ON-CHIP RAMAN SPECTROSCOPY: BACKGROUND CHALLENGES AND THEIR MITIGATION

Kristof Reynkens

PhD defence 05/10/21

C.V. Raman

RAMAN SPECTROSCOPIC SYSTEM IN THE LAB

1 m³ | 100 000 €

NON-DESTRUCTIVE MATERIAL ANALYSIS, BUT ...

Cancer diagnostics:

Semiconductor R&D:

Pigment analysis:

Austin et al, 2016

Flack et al, 2021

Philip IV (Felipe IV) by Velázquez (1623)

NON-DESTRUCTIVE MATERIAL ANALYSIS, BUT ...

HANDHELD RAMAN DEVICES: ON-SITE APPLICATIONS

Material ID

lanoRam[®], 2021

1	Rapid, on-site
×	Reduced performance
	➔ Complex samples e.g. blood
×	Rather costly

Drug detection

Food-quality monitoring

Martín-Gómez et al, 2021

A set of electronic circuits on a small flat piece of silicon:

- Transistors (mini electrical current switches)
- Microchip: billions of transistors
- CMOS technology:
 - High Yield
 - Compact
 - Mature technology
 - Low cost in volume

NANOTECHNOLOGY: 1 NM

Diameter (D) of a human hair: \sim 50,000 – 100 000 nm

SILICON PHOTONICS: HIGH INDEX CONTRAST WAVEGUIDES

GHENT

UNIVERSITY

ເງຍອ

Image by P. Wuytens

Image by N. Turk

SILICON PHOTONICS: HIGH INDEX CONTRAST WAVEGUIDES

GHENT

UNIVERSITY

unec

INTEGRATED RAMAN SENSOR: NWERS

Dhakal et al., 2014

SILICON PHOTONICS FOR INTEGRATED RAMAN SENSING?

The implementation of high-performance optical components with standard semiconductor technology (CMOS) in an integrated chip

Pictures, courtesy of imec

Enabling complex photonic functionalities on a compact chip at very low cost

FULLY-INTEGRATED RAMAN SPECTROSCOPIC SYSTEM

FULLY-INTEGRATED RAMAN SPECTROSCOPIC SYSTEM

ON-CHIP RAMAN SPECTROSCOPY: HIGH PERFORMANCE & ON-SITE

Selective detection of medically relevant molecules in a complex environment :

- In-vitro diagnostics
- Point-of-care applications
- Drug development
 - => Lab-on-a-chip

(Use once) biosensor at home

Bed-site (drug) monitoring

ON-CHIP RAMAN SPECTROSCOPY: ON-SITE & HIGH PERFORMANCE

Environmental-quality monitoring

Zhao et al., 2020

Detecting chemical warfare agents

Tyndall et al, 2018

SILICON PHOTONICS: REFRACTIVE INDEX SENSING

Antelope DX

"Clinical lab performance with the ease-of-use of a pregnancy test at a consumer price tag."

NWERS: Nanophotonic Waveguide-Enhanced Raman Spectroscopy

SERS: Surface-Enhanced Raman Spectroscopy

SRS: Stimulated Raman Spectroscopy

SE-SRS: Surface-Enhanced Stimulated Raman Spectroscopy

SE-CARS: Surface-Enhanced Coherent anti-Stokes Raman Spectroscopy

INTEGRATED RAMAN SENSOR: NWERS

SERS ON THE NANOPLASMONIC SLOT

GHEN1

UNIVERSITY

unec

μm

INTEGRATING THE NANOPLASMONIC SLOT

<u>ش</u> GHEN1

UNIVERSITY

unec

Avoid additional background contributions of analyzing circuit !

