit stream, the most
time-consuming step of the calculation is simulating the propagation of the light
through the cavity. Indeed, training the reservoir readout relies on retrieving
the response of a full bit stream as illustrated in Fig. 3.4a. However, as most of
the simulations rely on a 3D Finite Difference Time Domain1 (FDTD) simulation,
which is a slow numerical method for solving electromagnetic problems, sending
the whole bit stream through the system is simply unfeasible.

1More on the FDTD method in Chapter 4

92 Photonic Cavities

3.3.1 Pulse composition

0.0 0.2 0.4 0.6 0.8 1.0

time [ps]

−1

0

1

H
z
am

pl
it
ud

e
[a

.u
.]

(a)

0 20 40 60 80 100

time [ps]

−1

0

1

(b)

Figure 3.5: (a) A normalized 1 ps input pulse with smoothed rising and falling edges. (b)
Normalized response to the input pulse at one of the output arms.

We therefore do not simulate the propagation of the complete bit stream, as
this would result in enormous calculation times2. Instead, we use an alternative
approach illustrated in Fig. 3.4b. Suppose we have a pseudo-random bit stream
(PRBS) consisting of the bits b1, b2, ..., bN ∈ {0, 1}, for which the nonzero bits
are specified by a smoothed pulse u(t) as shown in Fig. 3.5a:

u(t) =
(
Ein(t)
Hin(t)

)
with u(t) = 0 if t < 0 or t > T, (3.1)

with T the bit period of the signal. Then the value of the bit stream at time t is
given by3

x(t) =
(
Ein(t)
Hin(t)

)
=

N∑
n=1

bnu(t− nT) = bku(t− kT) with k =

⌈
t

T

⌉
(3.2)

Each of the exit waveguides iwill have an exponentially decaying responseUi(t)

to the single bit pulse u(t) as for example the response shown in Fig. 3.5b. This
means that the response Xi(t) to the total bit stream at waveguide i can be
described by

Xi(t) =

(
Ei
out(t)

Hi
out(t)

)
=

N∑
n=1

bnUi(t− nT). (3.3)

2simulating a single bit takes between 12-24 hours
3Note that this results in return-to-zero (RZ) encoding for the smoothed pulses defined here.

On-chip ReseRvoiR Computing with Photonic Cavities 93

Note that by only looking atXi(t), the individual responses cannot be decoupled
anymore sinceUi(t) ̸= 0 for t > T . The state of the reservoir depends linearly on
the previous input values, just like one would require from the passive reservoir
described in 1.7.2.

In practice, the responses ui(t) at each of the waveguides to a single pulse are
recorded from an FDTD simulation, performed by the Lumerical FDTD software.
Then the response of a complete bit stream (typically a PRBS signal of 105 bits)
is calculated by coherently adding together the individual bit responses for each
channel in the way described above. Note that this described procedure is just
a “bit-level” version of the impulse response method, where the response of an
arbitrary system is found by convolving the function with the response of an
ultrashort impulse. Here, we chose to work with the “bit-level” response instead
of the true impulse response because of numerical rounding errors.

3.3.2 Convergence analysis

A simple convergence analysis can be performed where two subsequent bits are
either simulated directly either via FDTD or by the coherent composition tech-
nique defined above. As can be seen in Fig. 3.6, the resulting pulses obtained by
either technique are quite similar, but not identical. The residual difference be-
tween the two is probably due to rounding errors and the influence of the tail of
the impulse response which is truncated at some point in the coherent composi-
tion technique. The normalized root mean squared error (NRMSE) between both
is 0.16. However, this should not be a big problem, as similar errors are obtained
between two identical streams detected with the noisy detector, which will be
introduced next.

0.0 0.5 1.0 1.5 2.0

time [ps]

−1

0

1

H
z
am

pl
it
ud

e
[a

.u
.]

(a)

0 10 20 30 40 50

time [ps]

0.000

0.005

0.010

0.015

P
x
[m

W
/
m

2]

composed

direct

(b)

Figure 3.6: (a) Two subsequent 1ps input pulses. (b) Responses (Poynting vector
projected in the direction of propagation) obtained by composition and direct

simulation.

94 Photonic Cavities

3.3.3 Photodetector

Finally, the photodetector performs the non-linear operation described in (1.63)
by detecting the light. This detector is simulated by a detectormodel with similar
parameters as the detector in our labs, which has a load resistance RL = 1 kΩ,
a bandwidth fc = 25GHz and a responsivity η = 0.5A/W. The detector noise
introduced by the amplification of the photo-generated current is described by
white thermal noise Itn, modeled as a Nyquist process and shot noise Isn, mod-
eled as a Poisson process:

In =
√
I2tn + I2sn =

√(
4kTfc
RL

)2

+ 2qIfc. (3.4)

3.3.4 Readout

In the readout, the output streams leaving the arms of the reservoir, of which two
are shown in Fig. 3.7a are sampled a fixed number of times per bit period. After
this, a linear combination of the sampled values is made according to weights
that are specifically trained for the intended application. Increasing the number
of sampling points generally improves the performance of the reservoir. How-
ever, since we are already working at very high bitrates, we usually choose to
sample only once per bit.

To obtain theweightmatrixWout for the linear combination acting on the out-
put states of the reservoir, two different kinds of training algorithms are used:
ridge regression (linear regression with a regularization parameter) for the bi-
nary classification tasks such as the XOR task, and linear discriminant analysis
(LDA) [6] for multi-class classification tasks such as header recognition.

3.3.5 Benchmark tasks

Finally, three different tasks will be considered for these cavities. The first, eas-
iest task will be the copy task, where the reservoir attempts to reproduce the
input signal with a certain latency. The latency is usually expressed as a multiple
of the bit period, i.e. the number (or fraction) of bit periods one has to wait after
the last relevant bit has completely entered the cavity before you can reproduce
the target signal. The XOR task, also described in 2.8.5, where the reservoir tries
to perform the XOR of two subsequent bits and with a certain latency4. Finally
the performance on a header recognition task will be assessed. All three of these
tasks will be assessed at different bitrates to find the operating range of the cav-
ity.

4In fact some latency is always necessary as the signal needs to traverse the cavity before it will
be detected.

On-chip ReseRvoiR Computing with Photonic Cavities 95

0 5 10 15 20 25

Bit Number

0

1
(a)

0 5 10 15 20 25

0

1

(b)

0

25

50

D
et
ec

te
d
Ph

ot
oc

ur
re
nt

[µ
A
]

input sampled output 1 output 2

input target (xor) prediction

Figure 3.7: (a) Waveforms detected at two of the exit waveguides as the result of a
certain 50Gbps bit sequence input. The outputs are sampled at least once per bit period.

(b) After the readout, the prediction approximates the desired XOR target. The
prediction and the target were aligned by shifting the prediction backwards in time

according to the optimal latency of 0.8 bits.

96 Photonic Cavities

3.4 Cavity parameters

Obviously, even when sticking to the shapes introduced above5, there are still
a very large number of free parameters of the cavity that can be changed. The
most important ones are the size of the cavity and the number of waveguides
connecting into it. Indeed, changing either of those parameters will have a di-
rect effect on the Q-factor and hence on the memory of the system. Moreover,
changing the number of connected waveguides will also have an effect on the
complexity of the tasks the reservoir can solve, as fewer waveguides equate to
less rich linear combinations at the readout. Choosing the right combination of
parameters it thus far from trivial.

3.4.1 Power budget of the reservoir

An importantmetric for reservoirs is howpower efficient it is. The simulated total
energy measured at the exits of the photonic crystal cavity is about 75% of the
total energy inserted, as can be seen in Fig. 3.8. Looking deeper into the source
of the losses, we find that there is a slight mode mismatch between the access
waveguides and the W1-defect photonic crystal waveguides. When coupling
out the light from the cavity, this causes scattering out of the exit waveguides,
resulting in lost power6, as can also be seen in Fig. 3.2. Contrast this with a cavity
of the same shape and size but which just relies on index contrast: only 25% of
the input power is retrieved in that case. This is a direct consequence of the lack
of omni-directional reflection at the cavity boundaries.

3.4.2 Q-factor and pulse half life

Apart from the power budget, which quantifies how much of the input power
can be retrieved at the output, it is also interesting to quantify how long a signal
is “stuck” in the cavity. This property is quantified by the quality factor (Q-factor)
of the cavity.

To calculate the Q-factor, the response, as visualized in Fig. 3.2 of the 30µm×
60µm photonic crystal cavity to a 1 ps pulse was simulated. When the light
source is turned off, the field amplitude in the photonic crystal cavity decays
exponentially as exp(−mt) as illustrated in Fig. 3.9, for which the envelope of
the amplitude has a slope m = −0.037 ps−1. This yields for the Q-factor at

5The reason these shapes were chosen is because they performed well for the specific applications
in the mentioned reference works. Their choice is therefore rather arbitrary and it certainly could be
that a different shape works better.

6Obviously this mode mismatch can probably be further reduced by a thorough optimization of
the waveguide to W1-defect transition.

On-chip ReseRvoiR Computing with Photonic Cavities 97

0 25 50 75 100

Time [ps]

0

25

50

75

100
fr
ac

ti
on

of
in
se

rt
ed

en
er
gy

re
tr
ie
ve

d
[%

]

energy in

energy out [PhC]

energy out [dielectric]

Figure 3.8: When inserting a 10 ps pulse into the 60µm× 30µm photonic crystal
cavity, about 75% of the total inserted energy is retrieved at the output waveguides. This
corresponds to about 0.8 dB loss. Compare this to a cavity of the same shape and size

but which just relies on index contrast: only 25% of the input power is retrieved.

λ = 1550 nm:

Q = − πc

λm
= 16400. (3.5)

Perhaps a more useful value is the half-life T1/2 of the pulse, as it provides a more
tangible metric for the memory of the reservoir.

T1/2 = − log(2)
m

= 18 ps. (3.6)

Since the losses are so much higher in the dielectric cavity, because the walls
of the cavity cannot contain the light as well as in the photonic crystal case, we
expect to need a larger cavity to obtain a higher Q-factor. Indeed, a large cavity
will create longer propagation times inside the cavity and thus contain the signal
for a longer period of time. For the dielectric chamfer cavity with a diameter of
100µm the decay of the pulse is illustrated in Fig. 3.10. We get a pulse with a
similar decay time as for the photonic crystal cavity:

T1/2 = 14 ps. (3.7)

This half life is still worse than the one of the photonic crystal cavity, even though
the cavity is about 4 times bigger (in area). The pulse itself also seems to be less
“rich”, possibly due to the high power loss during reflections at the walls of the
cavity.

98 Photonic Cavities

0 25 50 75 100 125

Time [ps]

−1.0

−0.5

0.0

0.5

1.0
O
ut

pu
t
Fi
el
d
[a

.u
.]

Figure 3.9: Decay of the field amplitude in the photonic crystal cavity. The amplitude
decays with a half life T1/2 = 18 ps.

0 25 50 75 100 125

Time [ps]

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
t
Fi
el
d
[a

.u
.]

Figure 3.10: Decay of a pulse in the dielectric chamfer cavity with diameter 100µm.
Note that this cavity, which in area is about 4 times bigger than the photonic crystal

cavity has a worse half life and hence Q-factor.

On-chip ReseRvoiR Computing with Photonic Cavities 99

3.5 Simulated boolean tasks

In our simulations, a PRBS of 105 bits is sent through one of the connected arms
of the cavity. The responses of the other waveguides is then recorded. Finally,
on the recorded output stream, the readout weights are trained to follow the
intended target function, which can be the same as the input for the copy task,
the XOR for two subsequent bits for the XOR task or any more complicated bit-
level function on the stream.

The weights of the readout are chosen to minimize the mean squared error,
as is show in Fig. 3.5. After performing a threshold, the bit error rate (BER) is
calculated. Since we use 105 bits, the general guideline is to crop the BER at
10−3, i.e. 2 orders of magnitude higher than the lowest BER one can find in the
simulation [7]. This is obviously orders of magnitude higher than usual targets
in telecom, which aim for a maximum BER of 10−9. However, it is important to
note that whenever a cropped BER of 10−3 is shown, very often that means no
errors were made in during the processing of all the 105 bits.

To be able to show lower BERs, more bits should be simulated. The main rea-
son no more bits were simulated in the case of the cavities is that the simulation
procedure described previously — even though it is quite efficient, only having to
simulate a single bit with FDTD — arguably will not yield much more interesting
bit combinations: the pulse response for a single bit is at most about 15 times
longer than the bit itself, giving on average only 215 unique bit-combinations.
Even after adding additional noise, simulating 105 bits is already a stretch.

Wewill proceed to go over the different tasks the reservoir will solve. We only
send the bit stream through once and for each task a different linear readout is
trained. This is the real power of reservoir computing: one reservoir can target
many different applications by just changing the readout.

3.5.1 Copy task

The copy task is possibly the easiest task one can think of: send a bit stream
through the reservoir and try to retrieve the same bit streamwith a certain delay.
Even though no special calculations need to be performed to do this operation,
the copy task still serves as the prime measure for the memory of the reservoir.

We attempt to retrieve the original bit stream at different delays or latencies
for the 60µm× 30µm cavity, as illustrated in Fig. 3.11. We see in the figure that
at the measured bitrate of 50Gbps, the reservoir can remember the stream for
almost 3 bits.

In fact, we can do the same copy operation for a whole range of bitrates, rang-
ing from 15Gbps to 200Gbps. We see in Fig. 3.12 that we get a wide region of
operation. Moreover, as we would expect, the reservoir can successfully remem-
ber more bits for an increasing bitrate. The reason the reservoir stops working

100 Photonic Cavities

0 1 2 3

Latency [bits]

10−3

10−2

10−1

100

B
ER

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

BER MSE

Figure 3.11: copy task at 50Gbps performed with an increasing latency.

