SHORT-WAVE INFRARED PHOTODETECTORS BASED ON COLLOIDAL QUANTUM DOTS JUNE 13TH 2017

Chen Hu

Promoter: Prof. dr. ir. Günther Roelkens and Prof. dr. ir. Zeger Hens

WHY SHORT-WAVE INFRARED DETECTORS BASED ON QDS?

Short wave infrared: 1-2.5 µm wavelength range

WHY SHORT-WAVE INFRARED DETECTORS BASED ON QDS?

More Applications:

UNIVERSITY

umec

- Enhanced vision (night vision, through fog)
- Hyperspectral imaging

WHY SHORT-WAVE INFRARED DETECTORS BASED ON QDS?

Current technology:

GHEN1

mec

III-V semiconductors (extended InGaAs based)

cost limits the number of applications where these camera's / detectors can be applied (e.g. smart phone)

=> Novel approach avoiding epitaxial growth of semiconductors, integration on 200mm/300mm silicon wafers

=> Performance of a SWIR III-V camera at the cost of a visible CMOS camera?

COLLOIDAL QUANTUM DOTS FOR SWIR?

0.3 nm

Small box

Confining electrons

(In practice a semiconductor nanocrystal)

1-1000 nm sized particle dispersed in a continuous medium

(1-20nm for quantum dots)

LOW COST THROUGH THE HOT INJECTION SYNTHESIS

Hot-injection based QD synthesis

SPECTRAL TUNABILITY THROUGH QUANTUM CONFINEMENT EFFECT

EASY HETEROGENEOUS INTEGRATION ON SI/SOI

Spin coating

Doctor blading

APPLICATIONS BASED ON COLLOIDAL QUANTUM DOTS

Introduction

- SWIR/MWIR colloidal quantum dot photodetectors
- Measurement results
- Conclusion and future work

OUTLINE

How to realize photodetection?

Gain = carrier lifetime / carrier transit time

Filling of trap states reduces responsivity at higher input power

CHALLENGES OF INTEGRATION?

Isolating organics

• Film cracking due to significant volume loss during ligand exchange

- Patterning of colloidal QD film
- Stability issues (oxidation, etc.)
- GHENT UNIVERSITY **UNIC**

QUANTUM DOT FILMS FORMED THROUGH DIP COATING

80 mm/min withdrawal speed and 100 nM concentration

20.0 nm

18.0

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

umec

GHENT

UNIVERSITY

20 mm/min withdrawal speed and 1 μ M concentration

80 mm/min withdrawal speed and 1 μ M concentration

INORGANIC LIGAND EXCHANGE

FTIR measurement:

S²⁻ ligand exchange

OH⁻ ligand exchange

no exchange 0.01 mg/mL, 10 s

Intensity (a.u.)

3500

3250

Absorption

0.01 mg/mL, 30 s

0.1 mg/mL, 10

TEM measurement:

umec

GHENT

UNIVERSITY

PbS-OlAc QDs

3000

wavenumber (cm⁻¹)

2750

2500

A thorough cleaning is also needed

OH⁻ ligand exchange

LAYER-BY-LAYER ASSEMBLY METHOD

PATTERNING OF NANOCRYSTAL FILM BY WET ETCHING

Process flow:

GHENT

UNIVERSITY

umec

C. Hu, et al. "The micropatterning of layers of colloidal quantum dots with inorganic ligands using selective wet etching" Nanotechnology **2014**

MICROPATTERNING OF PBS NANOCRYSTAL FILM ON 2D SUBSTRATES

HCl/H₃PO₄ mixture with 1:10 volume ratio

PbS/S²⁻ QD film

GHENT

UNIVERSITY

umec

CdSe/CdS QD film

The etching rate for PbS/S²⁻ and PbS/OH⁻ films is ~ 40 nm/min and 45 nm/min, respectively

MICROPATTERNING OF PBS NANOCRYSTAL FILM ON 2D SUBSTRATES

Any effect of lithography/patterning on original morphology of the film?

PbS/S²⁻ QD film

PbS/OH⁻ QD film

Effect by lithography/patterning is not obvious and can be neglected!

GHENT

UNIVERSITY

MICROPATTERNING OF PBS NANOCRYSTAL FILM ON 3D SUBSTRATES

SEM measurement of 3D Si substrates:

GHENT

UNIVERSITY

umec

Micropatterned PbS/OH⁻ films on 3D Si substrates and waveguides

PATTERNING OF PBS NANOCRYSTAL FILM ON PHOTODETECTOR

Introduction

- SWIR/MWIR colloidal quantum dot photodetectors
- Measurement results
- Conclusion and future work

OUTLINE

CHARACTERIZATION OF PBS QD PHOTODETECTOR

DETECTOR CHARACTERIZATION WITH FTIR

PbS QD photodetector

HgTe Photodetector: pushing the cut-off wavelength

Spectral response curves nearly match the quantum-confined absorption spectrum With OH⁻ ligand exchange, the HgTe QD photodetector has 3 time higher responsivity than dodecanethiolcapped QDs.

