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ON-CHIP RAMAN SPECTROSCOPY
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ON-CHIP RAMAN SPECTROSCOPY

Pump

Ethanol

C.V. RamanStokes:

Anti-Stokes:
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ON-CHIP RAMAN SPECTROSCOPY

✔ Non-invasive, label-free
✔ Distinctive molecular fingerprint   

(multiple analytes)

✖ Inherently weak 
Lab environment
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RAMAN SPECTROSCOPIC SYSTEM IN THE LAB

Pump
Raman signal

1 m3 | 100 000 €
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NON-DESTRUCTIVE MATERIAL ANALYSIS, BUT … 

Pigment analysis: 

Philip IV (Felipe IV) by Velázquez (1623)

Gutiérrez-Neira et al, 2013

Cancer diagnostics:

Austin et al, 2016

Semiconductor R&D:

Flack et al, 2021
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NON-DESTRUCTIVE MATERIAL ANALYSIS, BUT … 

Pigment analysis: 

Philip IV (Felipe IV) by Velázquez (1623)

Gutiérrez-Neira et al, 2013

Cancer diagnostics:

Austin LA et al, 2016

Semiconductor R&D:

Flack A et al, 2021

Costly and bulky equipment prevent widespread use 
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HANDHELD RAMAN DEVICES: ON-SITE APPLICATIONS

✔ Rapid, on-site

✖ Reduced performance
 Complex samples e.g. blood

✖ Rather costly

Material ID Drug detection Food-quality monitoring 

Kranenburg et al, 2020
Martín-Gómez et al, 2021

NanoRam®, 2021
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ON-CHIP RAMAN SPECTROSCOPY

A set of electronic circuits on a small flat piece of silicon:

• Transistors (mini electrical current switches)
• Microchip: billions of transistors
• CMOS technology: 

 High Yield
 Compact
 Mature technology
 Low cost in volume
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NANOTECHNOLOGY: 1 NM

D

Diameter (D) of a human hair: ~50,000 − 100 000 𝑛𝑚
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SILICON PHOTONICS: HIGH INDEX CONTRAST WAVEGUIDES

Image by P. Wuytens

Image by N. Turk

Analyte
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SILICON PHOTONICS: HIGH INDEX CONTRAST WAVEGUIDES

Image by P. Wuytens

Image by N. Turk

AnalyteAnalyte

~cm

Evanescent field enhancement & long interaction lengths
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INTEGRATED RAMAN SENSOR: NWERS 
IPA

Dhakal et al., 2014 

Analyte
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INTEGRATED RAMAN SENSOR: NWERS 

✔ Boosted Raman signal vs confocal Raman microscope (performance)

~cm

Dhakal et al., 2014 

Analyte

Holmstrom et al, 2016

Evans et al, 2016

Dhakal et al, 2016 Monolayers 

 Bulk liquids 

 Gases
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SILICON PHOTONICS FOR INTEGRATED RAMAN SENSING?

The implementation of high-performance optical components with 

standard semiconductor technology (CMOS) in an integrated chip

Enabling complex photonic functionalities on a compact chip at very low cost

Pictures, courtesy of imec
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FULLY-INTEGRATED RAMAN SPECTROSCOPIC SYSTEM

Pump
Raman signal1 m3 | 100 000 €
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FULLY-INTEGRATED RAMAN SPECTROSCOPIC SYSTEM

Pump
Raman signal

Integrated Raman sensor Integrated pump laser Integrated detector and/or 
spectrometer

Kumari et al, LPR 2018
Nie et al.,OE 2017 

1 m3 | 100 000 €

1 mm2 | 10 €
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ON-CHIP RAMAN SPECTROSCOPY: HIGH PERFORMANCE & ON-SITE

Selective detection of medically relevant molecules in a complex environment : 

• In-vitro diagnostics 
• Point-of-care applications
• Drug development 

=> Lab-on-a-chip

Bed-site (drug) monitoring (Use once) biosensor at home

Turk et al, 2020

Coucheron et al, 2019

Dhakal et al, 2016
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ON-CHIP RAMAN SPECTROSCOPY: ON-SITE & HIGH PERFORMANCE

Detecting chemical warfare agentsEnvironmental-quality monitoring

Tyndall et al, 2018Zhao et al., 2020
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SILICON PHOTONICS: REFRACTIVE INDEX SENSING

“Clinical lab performance with the ease-of-use of a 
pregnancy test at a consumer price tag.”

