GRAPHENE-SILICON PHOTONIC INTEGRATED DEVICES FOR OPTICAL INTERCONNECTS

Chiara Alessandri

So... WHAT IS THIS ABOUT?

GRAPHENE-SILICON PHOTONIC INTEGRATED

DEVICES FOR OPTICAL INTERCONNECTS

INTERNET TRAFFIC

LONG DISTANCE COMMUNICATION: OPTICAL FIBERS

GHENT

The Citadel, Tahoe Reno, Nevada (USA)

Size = 670,000 m² \rightarrow more than 90 football fields!

INTERNET TRAFFIC

What's a Zettabyte? 1 ZB = 1,000,000,000,000 GB

unec

UNIVERSITY

- Most traffic is for communications within a data center.
- Rack-to-rack traffic is twice the size of the 'within data center' traffic

REQUIREMENTS FOR DATA CENTERS

https://blog.kissmetrics.com/wpcontent/uploads/2011/04/loading-time.pdf

ເງຍອ

https://www.independent.co.uk/environment/global-warming-data-centresconsume-three-times-much-energy-next-decade-experts-warn-a6830086.html 8

COMMUNICATION LEVELS

GHENT

UNIVERSITY

MODULATOR

MODULATOR:

<u>ش</u> GHEN1

UNIVERSITY

electrical signal \rightarrow optical signal

PHOTODETECTOR:

unec

Ideal: no losses (no 'water leaks')

MODULATOR:

GHEN1

UNIVERSITY

electrical signal \rightarrow optical signal

PHOTODETECTOR:

unec

optical signal \rightarrow electrical signal

Ideal: infinite losses (all the water goes through)

MODULATOR:

<u>ش</u> GHEN1

UNIVERSITY

 $electrical \ signal \rightarrow optical \ signal$

PHOTODETECTOR:

unec

UNIVERSITY

MODULATOR:

UNIVERSITY

electrical signal \rightarrow optical signal

PHOTODETECTOR:

unec

optical signal \rightarrow electrical signal

IMPORTANT PARAMETERS

- Responsivity = photocurrent per unit incident optical power
- Dark current = current when input light is off

E GHENT

UNIVERSITY

WAVELENGTH DIVISION MULTIPLEXING

So... WHAT IS THIS ABOUT?

GRAPHENE-SILICON PHOTONIC INTEGRATED

DEVICES FOR OPTICAL INTERCONNECTS

SILICON PHOTONICS

- Designing optical devices using silicon
- Light (photons) travels through waveguides made of silicon
- CMOS compatible → low cost

Pantouvaki, M., Srinivasan, ... & Absil, P. (2017). Journal of Lightwave Technology, 35(4), 631-638.

All these requirements can't be satisfied in one system, usually because of trade-offs between • electro-optical properties and loss.

unec

UNIVERSITY

New materials need to be continuously researched and tested to push the performance limits.

WAVELENGTH RANGE

- C-band (1530 1565 nm)
- O-band (1260 1360 nm)

For modulators and photodetectors:

- Speed: > 50 Gb/s
- Footprint: < 100 µm²
- Insertion loss: ≤ 1 dB
- Energy consumption: 100 μW GHz⁻¹

SO... WHAT IS THIS ABOUT?

GRAPHENE-SILICON PHOTONIC INTEGRATED

Devices FOR OPTICAL INTERCONNECTS

UNIVERSITY

HARDER, BETTER, FASTER, STRONGER

HIGH TENSILE STRENGTH It would take an elephant balanced on a pencil to break a (perfect) graphene layer. 100x stronger than steel

HIGH CONDUCTIVITY Perfect thermal conductor High electrical conductivity IMPERMEABILITY Less permeable to gases than a one-mm-thick wall of glass

FLEXIBILITY Graphene can stretch by 20%, like rubber

TRANSPARENCY From visible to infrared

GRAPHENE PROPERTIES

Graphene: the "original" 2D material

- Single layer of σ-bonded carbon atoms arranged in a hexagonal lattice.
- The exfoliation of a single layer was first demonstrated by Novoselov et al. ^[1] (Nobel prize in Physics 2010).

mec

 $\widehat{\blacksquare}$

UNIVERSITY

[1] 10.1038/nmat1849
 [2] 10.1016/j.ssc.2008.02.024
 [3] 10.1109/mspec.2009.5210033

Properties:

- Very high mobilities (>300 000 cm²/Vs @ 300 K)^[2]
- Exceptional temperature stability
- High optical absorption: 2.3% per atomic layer
- Broadband absorption (no bandgap)
- Tunable light absorption

GRAPHENE OPTICAL PROPERTIES

Constant 2.3% absorption beyond the far-infrared

Optical transition processes

GRAPHENE ELECTRO-ABSORPTION MODULATORS

The sponge absorbs all the water \rightarrow no output

1

GRAPHENE ELECTRO-ABSORPTION MODULATORS

All the holes in sponge are filled in with 'dirt' \rightarrow the sponge does not absorb anymore \rightarrow all the water goes through

So... WHAT IS THIS ABOUT?