15 25 50 100 200

Bitrate [Gbps]

10−3

10−2

10−1

100

B
ER

0.50

0.75

1.00

1.25

1.50

1.75

m
ax

la
te
nc

y
[b

it
s]

BER max latency

Figure 3.12: Sweep of the best copy-task performance for the 60µm× 30µm photonic
crystal cavity at different bitrates. To save time, the sweep over the bitrates was done

with 2D FDTD simulations.

at bitrates higher than 67Gbps is probably because the reservoir remembers too
many previous bits, which increases the signal-to-noise ratio on the most recent
bits, which are relevant for the operation.

3.5.2 Header recognition

Obviously, the copy task is an incredibly easy task as at each point in time only
one bit has to be recollected, no classification of or operation on the bits has to
be performed. We therefore advance to a more difficult task: header recognition,
which — for applications in telecom — is an incredibly useful task to be able to
solve fast and accurately.

We first simulate the propagation of the bit stream at 50Gbps through the

On-chip ReseRvoiR Computing with Photonic Cavities 101

60µm × 30µm photonic crystal cavity, then the readout weights are trained
to recognize all the different headers present in the bit stream. Concretely, all
different headers were searched for simultaneously in the random bit stream. For
each bit in the bit stream, a class label was given corresponding to the header of
length L consisting of the current bit and the L−1 previous bits. This procedure
is shown in Table 3.1

L … 1 0 1 1 0 1 1 1 …
2 … 2 1 3 2 1 3 3 …
3 … 5 3 6 5 3 7 …
4 … 11 6 13 11 7 …

Table 3.1: Labeling a random bit stream for different header lengths L.

Linear Discriminant Analysis (LDA) [6] was then used to find a different
weight vector for each of the different classes, resulting in a weight matrix Wout.
As can be seen in Fig. 3.13, the header recognition task at 50Gbps works up to 6
bit headers in a wide region of operation.

0.0 0.5 1.0 1.5 2.0

Latency [bits]

10−3

10−2

10−1

ER

L=3

L=4

L=5

L=6

L=7

L=8

Figure 3.13: Error Rate (ER) for the worst performing header at each latency. The
reservoir can distinguish headers of up to L=6 bits without error at the optimal bitrate of
50Gbps. To reduce simulation times, the sweep over the latencies was stopped when the

ER became higher than 10−1.

To see the separation of the headers visually, we can make a projection from
the 2L-dimensional header-space to a lower dimensional space. This is illus-
trated in Fig. 3.14. This figure is a good illustration of the value of a projection to
a higher dimension. Indeed, seeing the 2D and the 3D figures next to each other
shows how a higher dimensional problem gets easier to separate: the locations
of similar headers are clearly easier to separate in 3D than in 2D. Remember that
the 3-bit header space is 8-dimensional. This high dimensionality is an important

102 Photonic Cavities

000

001

010

011

100

101

110

111

(a) (b)

Figure 3.14: The separation of 3-bit headers can be visualized by projecting on the (a)
two primary LDA axes or (b) three primary LDA axes. A nice separation for all different
headers can be observed while similar headers are located closer together. Seeing the 2D
and the 3D figures next to each other also serves as a good example on how a higher

dimensional problem gets easier to separate: the locations of similar headers are clearly
easier to separate in 3D than in 2D.

On-chip ReseRvoiR Computing with Photonic Cavities 103

aspect of the perfect separation as seen in Fig. 3.13 and Fig. 3.15.
Finally, the same header recognition task is performed at different bitrates,

as illustrated in Fig. 3.15. Here we clearly see that that longer headers can more
easily be recognized at higher bitrates. This is unsurprising, as for longer headers,
the reservoir needs to keep more bits in memory, therefore, the bitrate needs to
be higher to accommodate this.

15 20 25 33 50 67 100 150 200

bitrate [Gbps]

10−3

10−2

10−1

ER

L=3

L=4

L=5

L=6

Figure 3.15: By sweeping over the bitrate to find the operation range, we find that the
reservoir can distinguish headers up to a header length of L = 6 bits without error at a
bitrate of up to 100Gbps. To save time, the sweep over the bitrates was done as a 2D

FDTD simulation.

3.5.3 AND task

A slight step up from just copying the input and recognizing headers is to actually
operate on the bits. One of the easiest bitwise operations one can perform is the
AND operation on two subsequent bits of the bit stream7. Though still a linearly
separable task, it is interesting to first check the performance of the cavity on
this task before we move to the non-linear XOR task.

As usual, we first simulate the propagation of the bit stream at 50Gbps
through the 60µm × 30µm photonic crystal cavity. As can be seen in Fig. 3.16,
the reservoir is clearly able to perform the AND on two subsequent bits. The
range of latencies for which this works is comparable to the range of the copy
task, indicating that the AND task is in fact not much more difficult than just
remembering the bits: not much non-linearity is necessary.

A slightly more difficult task8 is the AND task of two bits with one bit in be-
tween (as opposed to the AND task of two subsequent bits). A different readout

7Actually, the AND operation is very similar to 2-bit header recognition hence the similar perfor-
mance.

8In terms of memory; obviously it is still a linear task.

104 Photonic Cavities

0 1 2 3

Latency [bits]

10−3

10−2

10−1

100

B
ER

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

BER MSE

Figure 3.16: AND of two subsequent bits at 50Gbps performed with a certain latency.

15 25 50 100 200

Bitrate [Gbps]

10−3

10−2

10−1

100

B
ER

0.6

0.8

1.0

1.2

m
ax

la
te
nc

y
[b

it
s]

BER max latency

Figure 3.17: Sweep of the best AND performance for the 60µm× 30µm photonic
crystal cavity at different bitrates. To save time, the sweep over the bitrates was done

with 2D FDTD simulations.

was trained on the output of the 50Gbps bit stream that went through the pho-
tonic crystal. The performance of this specific AND task is worse, but perfect
classification can still be observed, as can be seen in Fig. 3.18

However, looking at the performance vs bitrate, we see that we actually got
quite lucky with the bitrate choice at 50Gbps for the photonic crystal cavity.
Indeed, doing a sweep again over the bitrates we see that all the other bitrates
perform worse: the wide region of operation is gone.

3.5.4 XOR task

Another binary task is the XOR of two consecutive bits. The XOR is known in
machine learning to be a hard, non-linear task due to the fact that, as we have

On-chip ReseRvoiR Computing with Photonic Cavities 105

0 1 2 3

Latency [bits]

10−3

10−2

10−1

100

B
ER

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

BER MSE

Figure 3.18: AND of two bits with one bit in between at 50Gbps performed with a
certain latency.

15 25 50 100 200

Bitrate [Gbps]

10−3

10−2

10−1

100

B
ER

Figure 3.19: The AND performance of two bits with a bit in between. Performance is
noticeably worse than for two subsequent bits. The wide region of operation is gone:

this task only works at 50Gbps. To save time, the sweep over the bitrates was done with
2D FDTD simulations.

touched upon in 1.3.6, the output cannot be found by just performing a linear
classification algorithm such as linear regression on the inputs. At least some
non-linearity in the system is necessary. As we know from 1.7.2, by relying on the
non-linearity in the detector, we expect a passive system like the cavity discussed
here to still be able to do this operation.

We first simulate the propagation of the bit stream at 50Gbps through the
60µm× 30µm photonic crystal cavity. As can be seen in Fig. 3.20, the reservoir
is clearly able to perform the XOR on two subsequent bits. The range of latencies
for which this works is however quite small, another indication of the difficulty of
the task: a certain alignment of the signals is required before the XOR operation

106 Photonic Cavities

can be performed successfully.

0 1 2 3

Latency [bits]

10−3

10−2

10−1

100
B
ER

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

BER MSE

Figure 3.20: XOR of two subsequent at 50Gbps bits performed with a certain latency.

Doing the same for bitrates ranging from 15Gbps to 200Gbps, we see that
we get a wide region of operation for the photonic crystal cavity. Just like for the

15 25 50 100 200

Bitrate [Gbps]

10−3

10−2

10−1

100

B
ER

0.6

0.8

1.0

1.2

m
ax

la
te
nc

y
[b

it
s]

BER max latency

Figure 3.21: Sweep of the best XOR performance for the 60µm× 30µm photonic
crystal cavity at different bitrates. To save time, the sweep over the bitrates was done

with 2D FDTD simulations.

AND bitrate, the reservoir has a quite wide range of operation between 25Gbps
and 67Gbps. The fact that the XOR task is more difficult than the linear AND
task is however again reflected here, in the region of operation for the XOR,
which is noticeably smaller than for the AND task.

Now that we have found the operating range of the 60µm×30µm cavity it is
probably an interesting question to ask ourselves how to shift the operating range
to higher bitrates. The most obvious way to do this is to reduce the size of the

On-chip ReseRvoiR Computing with Photonic Cavities 107

cavity. Indeed, reducing the size of the photonic crystal cavity up to 6µm×4µm
allows the operating range to shift to around 2Tbps9, as can be seen in Fig. 3.22.

10 100 1000 10000

Bitrate [Gbps]

10−3

10−2

10−1

100

B
ER

20µm× 10µm 6µm× 4µm

Figure 3.22: XOR vs bitrate for two smaller photonic crystal cavities of smaller size.
Due to the smaller cavity size, these two sweeps were completely performed with 3D

FDTD simulations.

Returning to the 60µm× 30µm we can focus on the XOR task with a bit in
between. However, as the maximum latency for which the normal XOR opera-
tion can successfully be applied nowhere exceeds two bits, we expect this task
to fail for the cavity the cavity at hand. Indeed, this is confirmed by Fig. 3.23
and Fig. 3.24: the wide region of operation which could be observed earlier is
completely gone and although the best performing bitrate is still at 50Gbps, the
minimal BER of 2.6% is just not good enough.

The interesting result here is that we succeeded to compute a highly non-
linear function such as XOR by using a completely passive device. This is of
course only possible because of the non-linearity of the photodetector, which
takes the magnitude of the complex-valued field at the exits of the reservoir.

3.5.5 Number of arms

The cavities considered so far have always had 7 waveguides. However, taking
7 connected waveguides (1 input, 6 outputs) still seems as an arbitrary choice.
Therefore, theQ-factor calculation of 3.4.2 was done again for a changing number
of connectedwaveguides. As onewould expect, reducing the number of armswill
have a direct influence on the Q-factor and hence the memory of the system: we
expect the cavity to retain the signal longer. However, with this larger memory
comes a reduced complexity the reservoir is able to solve as a less rich linear

9For this the realistic detector model was disabled for obvious reasons.

108 Photonic Cavities

0 1 2 3

Latency [bits]

10−3

10−2

10−1

100

B
ER

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

BER MSE

Figure 3.23: XOR of two bits with one bit in between at 50Gbps performed with a
certain latency.

15 25 50 100 200

Bitrate [Gbps]

10−3

10−2

10−1

100

B
ER

Figure 3.24: The XOR performance of two bits with a bit in between. Just like for the
AND task, the performance is noticeably worse than for two subsequent bits. The wide
region of operation is completely gone and although the best operating bitrate is still at
50Gbps, the performance is still not good enough. To save time, the sweep over the

bitrates was done with 2D FDTD simulations.

combination of the fields at the output waveguides can be taken. To quantify
this trade-off, both the maximum latency for the copy task as the performance
on the XOR task were tracked.

What we see in Fig. 3.25 is — apart from the expected decay of the Q-factor
— that the XOR performance seems to have an abrupt phase transition-like per-
formance increase when going from 5 to 6 connected waveguides. This basically
means that the XOR problem becomes linearly separable in the 6-dimensional
cavity output space.

Moreover, we also clearly see that the memory for the copy-task is highest

On-chip ReseRvoiR Computing with Photonic Cavities 109

2 3 4 5 6 7
outputs

0

25000

50000

75000
Q

fa
ct
or

B
ER

1.0

1.5

2.0

2.5

m
ax

la
te
nc

y
[b

it
s]

Q BER max latency

10−3

10−2

10−1

Figure 3.25: The Q-factor decays for an increasing number of output arms. Moreover,
the BER on the XOR task seems to drastically increase when transitioning to six output
waveguides. We can also see that a higher Q does not automatically relate to a longer
memory capacity (expressed in maximum latency) for retrieving the original bit stream

(copy task), possibly because the memory of the cavity fades too slow.

for the cavity with the 5 waveguides. This is counter-intuitive as naively one
would think that the memory would be highest for a lower number of attached
waveguides. A possible explanation for this could be that the fields are not fading
away fast enough, resulting in too chaotic or unpredictablemixingwith toomany
bits in the past.

The Q-factor decay of the photonic crystal cavity can be compared to the Q-
factor decay of the dielectric chamfer cavity shown in Fig. 3.26. One immediately
sees that first of all the Q-factor is lower for the dielectric cavity (as expected)
and that the Q-factor is not as influenced by the number of arms connected into
the cavity. This is of course also expected as most of the power gets lost at the
interface of the cavity and hence the lost power by adding more arms is less
dominant.

3.6 Fabrication

All fabricated cavities were created with an electron-beam (e-beam) lithogra-
phy process, which works generally speaking as follows: a 240 nm thick layer of
ARP-6200.09 resist is spin-coated on a silicon substrate and is then covered by
a 60 nm Electra resist. The resist is then patterned by our Voyager 2 e-beam at
50 kV, 0.4622 nA, 20mm working distance and 60µm aperture at a beam speed
of 58.8mm/s and a nominal dose of 160µC/cm2.

After patterning, the resist is developed for 1 minute at room temperature
with 99% n-amylacetate. The chip is then etched until the required depth by
Reactive Ion Etching (RIE) with a CF4 SF6 Ge mixture.

110 Photonic Cavities

2 3 4 5
outputs

0

25000

50000

75000

Q
fa
ct
or

Q

Figure 3.26: Q factor decay for an increasing number of output waveguides for a
dielectric cavity. Since the base loss is already quite high, adding additional arms to the

cavity will not have a big influence on the Q-factor.