MMI-NANOPLASMONIC SLOT CONFIGURATION

GHENT

MMI-NANOPLASMONIC SLOT CONFIGURATION

• Raman signal efficiently captured

ORIGIN OF THE EXTRA BACKGROUND

ORIGIN OF THE EXTRA BACKGROUND

- Raman signal efficiently captured
- Equivalent BG contribution output WG and SERS sensor (MMI no strong BG contribution)

PERFORMANCE VS. OTHER CONFIGURATIONS

- Raman signal efficiently captured
- Equivalent BG contribution output WG and SERS sensor (MMI no strong BG contribution)
- MMI-configuration performs better than DCand forward-configuration

=> Most (incoherent) BG photons not efficiently collected

OUTLOOK

- Better control the plas. slot reflection by using ALD gold
- Engineer the MMI such that it acts as a wavelength division multiplexer

SRS on the dielectric (SiN) strip waveguide:

SRS on the dielectric (SiN) strip waveguide:

- SRS signal 10⁵ stronger than spontaneous signal
 - ✓ Room-temperature detection
 - More complex detection scheme (lock-in)
- Long interaction length (~mm)

 $\widehat{}$

GHEN1

UNIVERSITY

SE-SRS on the plasmonic slot waveguide:

- SE-SRS signal 10^3 stronger than SERS on the plasmonic slot [NTP monolayer]
 - ✓ Room-temperature detection
 - More complex detection scheme (lock-in)
- SBR of SE-SRS 10³ better than SRS [NTP monolayer]
 - ✓ Photon background

SE-CARS on the plasmonic slot waveguide:

- Comparable performance as SE-SRS [NTP monolayer]
 - ✓ Filters + Single pixel detector
 - Pulsed laser source
- Low-concentration analytes:

 $\times \quad \frac{P_{SECARS}}{P_{SESRS}} \sim 10^{-3} \quad (\frac{SBR_{SECARS}}{SBR_{SESRS}} \sim 10^{-2})$

=> Quadratic dependence on conc. (vs. linear)

=> Detection of biologically relevant analytes (lab-on-a-chip)

SETUP FOR ON-CHIP SE-SRS

SRS ON A OPTICAL FIBER

SRS ON A DIELECTRIC SLOT WAVEGUIDE

- Laser back-reflections on the chip facet (laser instability)
- Suppress cavities and stray light paths (Kerr-induced):

SRS ON A DIELECTRIC SLOT WAVEGUIDE

CHALLENGING EXPERIMENTAL DEMONSTRATION SE-SRS

• At first unclear origin spurious SRS signal (XPM, TPA, ..)

<u>ش</u> GHEN1

UNIVERSITY

unec

- Thermo-optic effect two orders of magnitude stronger than Raman response
 No fringes on detailed meas. + same chip as dielectric slot
- Overlap with spectral variation of thermo-extinction coefficient of gold (dk/dT)

THERMAL ORIGIN OF SPURIOUS SRS SIGNAL

- Clear decline spurious signal with mod. frequency [0,15-5 MHz]
 - o Slow effect such as a thermal effect
 - o XPM, TPA, TA considerable faster

THERMAL ORIGIN OF SPURIOUS SRS SIGNAL

- Clear decline spurious signal with mod. frequency (slow)
- Strong spurious BG due to the dk/dT

 $\overline{\mathbb{I}}$

UNIVERSITY

mec

- \circ Only mild temperature increase ($\Delta T_{Exp} = 2,5$ K) needed in plasmonic slot
- Parasitic FPC due to dn/dT not relevant
- $\circ~~\Delta T_{Exp}$ Confirmed by 3D thermal simulations

THERMAL ORIGIN OF SPURIOUS SRS SIGNAL

- Clear decline spurious signal with mod. frequency (slow)
- Strong spurious BG due to the dk/dT
- Thermal simulations recreate bi-exponential fit (ΔT_{Sim} in slot):

→ Two heat phenomena: faster heat flow gold vs. surrounding materials

MITIGATION STRATEGIES:

- Increase modulation frequency (100s of MHz)
- Increase heat capacity gold layer to lower thermal response
- Remove thermal modulation:

PROBING ACOUSTIC VIBRATIONS OF (VIRAL) NPS USING PIC

Towards an integrated virus sensor (low-frequency CARS):

- Estimated signal five orders of magnitude above noise floor
 - X No observable signal
- Non-ideal particle behavior ?
 - Long list refuted hypothesis
 - Discontinued after two years

PhD Conclusions

- The MMI-plasmonic slot configuration allows for the integration of the SERS sensor with an analyzing circuit without a large BG penalty
- SE-SRS on the nanoplasmonic slot tackles the low signal generation and photon background issues of NWERS
- The spurious background present in SE-SRS measurements is of thermal origin and can be mitigated in the future
- Measuring the acoustic vibrations of (viral) nanoparticles using PICs is challenging!