GRAPHENE-SILICON PHOTONIC INTEGRATED DEVICES FOR OPTICAL INTERCONNECTS

RESEARCH OBJECTIVES

Evaluate the potential of graphene-based photonics devices for use in future datacom applications.

- 1. Optimisation of the process flow used to fabricate graphene-based devices
- 2. Optimisation of graphene modulators, in particular with single-layer graphene, to achieve high-speed operation.
- 3. Fabrication and characterisation of graphene-based photodetectors to assess their potential and challenges.

RESEARCH OBJECTIVES

Evaluate the potential of graphene-based photonics devices for use in future datacom applications.

- 1. Optimisation of the process flow used to fabricate graphene-based devices
- 2. Optimisation of graphene modulators, in particular with single-layer graphene, to achieve high-speed operation.
- 3. Fabrication and characterisation of graphene-based photodetectors to assess their potential and challenges.

PROCESS FLOW – STANDARD

and the

A A A

	SiO2 (2 µm) Si SOI substrate	Graph SiO ₂ (2 μm) Si Graphene transfer	Photolithograp	why (resolution ~ 1 μm)
PMMA layer used to protect graphene from solvents, to avoid delamination	GRAPHENE SHAPING	Shaped Graphene Photoresist PMMA Next Name SiO, (2 µm) Si	Shaped Graphene Nut SiO ₂ (2 µm) Si Photoresist and PMMA cleaning	Positive profile (IX845 photoresist) used to for
A A A A	GRAPHENE CONTACTS	Photoresiat Photoresiat SiO ₄ (2 µm) Si Metal deposition	Sio _{1(2 µm)} Si Metal lift-off	Substrate POSITIVE PROFILE
	SILICON CONTACTS	Photoresist Photoresist SiO ₂ (2 µm) Si	n _{**} n _{**} <u>SiO₂(2 μm)</u> Si	Substrate NEGATIVE PROFILE
UNIVERSITY LITTEL	Lithography	Metal deposition	Metal lift-off	30

Dielectric etching

also removes the

graphene layer underneath \rightarrow

graphene-metal edge contact

PROCESS FLOW – PASSIVATION FIRST

PASSIVATION FIRST - RESULTS

Si (1 nm) / Al₂O₃ (30 nm)

GHEN1

UNIVERSITY

unec

 Single-layer graphene (SLG) EAMs with passivation show reduced hysteretic behaviour

RESEARCH OBJECTIVES

Evaluate the potential of graphene-based photonics devices for use in future datacom applications.

- 1. Optimisation of the process flow used to fabricate graphene-based devices
- 2. Optimisation of graphene modulators, in particular with single-layer graphene, to achieve high-speed operation.
- 3. Fabrication and characterisation of graphene-based photodetectors to assess their potential and challenges.

SINGLE-LAYER GRAPHENE EAM

- Planarized, doped Si waveguide
- Doped Si connection "slab"
- Highly doped Si for metal contact
- SiO₂ for light confinement

unec

 $\overline{\mathbb{R}}$

UNIVERSITY

- Metal contact to Si (Ti) and to graphene (Pd)
- Graphene (on top of the waveguide, for absorption effect)

34

WORKING PRINCIPLE OF A SLG EAM

$$V_g = \frac{q \left(n_0 + n_s\right)}{C_{GOS}} = \frac{q}{\pi \left(\hbar v_F\right)^2} \frac{\mu^2}{C_{GOS}}$$

SLG = Single-Layer Graphene EAM = Electro-absorption modulator

STATIC ELECTRO-OPTICAL BEHAVIOUR

P-doped graphene → switch around 0 V

unec

IIII GHENT

UNIVERSITY

Higher mobility (lower) → higher extinction ratio

TM mode → higher extinction ratio than TE mode

SIMULATIONS

SPEED LIMITATION: THE RC CONSTANT

1.
$$C_{gra} = \frac{2q^2}{\hbar v_F \sqrt{\pi}} \sqrt{|n_s + n_0| + |n^*|}$$

2. $C_{ox} = \frac{\varepsilon_0 \varepsilon_{ox}}{d_{ox}}$
3. $C_{Si} = \frac{\varepsilon_0 \varepsilon_{Si}}{W_{dep}} \propto \sqrt{N_{D/A}}$ Silicon doping

<u>ش</u> GHEN1

UNIVERSITY

unec

 The capacitance can be reduced by playing with the Si doping

STUDY OF SI DOPING INFLUENCE ON SLG EAMS

Low R

Ô

Gate Voltage (V)

2

-2

imec

 $\widehat{\blacksquare}$

GHEN1

UNIVERSITY

Waveguide

- p-doping → low capacitance at forward bias
- n-doping → high capacitance at forward bias

When combined with p-doped graphene, p-doped Si is preferable

 (\checkmark)

 (\mathbf{X})

SI DOPING EFFECT ON EAM PERFORMANCE

STATIC PERFORMANCE

DESIGN OF EXPERIMENTS

ເກາຍc

Three samples fabricated with different silicon doping

	Si doping type	Si doping level	
Sample A	n-doped	Low	
Sample B	n-doped	High	
Sample C	p-doped	High	