There are two typical “platforms” for working with silicon photonics, named
after the thickness of the crystalline silicon (Si) layer grown on the glass (SiO2)
substrate: the 220 nm and the 400 nm platform as illustrated in Fig. 3.27. The
200 nm platform requires two etch steps: a deep etch (220 nm) for the trenches
around guiding structures likewaveguides, while the shallow etch (70 nm) is used
for coupling light into the waveguides through Grating Couplers (GCs). Fabri-
cation of structures for the 400 nm platform is generally speaking easier, as only
a single etch step (180 nm) is needed to create both waveguides and grating cou-
plers. However, due to these shallow-etched waveguides, only a single mode (the
TE mode) is well confined, other modes leak out quite rapidly10.

2µm

220 nmSi

SiO2

couplers
(70 nm)

waveguides
(220 nm)

(a)

2µm

400 nmSi

SiO2

couplers
(180 nm)

waveguides
(180 nm)

(b)

Figure 3.27: Most silicon photonic chips consist of structures patterned on (a) a 220 nm
or (b) a 400 nm thick silicon-on-insulator (SOI) structure.

10a problem we encountered while creating cavities on the 400 nm platform, as will be discussed
later.

On-chip ReseRvoiR Computing with Photonic Cavities 111

During the course of this PhD, several incarnations of cavities were made.
The first generation of cavities followed the photonic crystal design shown in
Fig. 3.28. The cavities were made on the 220 nm platform by a two step process.
For our initial attempt, the waveguides and photonic crystal holes were fully
etched into the 220 nm thick silicon slab and then the grating couplers were
shallowly etched 80 nm deep. However, due to the large cavity size, the deci-
sion was made not to under-etch the photonic crystal. The obvious drawback
of this is that this breaks the confinement of the light in the z-direction due to
asymmetry in refractive index below (SiO2) and above (air) the photonic crystal.
Therefore, we expect the losses to be rather high. Additionally, the e-beam fab-
rication procedure for photonic crystals is rather challenging, and was still being
developed in our lab at the time. As expected in this first attempt, losses in the

(a) (b)

Figure 3.28: (a) Microscope image and (b) Scanning electron microscope image of the
60µm× 30µm photonic crystal cavity fabricated with electron beam lithography.

cavity were way too high as illustrated in Fig. 3.29, where a typical transmission
profile for the cavity at one of the arms is pictured. Generally speaking, at least
-40 dBm is necessary: around the same amount as the total amplification avail-
able in the high-speed setup, as the high-speed photodetector expects a 0 dBm
input (see also 3.7.1).

The decision was then made to considerably simplify the fabrication process:
the second generation of cavities manufactured were of the dielectric type as il-
lustrated in Fig. 3.30. However, this time, the cavity was fabricated on the 400 nm
platform. The advantage of this platform is the ease of manufacturing: all struc-
tures are etched 180 nm deep into the 400 nm silicon slab. This only requires a
single etch step instead of the two on the 220 nm platform. However, the shal-
lowly etched structures on the 400 nm platform provide no confinement for TM
modes and due to mode-mixing in the cavity, we expect a non-trivial amount of
loss. Simulating the exact loss values for large 3D structures is rather challeng-
ing, therefore we decided to proceed with the fabrication anyway. However, as

112 Photonic Cavities

1520 1530 1540 1550 1560 1570 1580

Wavelength [nm]

−80

−75

−70

−65

−60

−55

Po
w
er

[d
B
m
]

Figure 3.29: Measured transmission of the photonic crystal cavity. Losses in the
manufactured photonic crystal cavities were way too high to advance to high speed
measurements. (Not normalized with respect to grating coupler loss 2× 7.5 dB.)

100 μm

Figure 3.30: Microscope image of a 100µm× 50µm cavity made on the 400 nm
platform.

On-chip ReseRvoiR Computing with Photonic Cavities 113

reflected in the transmission curves for this cavity in Fig. 3.31, the losses are too
high to qualify for high-speed measurements.

1530 1540 1550 1560 1570 1580 1590

Wavelength [nm]

−120

−100

−80

−60

−40

Po
w
er

[d
B
m
]

node 0

node 1

node 2

node 3

node 4

node 5

Figure 3.31: Measured transmission for all the arms of the dielectric cavity made on the
400 nm platform. None of these transmissions qualify for a high speed measurement.

(Not normalized with grating coupler loss 2× 7.5 dB.)

For the third generation of cavities, we returned to the 220 nm platform for
better confinement of the modes; a choice motivated by a higher confinement
of the TM mode. Moreover, to play it extra safe, a shape was chosen for which

in 1
2

3

4

Figure 3.32: Microscope image of a dielectric chamfer cavity with 200µm diameter.
The cavity has a single input arm and four output arms which we label accordingly.

we knew it should have low enough losses [5]: the chamfer cavity visualized in
Fig. 3.32. This generation of chamfer cavities were made in many different sizes,
ranging from 30µm diameter up to 500µm diameter. A typical transmission

114 Photonic Cavities

measurement in the frequency domain for the 100µm cavity is shown in Fig. 3.33.
As typical transmission is above 40 dBm, these cavities qualify for high speed

1546 1548 1550 1552 1554

Wavelength [nm]

−50

−40

−30

Po
w
er

[d
B
m
]

node 1

node 2

node 3

node 4

Figure 3.33: Measured transmission around 1550 nm for all the output arms in the
100µm diameter chamfer cavity. (Not normalized with respect to grating coupler

loss: 2× 7.5 dB.)

measurements.

3.7 High speed measurements

3.7.1 High speed setup

Figure 3.34: Diagram of the high speed measurement setup.

The high-speed measurement process is illustrated in Fig. 3.34. During this
process, 1550 nm laser light is modulated by a KeysightM8195A ArbitraryWave-
form Generator (AWG) according to a PRBS of 105 bits11 with a bit rate of up to

11Just like before, using only 105 bits limits the minimum achievable BER to 10−3. However, this

On-chip ReseRvoiR Computing with Photonic Cavities 115

64Gbps and a sample rate of 160GHz. The laser beam is brought into the correct
polarization with a Polarization Controller (PC), after which it is modulated by
the signal coming from the AWG. The signal is then pre-amplified by a Keopsys
CEFA-C-HG amplifier (+15 dB). The light is then brought again in the correct
polarization by a second PC and coupled into the chip through an on-chip grat-
ing coupler (−7.5 dB). After transmission through the cavity (−15 dB), the light
is coupled out of the chip by another grating coupler (−7.5 dB). The signal then
passes another Keopsys CEFA-C-HG amplifier (+15 dB). Due to both amplifi-
cations, the spectrum is significantly broadened, which is partially cleaned up
by an Optical Tunable Filter (OTF). The spectrum can be monitored by an Opti-
cal Spectrum Analyzer (OSA) and finally the light is detected with a high-speed
photodiode. The electrical signal is sent to a Keysight DSA-Z 634A Real Time
Oscilloscope (RTO) with a sample rate of 160Gbps where it is compared to the
original signal coming from the AWG.

3.7.2 Pulse response

Just like during the simulation, it is instructive to first look at the pulse response
to see how long a signal remains inside the cavity. As can be seen in Fig. 3.35, the

0 200 400 600 800 1000

t [ps]

0.30

0.25

0.20

0.15

M
ea

su
re
d
[m

V
]

single pulse

averaged pulse

.

Figure 3.35: Measured pulse response of the 100µm diameter chamfer cavity. Blue
line: single pulse; Red line: when averaging 10 pulses a small significant bump reveals

itself around 200 ps

pulse remains about 100 ps inside the cavity before it disappears into the noise.
The noise of the signal was uncharacteristically high, even for reference mea-

surements. Meanwhile, the cause of this has been identified as a defective am-

time, the bits are standard NRZ encoded, in contrast to the RZ encoding we were restricted to during
the pulse composition technique used in simulation.

116 Photonic Cavities

plifier. As a temporary stop-gap measure, multiple pulses can be averaged to-
gether to reduce the noise. This has the effect that a small bump becomes visible
at about 200 ps after the pulse has arrived. In all future experiments, we will
perform an average over 10 pulses, while we are waiting for a better amplifier.

The averaged pulse response for each of the cavity sizes can also be compared,
as illustrated in Fig. 3.36, where the response to a 30 ps pulse measured at arm
1 of each of the cavities is visualized. Here we clearly see that the responses get
richer with increasing cavity size.

0 100 200 300 400 500 600

time [ps]

0.0

0.5

1.0 waveguide

100µm
200µm
300µm
500µm

Figure 3.36: Comparison between the normalized 30 ps pulse responses for each of the
cavities measured at arm 1 and averaged over 20 streams. The 100µm response looks

almost indistinguishable from the response of the waveguide, indicating that the
dynamics in this cavity are probably not rich enough for the any of the tasks at hand.

The responses of the 200− 500µm cavities are a bit stretched out.

3.7.3 Copy task

Just as during the simulations, the memory of the system can be quantified by
the performance on the copy task. As the 100µm diameter chamfer cavity has
a similar Q-factor as the photonic crystal cavity, we expect the memory of this
cavity to be similar as long as the signal does not get lost into the noise.

As can be seen in Fig. 3.37, the memory of the 100µm diameter cavity at
48Gbps is about two bits.

On-chip ReseRvoiR Computing with Photonic Cavities 117

0 1 2 3 4

Latency [bits]

0

10

20

30

40

50

B
ER

[%
]

single bitstream

averaged bitstream

Figure 3.37: Measured copy task performance for the 100µm diameter chamfer cavity.
To reduce the noise on the measurement, the performance of the readout on the average
of 10 bit streams (dashed red line) is also included. At the measured bitrate of 48Gbps

the reservoir has a memory of about two bits.

3.7.4 Header recognition

The performance on recognizing 3-bit headers was measured for different cavity
sizes ranging from 100µm diameter to 500µm diameter. The performance is
quantified by the error rate on the worst performing header at each bitrate. As
can be seen in Fig. 3.38, each of the cavities can achieve near perfect performance
for at least one bitrate. We can also see that larger cavities have an operating

8 16 24 32 40 48 64

bitrate [Gbps]

0

20

40

60

80

100

m
ax

er
ro

r
ra

te
[%

] Ø 500um

Ø 300um

Ø 200um

Ø 100um

Figure 3.38: 3-bit header recognition. Performance on the worst performing header at
each bitrate for a sweep of cavity sizes.

range at lower bitrates, just like one would expect. Just like we did before during
the simulations, we can plot the separation of the headers on a 2D-projection as

118 Photonic Cavities

illustrated in Fig. 3.39. We see that such a 2D projection is clearly not enough to
separate them, although a rough grouping can be observed. This figure serves as
a nice qualitative visual representation of which headers get confused with each
other the most.

000

001

010

011

100

101

110

111

Figure 3.39: Although the measured headers for the 200µm diameter cavity are not
completely separable as there is a max error rate of 2%, we still can see distinct regions

for each header. Moreover, similar headers seem to be closer together.

The performance for 4 bit headers is clearly worse: as can be seen in Fig. 3.40
the best max error rate is around 20%, clearly too high.

8 16 24 32 40 48 64

bitrate [Gbps]

0

20

40

60

80

100

m
ax

er
ro

r
ra

te
[%

] Ø 500um

Ø 300um

Ø 200um

Ø 100um

Figure 3.40: 4-bit header recognition. Performance on the worst performing header at
each bitrate for a sweep of cavity sizes.

On-chip ReseRvoiR Computing with Photonic Cavities 119

3.7.5 AND Task

Just like in the simulations, the maximum latency for the AND task is about 2
bits, as can be seen in Fig. 3.41.

0 1 2 3 4

Latency [bits]

0

10

20

30

40

50

B
ER

[%
]

single bitstream

averaged bitstream

Figure 3.41: performance on the AND task for the 500µm cavity at 16Gbps

3.7.6 XOR Task

As usual we start of the discussion with the BER vs latency plot, as illustrated in
Fig. 3.42. Here we clearly see the advantage of reducing the noise by averaging
multiple bit streams: the minimal BER drops from about 20% to about 0.6%.

0 1 2 3 4

Latency [bits]

0

10

20

30

40

50

B
ER

[%
]

single bitstream

averaged bitstream

Figure 3.42: performance on the XOR task for the 200µm cavity at 16Gbps. The
minimal bit error rate is 0.6% for the 10× averaged bit stream.

When looking at the bit error rate of the dielectric chamfer cavity at different
bitrates and at different diameters of the cavity, we see that we have found a

120 Photonic Cavities

sweet spot at 16Gbps for the 200µm diameter cavity. Both the smaller cavity
and bigger cavities perform worse.

8 16 24 32 40 48 64

bitrate [Gbps]

0

10

20

30

40

50

B
ER

[%
]

Ø 500um

Ø 300um

Ø 200um

Ø 100um

Figure 3.43: Measured BER on the xor task at different bitrates. The error rate was
reported on a 10× averaged bit stream.

The reason the large cavities perform worse can be attributed to noise.
Whereas the average power coming through an arm from the 100µm diameter
cavity is about −30 dBm, transmission for the largest cavity (500µm diameter)
approaches −40 dBm, the lower limit of the simulation.

The reason the smaller cavities perform worse is twofold. First of all, the
smallest cavities (< 200µm) do not have rich enough field profiles: it is very
hard to see the difference between the cavity response and the response of a
normal waveguide. Indeed, looking at the averaged response at arm 1 of each of
the cavities, we see that the 100µm cavity response is almost indistinguishable
from the waveguide response, as can be seen in Fig. 3.36. Moreover, the operation
range of the smaller cavities lies at the higher bitrates, which — even though
we measured up until 64Gbps — leave the AWG noticeably deteriorated above
40Gbps.