Antelope DX 
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REMINDER

NWERS: Nanophotonic Waveguide-Enhanced Raman Spectroscopy

SERS: Surface-Enhanced Raman Spectroscopy

SRS: Stimulated Raman Spectroscopy

SE-SRS: Surface-Enhanced Stimulated Raman Spectroscopy

SE-CARS: Surface-Enhanced Coherent anti-Stokes Raman Spectroscopy
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INTEGRATED RAMAN SENSOR: NWERS 

✔ Boosted Raman signal vs confocal Raman microscope

✖ Photon background 
 Limits detection sensitivity (SBR)

✖ Deeply-cooled detectors 
 Difficult to integrate

~cm

Dhakal et al., 2014 

Analyte
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SERS ON THE NANOPLASMONIC SLOT

Analyte

✔ Equivalent Raman signal to NWERS

✔ Reduced photon background 
𝐵𝑔𝑝𝑙𝑎𝑠

𝐵𝑔𝑠𝑙𝑜𝑡
~0,1

 Short interaction length (~𝜇m vs. cm):

✖ Deeply-cooled detectors

~𝜇m

Raza et al., 2018 

g = 19 nm
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INTEGRATING THE NANOPLASMONIC SLOT

Pump rejection filter | Nie et al., 2019 

Arrayed Waveguide Grating |Martens et al., 2015 

Avoid additional background contributions of analyzing circuit !

Analyzing circuit: ~mm

Raman sensor: ~𝜇m

~𝜇m
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MMI-NANOPLASMONIC SLOT CONFIGURATION

Pump

Raman
: ~11 𝑚𝑚

43,5 μm acc.wg + plas slot wg

MMI
𝜆𝑐𝑒𝑛𝑡𝑟𝑎𝑙 = 830 𝑛𝑚
𝐵𝑊3𝑑𝐵 = 220 𝑛𝑚
W x L= 8,9 x 112,5 𝜇𝑚2

𝜆𝑝𝑢𝑚𝑝 = 785 𝑛𝑚
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MMI-NANOPLASMONIC SLOT CONFIGURATION

Pump

Raman

• Raman signal efficiently captured
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ORIGIN OF THE EXTRA BACKGROUND
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ORIGIN OF THE EXTRA BACKGROUND

Pump

Raman 𝐵𝐺𝑜𝑢𝑡

𝐵𝐺𝑎𝑐𝑐

43,5 μm acc.wg + plas slot wg

: ~11 𝑚𝑚

Rplas = −27 dB

=> 
BGout

Lout
=

1

173

BGacc

Lacc

• Raman signal efficiently captured

• Equivalent BG contribution output WG and 
SERS sensor ( MMI no strong BG contribution)
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PERFORMANCE VS. OTHER CONFIGURATIONS

Pump

Raman
: ~11 𝑚𝑚

• Raman signal efficiently captured

• Equivalent BG contribution output WG and 
SERS sensor ( MMI no strong BG contribution)

• MMI-configuration performs better than DC-
and forward-configuration 

MMI

Forward

=> Most (incoherent) BG photons not efficiently collected
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OUTLOOK

• Better control the plas. slot reflection by using ALD gold

• Engineer the MMI such that it acts as a wavelength division multiplexer

• Combine the MMI with a RF or LF on the output/input arm to enable further integration
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GET RID OF DEEPLY-COOLED DETECTION?

SRS on the dielectric (SiN) strip waveguide: Analyte

Analyte
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GET RID OF DEEPLY-COOLED DETECTION?

SRS on the dielectric (SiN) strip waveguide:

 SRS signal 105 stronger than spontaneous signal

✔ Room-temperature detection

- More complex detection scheme (lock-in)

 Long interaction length (~mm)

✖ Photon background 

Analyte

Zhao et al., 2018 

Analyte
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GET RID OF DEEPLY-COOLED DETECTION?

AnalyteSE-SRS on the plasmonic slot waveguide:

 SE-SRS signal 103 stronger than SERS on the plasmonic slot [NTP monolayer] 

✔ Room-temperature detection

- More complex detection scheme (lock-in)

 SBR of SE-SRS 103 better than SRS [NTP monolayer] 

✔ Photon background 
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GET RID OF DEEPLY-COOLED DETECTION?

