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A bstract: li'e describe a n o d  "pe of grating coup fer.for but[-coupiing henreen single-mode.fibre and integrated trftra- 
compact waveguides. We hut-e measitred 19% coupling eficiencv.from a .fibre to a 24Onm thin GcAs/Alox high index 
contrust wavegiride. 

Introduction 

Future large scale photonic integrated circui:s will probably 
use ultra-compact waveguides (e.g. photonic cFstal  
\vaveguides). One of  the major prohlems to be solved is the 
interface from the ultra-compact \vaveyide to the outside 
world. Coupling to a standard single mode fibre using 
edge-coupling is a daunting t s jk ,  because of the small 
dimensions of the waveguides (ivhich are typically an order 
of magnitude smaller than conventional integrated optical 
waveguides). We  propose the Use of  a grating coupler to 
bun-couple light from a single mode fibre. perpendicular to 
the surface. into planar aaveguides, as shoun in figure I .  

Figure 1: sketch of fibre coupler principle 

This coupling scheme a1lou.s d e x e  in:err;-ation a-d wafer 
scale testing because thcre is no ne-c :o cleave the devices. 
For this coupling scheme to 1vo:k t\vo problems have to be 
solved. The light has to make a 90' ~ r n  froom the fibre to 
the \vaveguide and a broad (app:osin?a:ely lourn u ide l  
aaveguiae has to be tapered in:o a small waveguide, 
preie:ably over a shon distance. .An adiabaric taper can be 
used 3s a horizontal spot-size convenor. but a mo:e 
compact solu:ion is obvioujly p:eieret. Ir. this a.s;k \ve 
have only considered the 90' bcr.din_r ijjue. 
Scveral spr ing  couplers ha\.- bcs:: dsnons:ra:x3 that 
souplc light out of [ 1.21 or im [:] tvaveguides. These 
couplers achieve high e f t ic iex is i  (>50,':) bur have a v e n  
narrow band\vidth and they 11j: rs1a:ivcly long ( > I  OOurn) .  
k ~ l l o \ v  gratings 

In our d e s i p  the grating is much shorter (approximately 
10p-n) to be able to buttcouple to fibre. Therefore the 
grating has to provide sirong coupling and has to be etched 
relatively deeply. This also means a rigorous 
electromagnetic method instead of perturbation theory is 
used to  design these structures. TO optimize the design, we 
used eigenmode expansion ni th  perfectly matched layer 
boundaries [?I. The coupler is based on a so-called second 
order grating [SI. where the first order diffraction is useful 
to couple out-of-plane. Simulation results show that 20% 
coupling efficiency can be achieved with a second order 
grating. By adding a first order gat ing reflector behind the 
coupler grating this can be improved to 37%. With the 
addition o f  a DBR under the uaveguide, the theoretical 
efficiency can be as high as 74% [6 ] .  Figure 2 shows a 
schematic cross-section of  the structure. Wavelength is 
1.55pm and all results aie for TE  polarisation. Details of  
the grating design are described else\vhere [6] .  
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Figure 1: cross section 

Esperimental  results 

Devices \vere f a b k a t e d  ir. .\IGa.As-GaXs material grown 
by 510I'PE on &.As subs:ra::. The waveguide layer 
j:ructure consisteii of a 2?Onm thick G a . k  core mith 
.AI,I)4GqlLb.L\i claddins and a 2 pair DBR under the 
n.aveguide (240-m G3.\3 CO:?. 290nm Al,,y4Ga006As 
cladding I l 5 n n  (33.45 240nrn h l u w G ~ U 6 A ~ !  I15nm 
Ga.4s'240nm AI,, +;G% ,;t.Aj). The garings \vere fahrica:ed 
using elxtron-beam likography and reactive ion etching. 
.Aftenv~:Cs ;ICSS \ \ .a~eguidej \vsre defined uji-9 optical 
li;hograph>. 3r.d ?:<king. .A 13j! j:ep was the etching of  
mydarton trcnctss 37.2 \<.e: tr.ennal oxidation of the 

. . .  