The recovered BER for the XOR task of 0.6% at the optimal bitrate and at
the optimal cavity is still high for normal telecommunication standards. This
is also reflected in the eye-diagram, as illustrated in Fig. 3.44, which becomes
significantly more closed after the XOR operation. It has to be noted, however,
that the fact that a linear system like the cavity can perform this non-linear XOR
task at all (with a little non-linear help from the detector) is at least remarkable.
Moreover, to perform this operation on a fully co-integrated electro-optical chip,
no high-speed electronics are necessary as the linear combination necessary for
the readout operation can possibly be implemented by a static and analog electric
circuit

On-chip ReseRvoiR Computing with Photonic Cavities 121

(a) (b)

Figure 3.44: Eye diagrams for (a) the incoming bit stream before the XOR operation and
(b) the outgoing bit stream after the XOR operation at 16Gbps. The difficulty of the
XOR operation is reflected in the eye diagram which is significantly more closed after

the operation.

3.8 Conclusions

This chapter introduced a completely new photonic reservoir computer on a sil-
icon photonic chip. These cavities were benchmarked for typical telecommuni-
cation problems. They are able to perform basic telecom tasks such as header
recognition and boolean logic.

In simulation, we were able to perform most of these tasks at the mini-
mum determinable BER (about 10−3). During the measurements, however, even
higher bit error rates are observed. Moreover, the wide range of operation seems
to be gone. A large part of this worse performance can probably be attributed to
a broken amplifier. Still, probably more work has to be performed to decrease the
bit error rates even further, e.g. by designs with lower loss and better fabrication
techniques.

That said, some conclusions on the design of cavity-based reservoir comput-
ers can bemade. first of all, the cavity size has an immediate effect on the optimal
operating range of the reservoir. This is something that was both confirmed in
simulation and experiment. Moreover, during the measurements, we found an
upper limit for the dielectric cavity size above which the losses in the cavity be-
come too high for the reservoir operation to work. This is something that can
probably be achieved by falling back on a photonic crystal cavity.

During the measurements, we seem to have found a lower lower limit on the
cavity size. However, this lower limit probably has to be attributed to the limi-
tations of the measurement equipment to date, which becomes too noisy both
in generation and detection at high bitrates. This premise is in fact confirmed
when looking at the simulation results, which easily allows reservoir operation
up to 2Tbps when the limitations of the setup are not taken into account.

122 Photonic Cavities

References

[1] Floris Laporte, AndrewKatumba, Joni Dambre, and Peter Bienstman. Numer-
ical demonstration of neuromorphic computing with photonic crystal cavities.
Optics express, 26(7):7955–7964, 2018.

[2] H.-J. Stockmann and J. Stein. Quantum chaos in billiards studied by microwave
absorption. Phys. Rev. Lett., 64:2215–2218, May 1990.

[3] M Sieber, U Smilansky, SC Creagh, and RG Littlejohn. Non-generic spectral
statistics in the quantized stadium billiard. Journal of Physics A: Mathematical
and General, 26(22):6217, 1993.

[4] Changxu Liu, Ruben EC Van Der Wel, Nir Rotenberg, L Kuipers,
Thomas Fraser Krauss, Andrea Di Falco, and Andrea Fratalocchi. Triggering
extreme events at the nanoscale in photonic seas. Nature Physics, 11(4):358–
363, 2015.

[5] Brian C Grubel, Bryan T Bosworth, Michael R Kossey, Hongcheng Sun,
A Brinton Cooper, Mark A Foster, and Amy C Foster. Silicon photonic phys-
ical unclonable function. Optics express, 25(11):12710–12721, 2017.

[6] Alan Julian Izenman. Linear discriminant analysis. In Modern multivariate
statistical techniques, pages 237–280. Springer, 2013.

[7] M. Jeruchim. Techniques for Estimating the Bit Error Rate in the Simulation of
Digital Communication Systems. IEEE Journal on Selected Areas in Commu-
nications, 2(1):153–170, Jan 1984.

4
Neuromorphic Computing with

Photorefractive Materials

In this chapter we will explore how photorefractive materials can be used as a
medium for neuromorphic computing. These kind of materials change their re-
fractive index as a reaction to the light propagating through them, which in turn
has an effect on the light itself. We will explore how this interesting effect could
be used in the context of neuromorphic computing.

A large part of this research relies on accurately simulating this interaction.
Because of the vast timescale differences between the governing phenomena in a
photorefractive crystal, a dedicated Finite-Difference Time-Domain (FDTD) sim-
ulator was necessary. A large part of this chapter will thus also be focused on
explaining the implementation of the FDTD method with a specific focus on the
photorefractive effect.

4.1 The Finite-Difference Time-Domain Method

The Finite Difference Time Domain (FDTD) method [1, 2] is one of the most-
used ways to accurately simulate electromagnetic phenomena. In this part of
the chapter, we’ll introduce the basics of the FDTD simulator that was built to
simulate photorefractive crystals. A large part of the FDTD simulator created
for this work was originally inspired by [3], however the final implementation
differs quite a bit.

124 PhotoRefRactive Cavities

4.1.1 Electromagnetism background

As we have touched upon in 2.1, any electromagnetic phenomenon is governed
by Maxwell’s equations:

∇× E = −µ0µr
∂H
∂t

∇ · (ϵ0ϵrE) = ρ (4.1)

∇×H = J+ ϵ0ϵr
∂E
∂t

∇ · (µ0µrH) = 0, (4.2)

for which the permittivity ϵr and the permeability µr are — in their most general
form — tensors that act on the electric field E and the magnetic field H.

Furthermore, at any moment in time, the energy density in the electromag-
netic field can be written as

E =
1

2
ϵ0ϵrE

2 +
1

2
µ0µrH

2 (4.3)

If one wants a measure for the energy flow in the system, the Poynting Vector
is used:

S = E×H

which describes the energy flow through a surface. Indeed: the Poynting vector
S and the energy density have the following relationship:

dE
dt

= −∇ · S. (4.4)

4.1.2 Simulation units

We can choose a different definition for the fields E and H such that

Ẽ(r, t) =
√
ϵ0E(r, t) (4.5)

H̃(r, t) =
√
µ0H(r, t), (4.6)

Additionally, Maxwell’s equations can be written as update equations1:

H̃(r, t+ dt) = H̃(r, t)− cdtµ−1
r

(
∇× Ẽ(r, t)

)
, (4.7)

Ẽ(r, t+ dt) = Ẽ(r, t) + cdtϵ−1
r

(
∇× H̃(r, t)

)
(4.8)

which have a nice symmetrical form in Ẽ and H̃. Making such a substitution
like (4.5) and (4.6) is important for methods like the FDTD method for which
accuracy of the fields is important, as it makes sure both fields are of a similar
magnitude close to one2, which increases numerical stability.

1We are ignoring the current density J for now.
2In SI units, the relative magnitude difference between the fields is related by the electromagnetic

impedance of free space η0 =
√

µ0
ϵ0

, which for the current choice of simulation units equals 1 per

definition.

NeuRomoRphic Computing with PhotoRefRactive MateRials 125

Note that this particular choice of simulation parameters also changes the
form of the energy density:

E =
1

2

(
ϵrẼ

2 + µrH̃
2
)
, (4.9)

while the expression for the Poynting vector becomes:

S = cẼ× H̃

4.1.3 Yee grid discretization

By defining the grid spacing du (the same in all three spatial dimensions) and
the time step dt, the update equations can be discretized in both space and time.
However, doing only that is not sufficient, as the curl of the fields Ẽ and H̃ is not
well defined for any discretized space. In 1966, Yee et al. found a solution to this,
which is now widely known as Yee-discretization [1].

According to the Yee discretization, there are inherently two types of fields
on the grid: E-type fields, for which the x, y and z components have two integer
coordinates and one half-integer coordinate, and H-type fields, for which the
x, y and z components have two coordinates on half-integer grid locations and
one coordinate on integer grid locations. By placing the 6 components of the
electromagnetic fields each at a different location, one arrives at the staggered
grid cell shown in Fig. 4.1, for which the E-type fields are defined on the edges

Ex

Ez

Ey

Hx

Hz

Hy

z

y

x

Figure 4.1: A unit cell on a Yee-grid. The E-fields are on the edges of the unit cell; the
H-fields are on the faces of the unit cell.

of each unit cell of the grid and the H-type fields are defined on the faces of
the unit cell. Furthermore, apart from the staggering in space, we also choose
the coordinates to be staggered in time, such that we can write for the final Yee-

126 PhotoRefRactive Cavities

coordinates:

H[m,n, p, q] =

Hx

(
mdu, (n+ 1

2)du, (p+
1
2)du, qdt

)
Hy

(
(m+ 1

2)du, ndu, (p+
1
2)du, qdt

)
Hz

(
(m+ 1

2)du, (n+ 1
2)du, pdu, qdt

)
 (4.10)

E[m,n, p, q] =

Ex

(
(m+ 1

2)du, ndu, pdu, (q +
1
2)dt

)
Ey

(
mdu, (n+ 1

2)du, pdu, (q +
1
2)dt

)
Ez

(
mdu, ndu, (p+ 1

2)du, (q +
1
2)dt

)
 (4.11)

The beauty of these interlaced coordinates is that they enable a very natural
way of writing the curl for the electric and magnetic fields: the curl of an H-
type field will be transformed to an E-type field and vice versa. Defined on
these coordinates, the curl of E can be written as:

ΦE[m,n, p] = du∇× E[m,n, p] = du

 ∂Ez

∂y − ∂Ey

∂z
∂Ex

∂z − ∂Ez

∂x
∂Ey

∂x − ∂Ex

∂y

 [m,n, p] (4.12)

=

(Ez[m,n+ 1, p]− Ez[m,n, p])− (Ey[m,n, p+ 1]− Ey[m,n, p])
(Ex[m,n, p+ 1]− Ex[m,n, p])− (Ez[m+ 1, n, p]− Ez[m,n, p])
(Ey[m+ 1, n, p]− Ey[m,n, p])− (Ex[m,n+ 1, p]− Ex[m,n, p])


In which the half-integer indices are implicitly assumed. The curl of H can be
obtained in a similar way, but due to their position in the grid cell the right
difference (E[m+ 1]− E[m]) turns into a left difference (H[m]−H[m− 1]):

ΦH[m,n, p] = du∇×H[m,n, p] = du

 ∂Hz

∂y − ∂Hy

∂z
∂Hx

∂z − ∂Hz

∂x
∂Hy

∂x − ∂Hx

∂y

 [m,n, p] (4.13)

=

(Hz[m,n, p]−Hz[m,n− 1, p])− (Hy[m,n, p]−Hy[m,n, p− 1])
(Hx[m,n, p]−Hx[m,n, p− 1])− (Hz[m,n, p]−Hz[m− 1, n, p])
(Hy[m,n, p]−Hy[m− 1, n, p])− (Hx[m,n, p]−Hx[m,n− 1, p])


4.1.4 Update equations

Using the Yee discretization for the electromagnetic fields and the above def-
initions for the curl of the fields, yields the following update equations which
leap-frog each other (we leave out the spatial dependency, as they are all con-
tained within the curls ΦE and ΦH .):

H̃[q + 1] = H̃[q]− scµ
−1
r ΦẼ[q] (4.14)

Ẽ[q + 1] = Ẽ[q] + scϵ
−1
r ΦH̃[q + 1], (4.15)

NeuRomoRphic Computing with PhotoRefRactive MateRials 127

where we defined the dimensionless number

sc =
cdt

du
, (4.16)

called the Courant number sc. For stability reasons, the Courant number should
always be smaller than 1/

√
D, with D the dimension of the simulation. This

can be intuitively be understood as the condition that information should always
travel slower than the speed of light through the grid. In the FDTD method de-
scribed here, information can only travel to the neighboring grid points (through
application of the curl). It would therefore take D time steps to travel over the
diagonal of aD-dimensional cube (square in 2D, cube in 3D). The Courant con-
dition follows then automatically from the fact that the length of this diagonal
is du

√
D:

cDdt

du
√
D

< 1 ⇒ sc =
cdt

du
<

1√
D

(4.17)

4.1.5 Sensible defaults

In order to have an accurate simulation a good rule of thumb is to choose the grid
spacing of the FDTD simulation 10 times smaller than the smallest wavelength
in the grid. When working with 1550 nm light in silicon (n ≈ 3.1) this would
result in a grid spacing of approximately 50 nm.

Moreover, for stability reasons it is recommended to choose the time step to
exactly equal the Courant condition, which in 3D results in a time step of about
0.1 fs.

4.1.6 Sources

So far, we have ignored the current density in the update equations. However,
without having a way to handle this, it would be impossible to introduce energy
into the grid. We can include the current density J into the update equation for
Ẽ as follows:

Ẽ[q + 1] = Ẽ[q] + scϵ
−1
r

(
ΦH̃[q + 1]− J̃[q + 1]

)
(4.18)

= Ẽ[q] + scϵ
−1
r ΦH̃[q + 1] + Ẽs[q + 1], (4.19)

where we defined the current density in simulation units to be J̃ = Jdu/√ϵ0.
Furthermore, we introduced Ẽs to be the electric field source term.

Moreover, it is often useful to also define a magnetic field source term H̃s,
which would be derived from the magnetic current density Jm if it were to exist.
In the same way, the update equation for H can be rewritten as:

H̃[q + 1] = H̃[q]− scµ
−1
r

(
ΦẼ[q]− J̃m[q]

)
(4.20)

= H̃[q]− scµ
−1
r ΦẼ[q]− H̃s[q + 1]. (4.21)

128 PhotoRefRactive Cavities

In practice, it is easier to directly define the source terms Ẽs and H̃s instead
of their respective current densities. The sources defined in the way described
above are called soft sources due to their additive nature. For stability reasons,
one might choose to implement a hard source instead by setting the value of the
fields fixed to the source value. When defined like this, the field value inside
the source is only defined by the source itself, not by the fields around it. An
unfortunate effect of choosing a hard source is however that the fields around
them reflect from them as they are not allowed to travel through.