AnalyteSE-CARS on the plasmonic slot waveguide:

 Comparable performance as SE-SRS [NTP monolayer]

✔ Filters + Single pixel detector 

- Pulsed laser source 

 Low-concentration analytes: 

✖
𝑃𝑆𝐸𝐶𝐴𝑅𝑆

𝑃𝑆𝐸𝑆𝑅𝑆
~ 10−3 (

𝑆𝐵𝑅𝑆𝐸𝐶𝐴𝑅𝑆

𝑆𝐵𝑅𝑆𝐸𝑆𝑅𝑆
~10−2)

=> Quadratic dependence on conc. (vs. linear)

=> Detection of biologically relevant analytes (lab-on-a-chip)
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SETUP FOR ON-CHIP SE-SRS
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SRS ON A OPTICAL FIBER
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SRS ON A DIELECTRIC SLOT WAVEGUIDE

• Laser back-reflections on the chip facet (laser instability)

• Suppress cavities and stray light paths (Kerr-induced):
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SRS ON A DIELECTRIC SLOT WAVEGUIDE
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CHALLENGING EXPERIMENTAL DEMONSTRATION SE-SRS

• At first unclear origin spurious SRS signal (XPM, TPA, ..)

• Thermo-optic effect two orders of magnitude stronger than Raman response

• Overlap with spectral variation of thermo-extinction coefficient of gold (dk/dT)

o MZI & FPC (plas. slot) refuted from calc.
o No fringes on detailed meas. + same chip as dielectric slot
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P

tPump

+P

tStokes

t
Stokes

P

(SE-)SRS 
interaction

𝑅𝐹𝑆𝐸𝑆𝑅𝑆

DC
Lock-in detection scheme

leads to a thermal mod. 
Δ𝑇 in the slot …

and since the extinction coefficient 𝑘 depends on the 
temperature T, this leads to a varying absorption loss 
Δ𝑘(𝑇, 𝜆𝑠) in the plas. slot … 

which results in a varying 
transmission of the Stokes 
beam that is picked up by the 
lock-in. 

Absorption of the mod. 
Pump beam in the plas
slot…

t
Stokes

P

𝑅𝐹𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠
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THERMAL ORIGIN OF SPURIOUS SRS SIGNAL

• Clear decline spurious signal with mod. frequency [0,15-5 MHz ]

o Slow effect such as a thermal effect

o XPM, TPA, TA considerable faster
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THERMAL ORIGIN OF SPURIOUS SRS SIGNAL

• Clear decline spurious signal with mod. frequency (slow)

• Strong spurious BG due to the dk/dT

o Only mild temperature increase (ΔTExp = 2,5 K) needed in plasmonic slot

o Parasitic FPC due to dn/dT not relevant

o ΔTExp Confirmed by 3D thermal simulations 
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THERMAL ORIGIN OF SPURIOUS SRS SIGNAL

• Clear decline spurious signal with mod. frequency (slow)

• Strong spurious BG due to the dk/dT

• Thermal simulations recreate bi-exponential fit (ΔTSim in slot):

 Two heat phenomena: faster heat flow gold vs. surrounding materials

𝜏1 = 0,023 𝜇𝑠 & 𝜏2 = 46,9 𝜇𝑠
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MITIGATION STRATEGIES:  

• Increase modulation frequency (100s of MHz )

• Increase heat capacity gold layer to lower thermal response 

• Remove thermal modulation:
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PROBING ACOUSTIC VIBRATIONS OF (VIRAL) NPS USING PIC

Towards an integrated virus sensor (low-frequency CARS):

 Estimated signal five orders of magnitude above noise floor

✖ No observable signal

 Non-ideal particle behavior ?

• Long list refuted hypothesis

• Discontinued after two years
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PHD CONCLUSIONS

• The MMI-plasmonic slot configuration allows for the integration of the SERS sensor with 

an analyzing circuit without a large BG penalty

• SE-SRS on the nanoplasmonic slot tackles the low signal generation and photon 

background issues of NWERS

• The spurious background present in SE-SRS measurements is of thermal origin and can 

be mitigated in the future

• Measuring the acoustic vibrations of (viral) nanoparticles using PICs is challenging!