AlGa.4~ layers to obtain an oxide cladding. We use 
GaAsiAlos because it has a similar refractive index 
contrast as silicon on insulator. SO1 is a promising 
candidate for large-scale photonic IC‘s. A top view of  the 
grating in fig.3 shows the t\vo different gratings. 

Figure 3: detail of grating (SE)] top  view) 

For the measurements we use a widely tunable laser source 
wvith I m\V output power and polarisation maintaining 
output fibre. The light is coupled from the pmf-fibre via the 
grating into the wvaveguides. The output light from a 
cleaved n.aveguide facet is imaged onto a detector or power 
meter. During inital alignment we use an IR-camera to 
monitor the uaveguide spot. The output power. divided by 
input po\ver. as a funcrion of \r.avelength for a lOpm wide 
ridge Xvaveguide is sho\vn in figure 4. 
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Figure 1: measurement result : P,,,!P,, vs. \ \atelength 

\ye xeasure rna.;imum efficiency in  the I5 I O -  1 5 3 m  
range. (Unforruiia:ely \ve arc nor able to meausure 2: 

jho-er \vnvc.lengrhj because of the 1irni:ation of the ruunizg 
rang: of our laser). Ths p s d ~  in  thc neasureme1‘tj ai: 
similar :a Fabn-Perot irii:_css and are caused by a cav iy  
i o m d  by the g:a;in: and a cleaved face:. The spacing 
benvesn the peak3 depends on thc caviy length ( 3 O O u r n  in 
t k i j  case). To esriniarc d i t  ncnial coupling efficisncy from 
fibre IO \vaveyide. wve must rake into account these c a v i y  
effectj. \\’hen ne$x:izg the \vaveguide propaga:ion lossej 
!he t~vo  pa:xneterj t h ~ t  determine the caw-ir). a x  the f3cet 
rctlestion. and the gra!ing reflection. \\.e have calcularcc 
the z o n 3 l i z e a  1:anjrnijsion Pip’( Po,, * efficiexyj for a 
face: retlection o i  0.36 and different graring reflections 
(figure 5).  T k  :a::ng retlcctio:; car, bc esiimatcd fron: 
P,.;P,, and the solid line from figure j fi:s to :he 
mcasurcm~i t j .  \ V i 5  :hcje \-alu?s the FP-pcakj a:? 759; of  
the p v e r  that n-ocld be measured \vi:hout any reilsc;ion a: 
;he clca\.eil im:. Tkereforc <<.e es:imate :he acrual 
iouplin; cr?ki??,;y :o b: 191; (=0.11 0.75). 
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Figure 5: calculation of normalized cavity transmission 
for different grating reflections 

The lareral alignment tolerances are shown in figure 6 .  The 
nvo curves are for fibre misalignment in one direction (dx 
for z=O and dz for s=O, y is the fibre axis, x is parallel to 
the grating grooves). 
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Figure 6 : lateral  alignment tolerances 

Conclusion 

\Ve have demonsxared 19?4 coupling efficiency from a 
w-enical single-mode fibre to a 24Onm thick GaAs’Alox 
tvaveguide. This fibre coupler is a promising approach 10 
solve :he coupling problem to ultra-compact a.aveguides. 

.Acknor\ledgement 

Pan of this wvork is S U ~ ~ O K X !  by the European Union in the 
coxexr of the IST p:oject PICCO. The authors -m!efid&’ 
acknstvledge technical support by the nanoelectronics 
-3 . + s a r c h  - cexre  at Glasgow Universiry 

References 

Eriksson et al.. IEEE JQE vol. 52 (5) ,1996, plO5S- 
IO17 
hlskij et al.. 0p:ics Let.. vol. 25 (I:), 2000. p912-911 
Jossy et al. IEEE PTL vol. 12 ( I ) .  2000, p59-6 I 
Biensrman et al. O Q E .  vol. 5; (4-5). 2001, ~ 5 2 7 - 5 1 1  
Hardy et  al., IEEE JQE, vol. 25 ,  1969, $096-2 105 
Taillaen et a l . ,  subrnined to IEEE JQE. 2001 