4.1.7 Lossy Medium

When a material has a electric conductivity σ, a conduction-current Jσ = σE will
ensure that the medium is lossy. Plugging this conduction current into (4.18)
yields:

Ẽ[q + 1] = Ẽ[q] + scϵ
−1
r

(
ΦH̃[q + 1]− σ̃

2

(
Ẽ[q] + Ẽ[q + 1]

))
(4.22)

Where we defined σ̃ = σdu/ϵ0 and where we interpolated σẼ to be defined on
an integer time step such that it is aligned in time with ΦH̃. We can define the
parameter f :

f =
1

2
scϵ

−1
r σ̃, (4.23)

such that the update equation for E becomes:

Ẽ[q + 1] =
1− f

1 + f
Ẽ[q] +

1

1 + f
scϵ

−1
r ΦH̃[q + 1] (4.24)

Note that the above equation is only valid in the case of a diagonal inverse
permittivity tensor ϵ−1

r . If this is not the case — as is common for some pho-
torefractive and electro-optical materials — the above equation becomes even
more complicated and time-consuming to evaluate. It is therefore sometimes a
good approximation to transfer the electromagnetic absorption to the magnetic
domain by introducing a (nonphysical) magnetic conductivity σm, because for
non-magnetic materials the permeability tensor µr is just equal to one. A simi-
lar substitution yields in that case:

f =
1

2
scµ

−1
r σ̃m, (4.25)

such that the update equation for H becomes:

H[q + 1] =
1− f

1 + f
H[q]− 1

1 + f
scµ

−1
r ΦẼ[q + 1] (4.26)

NeuRomoRphic Computing with PhotoRefRactive MateRials 129

Later on, we will need to keep track of the absorption in the photorefractive
material to calculate the strength of the resulting photorefractive effect. The
easiest way to calculate the absorption is by keeping track of the induced change
in energy density during the update of the fields:

dE =
dE
dt

dt = cH̃ · ∂H̃
∂t

dt

⇒ dEabs = cH̃ ·

(
∂H̃
∂t

∣∣∣∣
σm=0

− ∂H̃
∂t

∣∣∣∣
σm ̸=0

)
dt (4.27)

= cH̃ · dH̃abs,

where dH̃abs is obtained by subtracting (4.26) from (4.21). This expression is use-
ful, as in photorefractive systems, the absorbed energy directly relates to the
number of electrons freed (see 4.2.1). Note however that the inner product of
two fields is not well defined, as each component has a different position in the
grid cell. Therefore, the fields are first interpolated to the corner of the grid cell
before the product is calculated. Moreover, since dH̃abs ∝ ΦẼ, which is only
defined on half-integer time steps, H̃ needs to be interpolated in time as well.

Another question we may ask ourselves is how the absorption introduced by
a magnetic conductivity σm relates to the general description of absorption in a
dielectric material:

I = I0 exp (−αr) (4.28)

Looking at the Maxwell equations, we have:

∇× E = −µ0µr
∂H
∂t

− σmH (4.29)

The right hand side becomes in the frequency domain:

RHS = −iωµ0

(
µr − i

σm

µ0ω

)
H (4.30)

= iωµ̄H, (4.31)

where we defined the complex relative permeability as µ̄r = µr − i σM

µ0ω
. This in

turn leads to a complex refractive index:

n̄ = n− ini =
√
ϵrµ̄r =

√
ϵrµr − i

ϵrσm

µ0ω
(4.32)

Assuming µr to be a scalar, we get using n =
√
ϵrµr :

n2 − n2
i − 2inni = n2 − in2 σm

µrµ0ω
(4.33)

130 PhotoRefRactive Cavities

This is a quadratic equation in ni, which yields:

ni = n
σm

2µrµ0ω
=

√
ϵr

σm

2µ0ω

Which gives us for the absorption α:

α =
2π

√
ϵrσm

λµ0ω
=

√
ϵrσm

µ0c
=

√
ϵrσm

η0
, (4.34)

with η0 =
√

µ0/ϵ0 the impedance or impermeability of free space.
Note also that if we would have done a similar derivation for the electric

conductivity σ, the expression for the complex refractive index would be

n̄ = n− ini =
√
ϵrµ̄r =

√
ϵrµr − i

µrσ

µ0ω
(4.35)

The two expressions (4.32) and (4.35) are interchangeable if µrσ = ϵrσm, giving
us a relationship between the physical electric conductivity and the unphysical
magnetic conductivity. An anisotropic ϵr thus makes the effective loss due to a
magnetic conductivity anisotropic as well. However, this effect is often a small
price to pay for much more efficient update equations.

4.2 Simulating the photorefractive effect

Charge photo-
excitation

Charge
transport
Charge
trapping

Index
modulation

Light intensity
pattern

Charge-pair
density
Charge redistribution
density

Space-charge
field amplitude

Index modulation

Figure 4.2: Left: the photorefractive effect defined by its microscopic processes. Right:
amplitude of the different functions according to the space and phase shift between

them. Figure from [4].

The photorefractive effect is a peculiar response some materials3 have to an
applied optical field. When illuminated with light, these materials develop a

3Quite a few inorganic materials exhibit the photorefractive effect. The most important materials
being LiNbO3, KNbO3, BaTiO3, Bi12Si20 and GaAs.

NeuRomoRphic Computing with PhotoRefRactive MateRials 131

change in refractive index. The effect was first observed in the 1960s by Ashkin
et al. [5] in what they called optically induced lensing. The effect was not well
understood, until three years later an explanation of the microscopic processes
governing the effect was given by Chen et al. [6]. This microscopic process relies
on a careful interplay between the photons and the charges in the material and
can be summarized by the following four-step process which is also illustrated
in Fig. 4.2:

1. Photons excite charges in the illuminated regions of the material

2. The charges are now free to move through the bulk of the material

3. The charges are captured again in the dark regions of the material, giving
rise to a inhomogeneous charge distribution

4. The induced charge distribution gives rise to a space-charge electric field
modulating the refractive index of the material through the Pockels effect.

As this effect relies on the diffusion of electrons through the material, is said
to be non-local. It is also a reversible effect, as the induced charge density can
be removed by applying a different optical field or by a thermal process.

To include the Photorefractive effect into the FDTD simulator we have intro-
duced previously, these 4 steps need to be accurately modeled. For this, we’ll
use the well-known Kukhtarev equations [7] in 4.2.1 to model the excitation
and trapping of the electrons, we’ll then describe how we’ll model the diffusion
in 4.2.2, followed by a discussion on how to find the space charge electric field in
4.2.3 and the resulting index change due the the pockels effect in 4.2.4. Although
all of these phenomena are well-known, the way they are integrated into the
FDTD method, as discussed in 4.2.6 and 4.2.7 has — to our knowledge — never
been done before.

4.2.1 Kukhtarev equations

When numerically modeling the process above, we will need to make some gen-
erally accepted assumptions and simplifications to the problem. First, no dif-
ference is made between traps and donors in the photorefractive material: we
assume any unfilled trap is positively charged and any filled trap is a (neutral)
donor, while in reality there may be some irreversible effects. Second, it is as-
sumed that all traps have the same energy. Finally, we assume that electrons
can not be excited from inside the valence band — only from within the traps de-
scribed above. These assumptions were first proposed by Kukhtarev in 1978 [7],

132 PhotoRefRactive Cavities

who also proposed the excitation and diffusion equations resulting from them:

dn

dt
=

dN+
D

dt
+∇ · J (4.36)

dN+
D

dt
= (sI + β)(ND −N+

D)− γnN+
D (4.37)

J =
µkT

e
∇n− µnS (4.38)

The first equation describes how the change in free electron density n is related
to the change in excited donor densityN+

D and the spatial gradient of the current
density J .

For the second equation, the change in excited donor density N+
D can be

split into a generative term and a recombination term. The generative term will
be proportional (through a photo-ionization cross-section s) to the intensity of
the light I , which in this case is defined in terms of the energy density I =

cE . Assuming the only absorption in the photorefractive material is due to the
photo-ionization, we can propose a relation between the photoionization s and
the absorption coefficient α4:

α = s
h̄c

λ
(ND −N+

D) (4.39)

The generative term will also be proportional to a thermal excitation rate
β. Both the photo-ionization and the thermal excitation will obviously only be
able to excite from the non-excited donors ND − N+

D . On the other hand, the
recombination term will be proportional to the number of free electrons n and
the number of excited donors N+

D through a recombination rate γ.
Finally, the current density J in the third equation is related to the gradient

of the electron density∇n and to the actual electron density nmultiplied by the
Poynting vector S through the mobility µ5.

4.2.2 Electron diffusion

Consider the diffusion equation:

∂n

∂t
=

∂n

∂t

∣∣∣∣
diff

+
∂n

∂t

∣∣∣∣
drift

= D∇2n−∇ · F (4.40)

with D the diffusion constant:

D =
kT

e
µ (4.41)

4The assumption that the absorption is completely due to the photo-ionization is an approxima-
tion. It gives the lower bound for the absorption given the photo-ionization cross-section s.

5obviously different from the magnetic permittivity µrµ0

NeuRomoRphic Computing with PhotoRefRactive MateRials 133

and F the electron flow which is proportional to a present electric field E:

F = nµE (4.42)

Let us focus first on the diffusion part of the equation in 2D6:

∂n

∂t

∣∣∣∣
diff

= D

(
∂2

∂x2
+

∂2

∂y2

)
n (4.43)

Using symmetric differences, we get:

∂nm,n

∂t

∣∣∣∣
diff

=
D

du2

(
nm+1,n + nm−1,n + nm,n+1 + nm,n−1 − 4nm,n

)
(4.44)

Let us focus now on the drift part of the equation:

∂nm,n

∂t

∣∣∣∣
drift

= −∇ · F, (4.45)

We will now perform a scheme like in [8], which uses symmetric differences in
space:

∂nm,n

∂t

∣∣∣∣
drift

=− 1

du

(
Fm+1,n
x (q)− Fm−1,n

x (q)

2
+

Fm,n+1
y (q)− Fm,n−1

y (q)

2

)

This gives for the rate of change of n:

∂nm,n

∂t
=

D

du2

(
nm+1,n + nm−1,n + nm,n+1 + nm,n−1 − 4nm,n

)
(4.46)

− 1

du

(
Fm+1,n
x (q)− Fm−1,n

x (q)

2
+

Fm,n+1
y (q)− Fm,n−1

y (q)

2

)

This yields the following update equations:

n′m,n =nm,n +
Ddt

du2

(
nm+1,n + nm−1,n + nm,n+1 + nm,n−1 − 4nm,n

)
− dt

du

(
Fm+1,n
x (q)− Fm−1,n

x (q)

2
+

Fm,n+1
y (q)− Fm,n−1

y (q)

2

)

By carefully choosing the time step for this update equation as

dt =
du2

4D
=

edu2

4kTµ
, (4.47)

6The 3D discussion is exactly the same and is left as an exercise to the reader.

134 PhotoRefRactive Cavities

the update equation gets considerably simplified:

n′m,n =
1

4

(
nm+1,n + nm−1,n + nm,n+1 + nm,n−1

)
− edu

4kTµ

(
Fm+1,n
x (q)− Fm−1,n

x (q)

2
+

Fm,n+1
y (q)− Fm,n−1

y (q)

2

)

In the case of a uniform electric field, one gets the typical Lax-Friedrich scheme:

n′m,n =
1

4

(
nm+1,n + nm−1,n + nm,n+1 + nm,n−1

)
− edu |E|

4kT

(
nm+1,n(q)− nm−1,n(q)

2
+

nm,n+1(q)− nm,n−1(q)

2

)
A von Neumann-stability analysis [8] then yields a stable update equation if:

sc =
e |E|
4kT

du <
1√
2

(4.48)

Where we— just like for the FDTDupdate equations — defined a courant number
sc, this time for the diffusion equation. As for the FDTD updates, in general, sc
must be smaller than 1/

√
D, with D the dimension of the simulation.

However, in our case, the space-charge field S is not uniform and hence, the
Courant number is not well-defined. However, for most realistic space-charge
fields present in the material, which in for example LiNbO3 is limited to maxi-
mally 100kV/cm [9], stability on the diffusion is trivially obtained.

4.2.3 Space Charge Electric Field

The diffusion of the electrons through the material depends on a present electric
field E through (4.42). In the case of a photorefractive crystal, the only electric
field present is the so-called space charge field S, which is induced by the charge
distribution ρ in the material7:

ρ = e(N+
D − n−Nc) (4.49)

where Nc is the compensating charge, defined as the uniformly distributed
charge necessary to make the whole crystal charge neutral:

Nc = N+
D (t = 0)− n(t = 0) (4.50)

7Notice the interplay: the diffusion and hence the resulting charge density depends on the space
charge field and the space charge field in turn depends on the charge density. Both effects enforce
each other.

NeuRomoRphic Computing with PhotoRefRactive MateRials 135

From Maxwell’s static equations in a dielectric, we get

∇ · S =
ρ

ϵs
(4.51)

∇× S = 0 (4.52)

Here, we defined ϵs to be the static permittivity of the photorefractive ma-
terial, which usually is vastly different than the permittivity at optical wave-
lengths. Moreover, we also assumed that S varies slowly enough to allow the
second equation to equal zero.