Collaboration with Univ Linz

PASSIVATION WITH ATOMIC LAYER DEPOSITION (ALD)

Problem: Degradation of the photodetector due to oxidization

PbS/S²⁻ QD detector (15 LBL)

GHENT

UNIVERSITY

umec

CHARACTERIZATION ON ALD COATED PBS QD FILM

X-ray photoelectron spectroscopy measurement

GHENT

UNIVERSITY

umec

After direct ALD passivation, both dark current/photocurrent are quenched, this can be attributed to alumina penetration during ALD process

CHARACTERIZATION OF PBS QD-ALD PHOTODETECTOR (I)

GHENT

UNIVERSITY

umec

PbS/S²⁻ QD photodetector

PbS/OH⁻ QD photodetector

CHARACTERIZATION OF PBS QD-ALD PHOTODETECTOR (II)

Responsivity vs. Optical Illumination

Electrical Frequency Response

GHEN1

UNIVERSIT

The corresponding specific detectivity is $\sim 3.4 \times 10^8$ Jones at 300K.

The 3-dB bandwidth of the PbS/S²⁻ and PbS/OH⁻ photodetectors is 40 Hz and 11 Hz, respectively.

C. Hu, et al. Applied Physics Letters 2014

CAN WE IMPROVE PHOTOCURRENT QUENCHING DURING ALD?

A sacrificial layer with large band gap material before ALD

Route 1: ZnSe QD film as sacrificial layer

Without S²⁻ exchange

Without ligand exchange, ZnSe film is not compatible with ALD growth

GHENT

UNIVERSITY

lmec

With S²⁻ exchange

ZnSe QD film peeled off during ligand exchange procedure.

CAN WE IMPROVE PHOTOCURRENT QUENCHING DURING **ALD**?

Route 2: HfO₂-S²⁻ QD film as sacrificial layer exhibits ALD compatibility

I GHENT

UNIVERSITY

PBS PHOTOTRANSISTOR WITH **HFO**₂ SACRIFICIAL LAYER

PbS-OH⁻/HfO₂-S²⁻ QD detector (15 LBL)

PHOTOTRANSISTOR MEASUREMENT: PBS/S²⁻ QD

- S²⁻ terminated PbS QD transistors behave as p-type,
- Quasi-linear I_{sp} -V_p curves without saturation of I_{SD} , suggesting large hole densities in the FET channel and can not easily be modulated by gate voltage
- After ALD passivation, PbS-S²⁻ QD transistors • behave as ambipolar
- With HfO₂ sacrificial layer, device exhibit p-• type again, Calculated holes linear mobility $\mu_{lin} \simeq 0.025 \text{ cm}^2/(V \cdot s) @ 5V$

CHARACTERIZATION OF PBS/S²⁻ PHOTOTRANSISTOR

GHENT

UNIVERSITY

- At 5 V Drain bias, 110 μW/cm² incident power, responsivity ~ 930 A/W @ -100 V gate voltage for PbS/S²⁻ phototransistor;
- The 3-dB bandwidth @ -100 V and @ 100 V gate voltage of the PbS/S²⁻ phototransistors is 3 Hz and 19 Hz, respectively.

CHARACTERIZATION OF PBS/OH⁻ **PHOTOTRANSISTOR**

GHENT

UNIVERSITY

- At 5 V Drain bias, 110 μW/cm² incident power, responsivity ~ 230 A/W @ -100 V gate voltage for PbS/OH⁻ phototransistor;
- The 3-dB bandwidth @ -100 V and @ 100 V gate voltage of the PbS/S²⁻ phototransistors is 12 Hz and 17 Hz, respectively.

• Crack-free, homogeneous quantum dot films were obtained through a layerby-layer deposition approach with solid-state ligand exchange

• High resolution colloidal QD films with feature dimensions down to 500 nm can be realized through optical lithography and selective wet etching method for large scale integration applications

• Air-stable PbS colloidal QD photodetectors and phototransistors on Si with high responsivity were obtained

CAN WE FURTHER ENHANCE THE SENSITIVITY?

Increase the absorption of light in the thin film
⇒ silicon resonant grating structures
⇒ doped grating

• Enhance the mobility in the film to enhance the internal gain: QD + graphene or "artificial graphene"

GHENT

UNIVERSITY

umec

ACKNOWLEDGEMENT

GHENT

UNIVERSITY

Prof. Günther Roelkens Prof. Zeger Hens

Funding

FWO-NanoMIR

European Research Council Established by the European Commission

PHOTONICS RESEARCH GROUP

THANK YOU VERY MUCH FOR YOUR ATTENTION!

www.photonics.intec.ugent.be