RESULTS

 $\widehat{\blacksquare}$

GHEN1

UNIVERSITY

- Graphene is p-doped (minimum of transmission at negative bias)
- Extinction ratio increases with device length

SI DOPING EFFECT ON EAM PERFORMANCE

ELECTRO-OPTICAL S-PARAMETERS MEASUREMENTS

	C-band 3db Bandwidth (GHz) at 0 V					
	L = 25 µm	L = 40 µm	L = 50 µm	L = 75 µm		
Sample A (n-Si, low)	10.9	7.7	8.2	6.9		
Sample B (n-Si, high)	12.4	10.6	9.6	8.9		
Sample C (p-Si, high)	22.8	21.6	14.2	16.1		

Alessandri et al. Jpn. J. Appl. Phys. 59(5) 052008 (2020)

GHEN1

UNIVERSITY

unec

EXPERIMENTAL

ER

[•]device

ME

TE VS TM EAMS WITH P-DOPED SI

- TM modulators need a wider waveguide in order to keep the mode confined
- TM modulators have higher mode overlap with the graphene layer
- This results in a double modulation efficiency (ME)
- Similar 3dB bandwidth

UNIVERSITY

unec

50 GBIT/S SLG EAM WITH P-DOPED SI

GHENT

UNIVERSITY

umec

- TM, C-band, pSi EAM
- L_{device} = 75 μm
- Static ER = 6.6 dB
- DC bias: V = -0.5 V
- 2.5 V_{pp}
- 2²³-1 PRBS

O-BAND OPERATION OF SLG EAMS

- High-speed operation in the O-band and in the C-band using the same fabrication process
- First time demonstration of graphene O-band modulators

unec

<u>ش</u> GHEN1

UNIVERSITY

O-BAND (TM)

WDM TRANSMITTERS WITH SLG EAMS (N-SI)

CROSS SECTION AND TOP VIEW

mec

GHEN1

UNIVERSITY

STATIC AND S-PARAMETER MEASUREMENTS ON WDM2

LARGE SIGNAL CHARACTERISATION

- Encapsulated EAMs
- Reproducible static and high-speed measurements on all 15 graphene EAMs
- Three WDM transmitters at 5 x 25 Gbit/s

RESEARCH OBJECTIVES

Evaluate the potential of graphene-based photonics devices for use in future datacom applications.

- 1. Optimisation of the process flow used to fabricate graphene-based devices
- 2. Optimisation of graphene modulators, in particular with single-layer graphene, to achieve high-speed operation.
- 3. Fabrication and characterisation of graphene-based photodetectors to assess their potential and challenges.

GRAPHENE PHOTODETECTORS

 $\widehat{}$

UNIVERSITY

mec

GRAPHENE PHOTORESISTOR

- Laser power = 12 dBm
- Photocurrent = Light current Dark current
- At V_{bias} = -1.5 V, V_{gate} = 3 V \rightarrow I_{dark}/I_{photo} ~ 16.4
- Dark current is too high

unec

GHENT

UNIVERSITY

GRAPHENE/SI SCHOTTKY JUNCTION

unec

UNIVERSITY

Best in literature (for similar geometry): R = 370 mA/W*

CONCLUSIONS

CONCLUSIONS: GRAPHENE FOR OPTICAL INTERCONNECTS

Modulator type	Optical BW (dB)	Insertion Loss (dB)	Static ER (dB)	Power consumption (fJ/bit)	Speed (GHz)	Bit Rate (Gb/s)
Si MRR	< 1 nm	3.8	4.4	-	42	60
Si MRR	< 1 nm	1.2	-	600*	50	112
Si MZM	80	5.6	2.3	720	27	56
GeSi EAM	10	4.4	4	-	> 50	100
Ge EAM	22.4	4.9	4.6	12.8	> 50	56
SLG EAM (C-band)	> 90 nm	4.2	6.5	112	14.2	50
SLG EAM (O-band)	> 90 nm	4.0	3.1	-	16.0	-

CONCLUSIONS AND OUTLOOK

- 1. A stable processing flow was achieved, but further improvements are necessary
 - Fabrication of graphene offers advantages to III-V or Ge (BEOL)
 - Graphene transfer process is an important part of up-scaling graphene devices fabrication
 - Improved fabrication process for passivation layers on graphene
- 2. Graphene modulators show potential for high-speed data transmission
 - 50 Gbit/s SLG EAM
 - 5x25Gbit/s WDM transmitter
- 3. Graphene photodetectors studied in this thesis need further improvement, but results in literature show that they could be competitive

ACKNOWLEDGEMENTS

Dries Van Thourhout, Marianna Pantouvaki, Inge Asselberghs

C. Huyghebaert, S. Brems, J. Van Campenhout, A.Srinivasan, A. Contino, K. Verguts, M. Politou, X. Wu, Y.Ban, M. Rakowski, N. Pantano, P. De Heyn, S.Lardenois, J. De Coster, Y. De Koninck, G. Lepage, P.Absil, ...