The charge density ρ is directly related to the absorbed energy density dEabs,
which we solved in (4.27) on the corners of the grid cell, hence (4.51) also needs
to be solved on the corners of the grid cell:

ρ[m,n, p]

ϵs
= Sx[m,n, p]− Sx[m− 1, n, p] + Sy[m,n, p]− Sy[m,n− 1, p]

+ Sz[m,n, p]− Sz[m,n, p− 1] (4.53)

Similarly, S is an E-type field located on the edges of the grid cell and the ap-
plication of the curl (4.52) needs to be solved on the faces of the grid cell (H-
component locations):

0 = Sz[m,n+ 1, p]− Sz[m,n, p]− Sy[m,n+ 1, p] + Sy[m,n, p] (4.54)

0 = Sx[m,n, p+ 1]− Sx[m,n, p]− Sz[m+ 1, n, p] + Sz[m,n, p] (4.55)

0 = Sy[m+ 1, n, p]− Sy[m,n, p]− Sx[m,n+ 1, p] + Sx[m,n, p] (4.56)

Taking all the equations together for each grid point gives us 4MN equations
for 3MN unknowns, which is an overdetermined linear system.

Ax = b (4.57)

with x the vector of unknowns:

x =



Sx[1, 1, 1]
...

Sx[M,N,P]
Sy[1, 1, 1]

...
Sz[M,N,P]


(4.58)

136 PhotoRefRactive Cavities

and b the targets:

b =



ρ[0, 0, 0]/ϵs
...

ρ[M,N,P]/ϵs
0
...
0


(4.59)

andA the sparse matrix containing the coefficients of (4.53) and (4.56). Although
this system overdetermined, it turns out a solution to this linear system of equa-
tions can still be found by calculating the left pseudo-inverse of A:

A+ = (ATA)−1AT (4.60)

In this way, the solution to this system can be found as:

x+ = A+b (4.61)

Solving any system by directly inverting a matrix is of course never a good
idea because of how expensive the operation of inverting is. However, one could
argue that A does in fact not change during the propagation of the light and
hence the inversion of the matrix only has to happen once. While this might be
more efficient for small grids, inverting A is generally speaking still not the right
choice. This is because the inverse of a sparse matrix is almost never sparse itself,
which would introduce an expensive dense matrix multiplication after the inver-
sion of the matrix. It is therefore recommended to use a sparse solver to solve for
x numerically, especially when the grid size grows. However, even when using
a numerical solver for the sparse system Ax = b, calculating the space charge
field is still a serious bottleneck of a photorefractive simulation as it requires us
to recalculate the whole space charge electric field from scratch every diffusion
time step.

A solution to this problem is to use the biconjugate gradient method [10],
which actually solves for the pseudo-inverse, i.e. the system

ATAx = AT b (4.62)

Solving this system numerically is on its own already more efficient as ATA is
an orthogonal matrix. However, in addition to that, the biconjugate gradient
method also allows to initialize the system with an estimate of x for which we
can of course use the value of x at the previous diffusion time step. This way of
solving for the space charge field works at least 10 times faster than a traditional
solver solving Ax = b.

NeuRomoRphic Computing with PhotoRefRactive MateRials 137

4.2.4 Electro-optic effect

So far, we have figured out how the light creates a space charge electric field S
by exciting electrons that diffuse to the crystal and get trapped elsewhere. The
only piece of the puzzle that is still missing is the relation between this space
charge electric field S and the optical properties of the material.

Generally speaking, the electro-optic effect is described as a dependence of
the impermeability tensor η = µrϵ

−1
r of the material on a present electric field E.

When this electric field is small — as is the case for the space charge electric
field S — we can apply a first-order series expansion:

ηij(S) = ηij(0) + rijkSk. (4.63)

This first-order dependency on the electric field is called the Pockels effect. In
the case of non-magnetic materials (µr = 1), this equation can be rewritten as:

(ϵ−1
r)ij(S) = (ϵ−1

r)ij(0) + rijkSk. (4.64)

This equation is used when implementing the Pockels effect in simula-
tion. Note that often when talking about Pockels coefficients, the Kleinman
convention [11, 12] is used. The Kleinman convention is a notational convention
which uses the fact that, for reciprocal materials, we must have that rijk = rjki
and thus only 18 coefficients need to be known instead of 27. The Kleinman-
convention now defines the Pockels coefficients in a 6× 3 matrix as follows:

r11 = r111 r12 = r112 r13 = r113
r21 = r221 r22 = r222 r23 = r223
r31 = r331 r32 = r332 r33 = r333
r41 = r231 r42 = r232 r43 = r233
r51 = r311 r52 = r312 r53 = r313
r61 = r121 r62 = r122 r63 = r123

 (4.65)

Note however that almost no material has 18 independent Pockels coefficients.
This is because the Pockels tensor is related to the crystal deformations resulting
from a present electric field. Hence, the symmetry elements of the Pockels tensor
should reflect the symmetry of the crystal, resulting in the fact that most Pockels
coefficients will be zero for most crystalline materials.

Furthermore, the rij parameters are usually very small: they are expressed in
picometer per volt. Typical Lithium Niobate has maximal values for rij around
30pm/V [13], while the best photorefractive crystals have values of around
100pm/V. Usually values for the space charge field are limited by the breakdown
voltage, which is (up to an order of magnitude) about 100kV/cm [9]; therefore,
the maximal refractive index change is limited by the value of rijSj , which usu-
ally will not be higher than 10−5.

138 PhotoRefRactive Cavities

4.2.5 Lithium Niobate

One photorefractive material that is often used is LithiumNiobate. General pho-
torefractive parameters can be found in several reference works, like [14, 15].
The values used for the simulations in this thesis are taken directly from these
works and are summarized in Table 4.1. Note that LiNbO3 has a trigonal (3mm)
crystal structure and thus only needs 4 Pockels coefficients, r22, r13, r33, r42,
ordered in the following way:


0 −r22 r13
0 r22 r13
0 0 r33
0 r51 0
r51 0 0
−r22 0 0

 (4.66)

Parameter Value Unit

s Photo-ionization cross section 0.0025 m2/J
β Thermal excitation rate (300K) 1.0 s−1

γ Recombination rate 10−15 m3/s
µ Mobility 0.0015 m2/Vs
ND Donor density 6.6 · 1024 m−3

N+
D Initial excited donor density 3.3 · 1024 m−3

n Initial free electron density 1 · 1017 m−3

α Absorption coefficient 20 m−1

ϵ Static relative permittivity 32 1
ϵ Relative permittivity @ 1500 nm 4.9 - 4.6 1
S Space Charge Electric Field < 105 V/m
r22 Electro optic coefficient 7 pm/V
r13 Electro optic coefficient 10 pm/V
r33 Electro optic coefficient 32 pm/V
r42 Electro optic coefficient 32 pm/V

Table 4.1: Typical photorefractive parameters for LiNbO3. [13–15]

NeuRomoRphic Computing with PhotoRefRactive MateRials 139

4.2.6 FDTD update equations for the electric field

Writing the perturbation on the inverse permittivity rijkSk in matrix form gives
(after applying the Kleinman convention):

rijkSk =

r11Sx + r12Sy + r13Sz r61Sx + r62Sy + r63Sz r51Sx + r52Sy + r53Sz

r61Sx + r62Sy + r63Sz r21Sx + r22Sy + r23Sz r41Sx + r42Sy + r43Sz

r51Sx + r52Sy + r53Sz r41Sx + r42Sy + r43Sz r31Sx + r32Sy + r33Sz


Note that S is anE-type field, i.e. its components are located on the edges of the
Yee cell. This is a problem, as the above equation clearly shows that components
on different edges of the cell get mixed. Therefore, each Sk in rijkSk needs to be
interpolated to the corner of the grid cell first before they can be added together.
This has the added result that ϵ−1

r also lives on the corner of the grid cell. This
introduces another problem of its own, because in the update equation (4.15),
ϵ−1
r multiplies the E-type field ΦH, which itself is again defined on the edges of

the cell.
The naive solution to this is to interpolate ϵ−1

r back onto the edges after ap-
plying the perturbation. However, this operation is not well defined as it is not
clear where to place the non-diagonal components of ϵ−1

r . It turns out that this
is a difficult problem to solve and the only way to solve it is to adapt the update
equation [16]:

Ẽx +=

ϵ−1
r

 0

(ΦH̃)
{c}
y

(ΦH̃)
{c}
z



{Ex}

x

+ (ϵ−1
r)

{Ex}

(ΦH̃)x
0
0



Ẽy +=

ϵ−1
r

(ΦH̃)
{c}
x

0

(ΦH̃)
{c}
z

{Ey}

y

+ (ϵ−1
r)

{Ey}

 0
(ΦH̃)y

0

 (4.67)

Ẽz +=

ϵ−1
r

(ΦH̃)
{c}
x

(ΦH̃)
{c}
y

0



{Ez}

z

+ (ϵ−1
r)

{Ez}

 0
0

(ΦH̃)z

 ,

where (·)c is defined as an interpolation of a field component to the corner
of the grid cell and (·)Ei is defined as an interpolation of a field component to
the Ei-edge of the grid cell.

Obviously, this is a very expensive operation and should be avoided as much
as possible. One way of dealing with this is to only use this update equation
inside the photorefractive crystal, while using the normal update equation ev-
erywhere else in the FDTD grid.

140 PhotoRefRactive Cavities

4.2.7 Bringing it all together

So far, we have discussed three different mechanisms that are important for sim-
ulating a photorefractive system, each of which operates at its own timescale.
Bringing them together in a meaningful and efficient way is not easy. The gen-
eral principle is laid out in the flowchart in Fig. 4.3.

The optical propagation is performed by an FDTD simulation, which is char-
acterized by the FDTD time step, which we derived in 4.1.5 to be around dtfdtd ≈
0.1 fs. Depending on the size of the grid and the symbol rate of the signal, the
FDTD simulation is run for a few thousand time steps. As a general rule we as-
sume it takes about 1000 FDTD time steps to simulate the propagation of a single
pulse through the structure, hence after the FDTD simulation about 100fs has
passed.

However, the diffusion in the crystal happens at a much slower pace. Using
(4.47) we can find that for a typical photorefractive material like LiNbO3, with
a mobility µ = 0.0015m2/Vs, the diffusion time step is about dtdiff ≈ 15 ps —
about 5 orders of magnitude larger than the time step of the FDTD simulation.
During this characteristic time for the diffusion the refractive index of the ma-
terial can of course be considered constant. To save time, we arbitrarily multiply
the absorption profile with a factor 100, which would physically be equivalent to
sending the same signal 100 times through the crystal.

The absorption profile can then be converted into free carriers through (4.39).
These are then free to diffuse through the crystal with the mentioned time step.
Typically we will update the space charge field about every 100 diffusion steps
and repeat this process 1000 times.

This means that the refractive index is updated every 10−6 s before the pro-
cess is started over again. It is however very often the case that after 10−6 s the
induced refractive index profile has still not changed enough to have a measur-
able influence on the propagation of the light, which allows us to recycle the
previous absorption profile without having to redo the FDTD simulation.

Now that we have obtained a method for simulating the photorefractive ef-
fect, we will proceed to apply it on some examples.

4.2.8 A note on stability

Although for some parts of the photorefractive simulation, we briefly mentioned
stability contraints, such as for the FDTD update equations and for the diffustion
equations, for other parts — like for example the calculation of the space charge
field — the stability of the simulation was not considered.

Moreover, even if all subsystems of the photorefractive simulation were
proven to be stable on their own, it’s not a given that their combination as laid
out in this chapter still is.

That said, the simulations performed in the rest of this chapter seemed for
sure to be stable, as some simulations of were run that took more than a week
to finish.

NeuRomoRphic Computing with PhotoRefRactive MateRials 141

start

Generated free carriers

Absorption Profile

Effective Absorption Profile

Charge density

×102

×103FDTD steps

approx.

Kukhtarev eq.

Diffusion steps

Space Charge Field

∇ · S = ρ; ∇× S = 0

×102

re
pe

at
10

3
×

Pockels effect

Refractive Index Profile

0 s

10−13 s

10−11 s

10−11 s

10−9 s

10−9 s

10−6 s

Figure 4.3: A flowchart of a typical photorefractive FDTD simulation together with
typical times in the physical process. Each iterative operation is accompanied by a

typical number of iterations.

142 PhotoRefRactive Cavities

4.3 Holographic storage in photorefractive crys-
tals

Soon after their discovery, photorefractive crystals were hyped to be the next-
generation storage devices based on holographic patterns written into those
crystals [17, 18]. The idea was simple: make a spatially modulated laser beam in-
terfere inside the crystal with a reference beam. The interference between these
two beams creates a hologram inside the crystal. The hologram can then sim-
ply be read out by illuminating the crystal with the reference beam, as it will be
refracted on the hologram.

4.3.1 Beam coupling

The easiest way to understand why the spatially modulated beam can be read
out by the reference beam is by looking at a simple interference of two sinu-
soidal plane waves, which will create a sinusoidal interference pattern in itself.
As discussed before, the electrons will be freed at the location where the light
intensity is highest, i.e. the locations of constructive interference. They will then
diffuse to the dark locations in the crystal: the locations of destructive interfer-
ence. This results into a space charge electric field S which will have a maximal
value right inbetween a maximum and a minimum of the light intensity. This
means that the refractive index change — the grating in the crystal written by
the two beams interfering — will be shifted by a quarter period in space, which
turns out to be the optimal configuration for energy exchange between the two
beams.

The process described above is called beam coupling, and is the underlying
principle of how holographic storage works. It would thus be a good indicator
for the simulator described above if the said effect can accurately be simulated.
This is what is illustrated in Fig. 4.4: two beams entering the photorefractive
material perpendicular to each other (respectively from the north and the west)
create an interference pattern oriented along a 45◦ angle. In the beginning, the
beams propagate nicely through each other and almost unchanged beam pro-
files, shown in blue on the figure, are detected at the east and south detector.
After a while, the induced grating becomes strong enough to have an effect on
the beams. When now one of the sources is turned off, the grating present in
the photorefractive material will refract the other beam. This is shown on the
figure by the green beam profiles, which are the result of the transmission of the
west beam when the beam coming from the north was turned off. The beam is
reflected towards the south instead of transmitted towards the east: the induced
grating couples the east beam towards the south.

NeuRomoRphic Computing with PhotoRefRactive MateRials 143

0

15
μm

30
μm

15μm

30μm

Δn I

Initial after grating

is present

(west source)

Initial

after grating

is present

(west source)

a.
u.

a.
u.

a.u. a.u.
(a)

(b)

0

0.03

-0.03

Δn

Figure 4.4: (a) Beam coupling can be induced in a photorefractive crystal by letting two
perpendicular beams interfere. At first, the beams propagate through each other,

resulting in the blue curves on the figure. However, the resulting interference pattern
creates an index contrast that after a few seconds of illumination becomes big enough to
have an influence on the light. When now one of the sources is turned off, the light will
be refracted on the induced grating in the material, as can be seen in the green beam
profile (where the north source was turned off). (b) The induced index variation n and
the intensity profile I of the light are shifted by a quarter period: perfect for energy
exchange between the beams. The Pockels effect was exaggerated by a factor 1000 to

account for the small crystal size in simulation.

144 PhotoRefRactive Cavities

4.3.2 Holographic storage
One could in principle use multiple beams to encode information in the pho-
torefractive crystal. A way to do this is to have each beam encode a single bit
of information. However, it is clear to see that this would be a very impractical
approach, as aligning multiple beams at exactly the right positions in the crystal
is a very hard task.

In reality, a different approach is used: to store information in the crystal,
one returns to the two-beam approach. However, this time, in order to encode
more information into the crystal, one beam — the object beam — is spatially
modulated by a Spatial Light Modulator (SLM). After passing through a Fourier
lens the spatially modulated object beam is Fourier transformed and focused in
the center of the crystal where it interferes with a Gaussian reference beam, as
illustrated in Fig. 4.5.

Reference
beam

h = 20µm

crystal
σ1 = 45µm

σ0 = 7µm

object beam
w = 120µm

Fourier Lens

Fourier Lens

σr = 7µm

CCD

SLM

0th−1st +1st

Object
beam

d

Figure 4.5: Simulated holographic setup

This process was simulated for an SLM with pixel pitch d = 15µm at an
optical wavelength of λ = 633 nm. The light from the SLM interferes with a
Gaussian reference beam with beam waist σr = 7µm. We want the focused
object beam to have the same beam waist σ0 = σr as the SLM beam. The
necessary focal length of the Fourier lens to obtain such a beam waist can be
obtained from the diffraction limit:

σ0 = 1.22
λf

Nd
⇒ f ≈ 1mm, (4.68)

where we used N = 8 as the number of pixels in the SLM.
Naively, one could assume that the necessary crystal width for such a beam

waist would thus be around 2σ0 ≈ 14µm. However, the diffraction limit for

NeuRomoRphic Computing with PhotoRefRactive MateRials 145

N = 8 only describes the width of the 0th-order Fourier peak. To have enough
resolving power to see each individual pixel of the SLM, higher-order Fourier
peaks need to be included as well. A good estimation for the necessary width
to have enough resolving power is to set N = 1, which will give us the crystal
width necessary to resolve a single pixel of the SLM:

σ1 = 1.22
λf

d
≈ 45µm, (4.69)

Since the pixel pitch defines the spatial frequency that occurs the most in the
SLM, this beam width defines the 1st order Fourier peak. The absolute min-
imum width for the crystal necessary to resolve a single pixel and hence to
retain enough information to read it out without error would thus be around
w = 2σ1 ≈ 90µm. To be sure we will use a bit more: w ≈ 3σ1 ≈ 120µm.
Since there is no information encoded into the reference beam, the height of the
crystal can just be h ≈ 3σr ≈ 20µm.

We use the above parameters in simulation and see in Fig. 4.6 that this ap-
proach works quite well: the binary signal that was encoded into the crystal can
be retrieved without much issue.

0 250 500 750 1000 1250 1500 1750
−1

0

1

0 250 500 750 1000 1250 1500 1750
0.0

0.5

1.0

1.5

Re(Ez) Im(Ez)

Target Fourier Transform

Figure 4.6: Detected hologram before second Fourier lens (top) and after second Fourier
lens (bottom).

Note however that one is not bound to use binary data to encode information
into the crystal. Binary pixels were used in the above example to better show how
well the system can retrieve the data. However, in many applications, such as
in 4.4.1, we will only be interested in writing a random hologram into the crystal
without much interest in the content written into it.

146 PhotoRefRactive Cavities

4.4 Artificial neural networks with photorefrac-
tive crystals

As soon as the holographic properties of photorefractive crystals were well un-
derstood, this property has been exploited for countless of applications. A par-
ticular application domain of interest to us, is its use as an artificial neural
network [19, 20]. The traditional idea here is to write the weights of the neu-
ral network as a hologram into the crystal. As laid out in the previous chapter,
once the weights are written into the crystal, one basically has a neural network
with ultra-fast inference.

Moreover, it turns out that optical training algorithms akin to backpropaga-
tion can be derived for such systems. However, due to the inherently slow pro-
cess of diffusion inside the crystal, the whole idea never really took off, among
others because of the very long training times.

A new way of approaching photorefractive crystals for neuromorphic com-
puting is to view them as reservoirs by placing them in a cavity as shown in
Fig. 4.7. In that case, we do not need to train the crystal, but can simply ran-
domly initialize it and use the random index distribution to continuously mix
the incoming signal, much like we did with the on-chip cavities in the previous
chapter. The randomly mixed signal then gets detected by a camera for which
each pixel gets weighted by a readout layer. We will explore this possibility in
4.4.1.

cavity = optical reservoir

optical signal

mirror
photorefractive

crystal mirror
camera

readout

Figure 4.7: A photorefractive reservoir computer.

Additionally, another new and potentially more interesting aspect of these
photorefractive structures, is that they might show a form of self-learning, i.e.
the ability to reconfigure themselves due to time-dependent training signals. In-
deed, the mobile charges freed by the signal will roam around inside the crystal
until they reach an equilibrium position. It might be possible to exploit this in
a way similar to Hebbian learning [21, 22], which is best characterized by the
catchphrase “neurons that fire together wire together”. In the case of photore-
fractive crystals, this could take the form of common patterns and correlations
in the training input to be more expressed in the crystal, at the expense of less
frequently occurring patterns, which is what we will explore in 4.4.2.

Still, evenwithout self-learning, using a photorefractive crystal for neuromor-

NeuRomoRphic Computing with PhotoRefRactive MateRials 147

phic computing has other advantages. The biggest one being that a 3D structure
allows a much richer interconnection topology that cannot be achieved with the
2D on-chip systems discussed in the previous chapters. Of course, it has the
disadvantage of needing a more bulky, free-space setup.

The free-space setup where light propagates through scatterers for compu-
tational purposes is also reminiscent of the work in [23]

4.4.1 Reservoir computing with a fixed hologram

Let us first target the randomly initialized photorefractive crystal cavity, as il-
lustrated in Fig. 4.7. We will assume the crystal is pre-initialized with a random
hologram and that the intensity of the light is low enough to not have any influ-
ence on the refractive index.

This description of the problem is a classic reservoir computing problem and
resembles the cavities approach of the previous chapter. However, this time the
light is leaking out of the cavity through a semi-transparent mirror and the read-
out is trained on the pixel values detected in the camera behind the mirror. Just
like in the previous chapter, we will study the performance of the reservoir under
several benchmark tasks [24].

We would like the cavity round trip time to equal the length of a single bit.
Using the typical LiNbO3 parameters at a bitrate of 10Gbps. this would result
in a cavity of about 0.7cm. However, simulating this size with FDTD for a wave-
length of 1550 nm is just plain impossible. Therefore, for computational reasons
the cavity is made 1000× smaller than what we would use in practice. This
means that we are targeting a 10Tbps signal in a 7µm cavity.

Copy Task

Just like for the on-chip cavity discussed in the previous chapter, we will start of
with the copy task, where the performance on replicating the input bit stream
with a delay is measured. This obviously is a good benchmark for the memory-
capacity of the network. As can be seen in Fig. 4.8, depending on when you
sample, the reservoir has a memory of about 2 bits. The BER jumps up and
down so much due to the fact that the bit length (in s) of the bit stream sent in
is smaller than the round trip propagation time in the cavity8. Therefore, there
are moments when the information requested is just not present at the camer-
a/detector.

This problem can be circumvented by choosing a camera for which the in-
tegration time matches the bitrate of the signal, as can be seen in Fig. 4.9. This
approach clearly makes the BER graph much smoother, but the performance
is not necessarily better. However, if the sampling position can not be clearly
chosen up front, this is a valid approach.

8An artifact from the return-to-zero (RZ) encoding used in this case.

148 PhotoRefRactive Cavities

0 1 2 3 4 5

delay [bits]

0

25

50

B
ER

[%
]

0.0

0.5

1.0

M
SE

Figure 4.8: BER and MSE for the copy task measured at 8 sample points per bit.

0 1 2 3 4

delay [bits]

0

25

50

B
ER

[%
]

0.0

0.5

1.0

M
SE

Figure 4.9: BER and MSE for the copy task measured with a camera integration time
equal to the bit pulse length of the signal.

NeuRomoRphic Computing with PhotoRefRactive MateRials 149

XOR Task

A similar approach can be taken for the XOR task, which for 8 samples per bit
looks — surprisingly — very similar to the copy task as can be seen in Fig. 4.10.

0 1 2 3 4 5

delay [bits]

0

25

50

B
ER

[%
]

0.0

0.5

1.0

M
SE

Figure 4.10: BER and MSE for the XOR task at 8 samples per bit.

Increasing the integration time of the camera here is not recommended
though, as it clearly degrades the performance at longer delays.

0 1 2 3 4

delay [bits]

0

25

50

B
ER

[%
]

0.0

0.5

1.0

M
SE

Figure 4.11: BER and MSE for the XOR task measured with a camera integration time
equal to the bit pulse length of the signal.

4.4.2 Reservoir computing with a changing hologram
Alternatively one can try to exploit the holographic properties of the photorefrac-
tive crystal. We will do this in two steps: we will first prime the photorefractive
crystal with a random bit stream and then send through the crystal the actual bit
stream on which we want to operate. The hope is that this priming will improve
the performance on the task.

The priming of the crystal happens by continuously sending a random bit
stream through a cavity containing the crystal while a reference beam is active.

150 PhotoRefRactive Cavities

The signal beam enters the cavity through a 50/50 mirror and will reflect at the
other side of the cavity on a fully reflecting mirror. Moreover, the light is sent
into the cavity under a 10◦ angle, ensuring the light will leave the cavity after a
few round trips at the top of the crystal.

Reference
beam

Signal
beam

mirror50/50
mirror

(a)

Signal
beam

mirror50/50
mirror

emerging
beam

(b)

Figure 4.12: (a) The photorefractive crystal is first primed by enabling multiple
interference locations with itself and with a reference beam. (b) After the priming step

different emerging beams form for different bit sequences. These beams take “shortcuts”
through the cavity, ensuring proper mixing of the input signal.

The idea is now that, due to the reflections at the mirrors, light is kept inside
the crystal and different bit subsequences of the signal beam will interfere with
each other and with the reference beam, resulting in different types of gratings
present in the crystal. When the reference beam is then turned off and the same
bit sequence appears again, it will activate that grating and result in (hopefully)
a unique emergent behavior due to beam coupling effect.

In simulation, we choose the size of the crystal equal such that the propaga-
tion time to traverse the crystal equals a single bit. For the typical parameters of
LiNbO3 and a bitrate of 10Gbps, this would correspond to a cavity size of 1.4 cm.
However, just like before, simulating this size with FDTD is just plain impossi-
ble. Therefore, we will reduce the cavity size again by a factor 1000 and increase
in turn the Pockels effect and the bitrate in simulation by the same factor. Al-
though this yields unphysical parameters, the general idea of the simulation still
holds: we are basically trading off grating length for grating strength.

Copy task

Again, we will go over the copy task first and compare the result on the task
before and after priming in Fig. 4.13. We clearly see that priming the crystal
with a random bit stream increases the memory. A possible explanation for this
behavior can be found in how gratings tend to work: it typically takes a while
before the interference effect in the grating which directs the emerging beam out

NeuRomoRphic Computing with PhotoRefRactive MateRials 151

0.0 2.5 5.0 7.5

latency [bits]

0.0

0.2

0.4

Er
ro

r

BER

MSE

(a) Before priming

0.0 2.5 5.0 7.5

latency [bits]

0.0

0.2

0.4

Er
ro

r

BER

MSE

(b) After priming

Figure 4.13: Performance on the copy task before and after priming. Although in both
cases the incoming bit stream can be recovered without error, the priming seems to

increase the memory of the reservoir.

of the cavity gets established. This means that light gets stuck in the grating for
a while before it is reflected outward.

XOR task

Just like for the Copy task, priming increases the memory of the reservoir. How-
ever, it does not necessarily improve the quality of the XOR operation, as the
operation can be performed by both the primed reservoir and the non-primed
reservoir (Fig. 4.14).

0.0 2.5 5.0 7.5

latency [bits]

0.0

0.2

0.4

Er
ro

r

BER

MSE

(a) Before priming

0.0 2.5 5.0 7.5

latency [bits]

0.0

0.2

0.4

Er
ro

r

BER

MSE

(b) After priming

Figure 4.14: Performance on the XOR task before and after priming. Just like for the
copy task, priming seems to improve the memory of the reservoir.

152 PhotoRefRactive Cavities

4.5 Conclusion
In this chapter, common descriptions of well-known processes, like the
Kukhtarev equations, diffusion equations and the Pockels effect, were combined
to create an FDTD Description that enables us to accurately simulate the pho-
torefractive effect.

Some examples, such as beam coupling and holographic storage, were pro-
vided to clearly show that the photorefractive effect can be simulated quite well.
Morover, these examples laid out the groundwork for the photorefractive neuro-
morphic computing tasks.

To be able to actually simulate these photorefractive neuromorphic systems
in a reasonable amount of time, some approximations were necessary. The ab-
sorption in the crystal was increased by a factor 100 and it was assumed this is
equivalent to exciting the crystal about 100 times longer. Moreover, the Pockels
effect is made stronger by a factor 1000 while the size of the cavity is reduced
and the bitrate is increased by the same factor. This is quite a leap of faith and
hence the results obtained should just be considered as a qualitative indication
that such neuromorphic systems, like the reservoir computer and the primed
crystal, could work in principle.

The simulations we did this way, indicate that a randomly initialized photore-
fractive crystal could be a viable option as a photonic reservoir computer. More-
over, the self-organizing photorefractive crystals, where the crystal is primed
with a random bit stream, show promising results as the memory of the system
is clearly improved.

REFERENCES 153

References
[1] Kane S Yee et al. Numerical solution of initial boundary value problems in-

volving Maxwells equations in isotropic media. IEEE Trans. Antennas Propag,
14(3):302–307, 1966.

[2] Allen Taflove and Susan C Hagness. Computational electrodynamics: the
finite-difference time-domain method. Artech house, 2005.

[3] John B Schneider. Understanding the finite-difference time-domain method.
2010.

[4] Pierre-Alexandre Blanche and Brittany Lynn. Introduction to the Photore-
fractive Effect in Polymers. pages 1–63, 2016.

[5] A Ashkin, G Boyd, and J Dziedzic. Optically induced refractive index inho-
mogeneities in LiNbO3 and LiTaO3. Appl. Phys., pages 5–7, 1966.

[6] FS Chen. Optically induced change of refractive indices in LiNbO3 and LiTaO3.
Journal of applied physics, 40(8):3389–3396, 1969.

[7] Nikolaiv Kukhtarev et al. Holographic storage in electrooptic crystals. Ferro-
electrics, 22(1):949–960, 1978.

[8] Luciano Rezzolla. Numerical Methods for the Solution of Hyperbolic Partial
Differential Equations. 2005.

[9] Pietro Ferraro, Simonetta Grilli, and Paolo De Natale. Ferroelectric crystals
for photonic applications: including nanoscale fabrication and characteriza-
tion techniques, volume 91. Springer Science & Business Media, 2013.

[10] Roger Fletcher. Conjugate gradient methods for indefinite systems. In Nu-
merical analysis, pages 73–89. Springer, 1976.

[11] DA Kleinman. Nonlinear dielectric polarization in optical media. Physical
Review, 126(6):1977, 1962.

[12] Woldemar Voigt et al. Lehrbuch der kristallphysik, volume 962. Teubner
Leipzig, 1928.

[13] Vladimir M Fridkin. Photoferroelectrics, volume 9. Springer Science & Busi-
ness Media, 2012.

[14] O Beyer, D Maxein, K Buse, B Sturman, HT Hsieh, and D Psaltis. Femtosec-
ond time-resolved absorption processes in lithium niobate crystals. Optics
letters, 30(11):1366–1368, 2005.

[15] NAGusak and NS Petrov. On the dependence of the free carrier concentration
on light intensity in photorefractive crystals. Technical Physics, 46(5):635–
637, 2001.

154 PhotoRefRactive Cavities

[16] Gregory R. Werner and John R. Cary. A stable FDTD algorithm for
non-diagonal, anisotropic dielectrics. Journal of Computational Physics,
226(1):1085 – 1101, 2007.

[17] D Von der Linde and AM Glass. Photorefractive effects for reversible holo-
graphic storage of information. Applied physics, 8(2):85–100, 1975.

[18] K Buse, A Adibi, and D Psaltis. Non-volatile holographic storage in doubly
doped lithium niobate crystals. nature, 393(6686):665, 1998.

[19] Demetri Psaltis, David Brady, and Kelvin Wagner. Adaptive optical networks
using photorefractive crystals. Applied Optics, 27(9):1752–1759, 1988.

[20] Demetri Psaltis, David Brady, Xiang-Guang Gu, and Steven Lin. Hologra-
phy in artificial neural networks. In Landmark Papers On Photorefractive
Nonlinear Optics, pages 541–546. World Scientific, 1995.

[21] Donald Olding Hebb. Distinctive features of learning in the higher animal.
Brain mechanisms and learning, 37:46, 1961.

[22] BernardWidrow, Youngsik Kim, and Dookun Park. The Hebbian-LMS learn-
ing algorithm. ieee ComputatioNal iNtelligeNCe magaziNe, 10(4):37–53,
2015.

[23] Alaa Saade, Francesco Caltagirone, Igor Carron, Laurent Daudet, Angélique
Drémeau, Sylvain Gigan, and Florent Krzakala. Random projections through
multiple optical scattering: Approximating kernels at the speed of light. In 2016
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6215–6219. IEEE, 2016.

[24] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria
Schuld, Naftali Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. Ma-
chine learning and the physical sciences. Reviews of Modern Physics, 91(4),
Dec 2019.

5
Conclusions

5.1 Summary

The main goal of this work was to examine the viability of light as a carrier for
computation as opposed to just communication. The premise of this work was
that, for this to work, probably a different computing paradigm is needed. The
computing paradigm researched here was neuromorphic computing.

This dissertation gave an overview into novel optical neuromorphic comput-
ing architectures applied to the telecom field. During this work, roughly three
types of architectures were investigated.

We started off with the most traditional on-chip neuromorphic architecture,
which depends on photonic nodes interconnected in a feed-forward or recur-
rent way. To more easily research non-reservoir computing architectures, a new
photonic circuit simulator, Photontorch, was created, which focuses specifically
on aiding the design process of large photonic circuits through optimization by
backpropagation. To our knowledge, the presented framework is the first pho-
tonic simulator that enables true optimization of large circuits by backpropaga-
tion through its physical parameters.

Using this simulator, traditional on-chip reservoir architectures were im-
proved upon and extended in simulation by enabling optimization inside the re-
current circuit and by connecting two non-optimized recurrent circuits through
an optimizable intermediate connection. Both designs performed better than the
original reservoir after the optimization: an optimization that was only possible
by backpropagation through the circuit. However, also other photonic neuro-
morphic architectures, such as photonic meshes, were explored with state-of-the

156 Conclusions

art performance in simulation on the pixel-by-pixel MNIST task.
We then proceeded by turning to a slightly more esoteric on-chip photonic

reservoir computing design based on photonic cavities. These cavities exhibit a
continuous mixing in contrast to the more (spatially) discrete mixing inside the
nodes of a network. Although initially intended for photonic crystal cavities, fab-
rication constraints pushed towards a fabrication method that is more suitable
for mass-integration. Although the power budget can still be improved, these
cavities provide a viable platform for high-speed photonic reservoir computing
in the telecom field.

Indeed, we have shown both in simulation and in experiment that these pho-
tonic cavities are able to perform important tasks such as header recognition and
boolean logic due to their interesting mixing dynamics. We confirmed by ex-
periment particular successes on the nonlinear XOR task and up to 3-bit header
recognition.

Finally, we concluded this work with a theoretical viability study on neuro-
morphic computing with photorefractive crystals. For this, a dedicated FDTD-
simulator was created which was specifically designed to accurately simulate
the careful interplay between photons and electrons in a photorefractive mate-
rial. By placing these photorefractive materials in a cavity, a similar (but orders
of magnitude larger) system as the on-chip cavities can be created. However, this
time one has a fine-grained control over the hologram inside the cavity, which
influences the mixing of the light. Moreover, it turns out that the photorefrac-
tive effect can be exploited to prime the crystal to better recognize patterns in
random bit sequences.

5.2 Perspectives
This work attempted to expand the notion of photonic reservoir computing. This
was done by either aiding the simulation through Photontorch, which enabled
more complex neuromorphic architectures, but also by expanding the definition
of photonic reservoir computing to include photonic cavities or by leaving the
integrated photonic platform to study photorefractive crystals. All three of the
directions explored open up viable paths for future research by themselves.

Photontorch could for example enable experimentation with hierarchic neu-
romorphic architectures more akin to the current in-software deep-learning ar-
chitectures or aid with training of physical devices by optimizing an in-software
surrogate circuit. More generally, the novel approach to optimizing photonic cir-
cuits Photontorch has to offer, may have a considerable impact given the growing
importance of integrated optics due to the significantly more complex circuit it
allows to optimize. Additionally, there is room for implementing more accurate
simulation models in the case of dispersion. A Vector Fitting model on top of
PyTorch would be very interesting.

With respect to the on-chip cavity reservoirs, the shapes chosen here — al-
though chosen for their known mixing properties — are rather arbitrary: there

Conclusions 157

is an opportunity to investigate different shapes, sizes and fabrication methods.
Also, further research is necessary on how to use several of these cavities in a
hierarchy for possibly better results.

Additionally, due to fabrication differences, the cavity response between sim-
ilarly designed cavities can change considerably. For consistent performance
between separately fabricated cavities or even between different environments
(temperature, wavelength, …), a highly dynamical readout is necessary. This,
of course, is not only true for the cavities. In general, further research into the
photonic reservoir readout (optically implemented or electronically) should be a
priority.

Moreover, although researching the photorefractive effect was interesting as
a case-study, there are an abundance of other on-chip nonlinearities and plastic
materials that could be explored as well.

Although the cavity reservoirs (both the on-chip cavity and the photorefrac-
tive crystal cavity) yield some interesting results, reported bit error rates re-
main — even though some of it can be attributed to the simulation technique and
measurement equipment — still quite high. One of the key factors that probably
needs to be addressed are the high losses in the cavities, especially the on-chip
dielectric cavities based on index-contrast, which currently have an insertion loss
of about 80%.

Moreover, most tasks discussed here were clearly benchmark tasks. It would
therefore be interesting to see how current or future incarnations of the designs
discussed in this work will do onmore challenging tasks that are also industrially
relevant. One of these tasks that stands out in importance is (non-linear) signal
equalization tasks that are currently performed by a DSP: any improvement that
removes the need for such an expensive electronic component (and accompany-
ing light-electricity-light conversion) would be a welcome development for the
telecom sector.

	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nederlandse Samenvatting
	Fotonisch neuromorf rekenen
	Reservoir computers
	Optimalizatie van het reservoir
	Caviteiten voor continue mixing in het reservoir
	Optimalizeerbare reservoircaviteiten

	Resultaten
	Aaneengeschakelde reservoirs
	Fotonische caviteiten
	Fotorefractief reservoir

	Conclusies

	English Summary
	Photonic neuromorphic computing
	Reservoir computing
	Optimizing the reservoir
	Cavities for continuous reservoir mixing
	Optimizable reservoir cavities

	Results
	Cascaded reservoirs
	Photonic cavities
	Photorefractive reservoir

	Conclusions

	Introduction
	Optical Information Processing
	Silicon Photonics
	Photonic Reservoir Computing
	Photorefractive effect
	Objectives
	Thesis outline
	Publications
	References
	References

	Machine Learning & Neuromorphic Computing
	Linear models
	Linear regression
	Regularization and overfitting

	Loss minimization by gradient descent
	Linear classifiers
	Linear regression
	Perceptron model
	Soft thresholding
	Logistic Regression
	Regression in the complex domain
	Classification on noisy Boolean problems

	Dimensionality Reduction
	Principal Component Analysis
	Linear discriminant analysis

	Artificial neural networks
	Backpropagation
	Recurrent neural networks
	Long Short Term Memory
	Reservoir computing

	Photonic neuromorphic computing
	Photonic reservoir computing
	Neuromorphic computing with unitary matrices

	Conclusion
	References

	Photontorch
	The wave equation
	Waveguide modes
	Scattering matrices for linear components
	Waveguide S-matrix
	Directional coupler S-matrix

	Circuits of linear components
	Ring resonator S-matrix
	Mach-Zehnder Interferometer S-matrix

	Towards a general circuit
	Delay-introducing linear components
	Non-linear components
	Network terminations
	A general circuit
	Carrier Modulation
	A double ring in the time domain

	Highly parallel simulations with Photontorch
	Performance metrics
	Optimization of photonic circuits through backpropagation
	Optimizing a CROW in the frequency domain
	Optimizing a ring network in the frequency domain
	Optimizing a ring network in the time domain
	Optimizing photonic meshes
	Improving the performance of a single passive reservoir
	Improving the performance by cascading two passive reservoirs

	Conclusion
	References

	On-chip Reservoir Computing with Photonic Cavities
	Introduction
	Reservoir designs
	Photonic crystal cavity reservoir
	Cavities based on index contrast

	Simulations
	Pulse composition
	Convergence analysis
	Photodetector
	Readout
	Benchmark tasks

	Cavity parameters
	Power budget of the reservoir
	Q-factor and pulse half life

	Simulated boolean tasks
	Copy task
	Header recognition
	AND task
	XOR task
	Number of arms

	Fabrication
	High speed measurements
	High speed setup
	Pulse response
	Copy task
	Header recognition
	AND Task
	XOR Task

	Conclusions
	References

	Neuromorphic Computing with Photorefractive Materials
	The Finite-Difference Time-Domain Method
	Electromagnetism background
	Simulation units
	Yee grid discretization
	Update equations
	Sensible defaults
	Sources
	Lossy Medium

	Simulating the photorefractive effect
	Kukhtarev equations
	Electron diffusion
	Space Charge Electric Field
	Electro-optic effect
	Lithium Niobate
	FDTD update equations for the electric field
	Bringing it all together
	A note on stability

	Holographic storage in photorefractive crystals
	Beam coupling
	Holographic storage

	Artificial neural networks with photorefractive crystals
	Reservoir computing with a fixed hologram
	Reservoir computing with a changing hologram

	Conclusion
	References

	Conclusions
	Summary
	Perspectives

