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Abstract—In this letter, we present a different approach to ac-
curately calculate the bending losses in curved dielectric waveg-
uides. It is based on the well-known conformal transformation of
the index profile and on vectorial eigenmode expansion, but this
time with perfectly matched layer (PML) boundary conditions to
accurately model radiation losses. The modal spectrum of these
waveguides in the presence of PML is discussed and the method
is validated by comparing it to previously published results.
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I. INTRODUCTION

BENDS in dielectric waveguides are an important building
block for nearly all types of photonic integrated circuits

(PICs). Therefore, it is necessary to be able to design and simu-
late these bends in an accurate and speedy manner. More specif-
ically, the bending radiation losses have to be modeled correctly,
as these are an important parameter for the performance of the
device.

Most techniques modeling bends in dielectric waveguides
use the so-called conformal transformation of the index profile,
where the piecewise constant index profile in a two-dimensional
(2-D) circular geometry is transformed to an exponential field
profile in a straight geometry[1]

(1)

(2)

For the analysis of three-dimensional (3-D) bends, the index
profile can first be reduced to 2-D by applying the effective
index method prior to the conformal transformation.

The straight waveguide with the transformed index profile
can be analyzed with a number of techniques, ranging from
beam propagation methods (BPM) [2] to eigenmode expansion
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methods [3]. As BPM is intrinsically an approximate method,
eigenmode techniques seem more advantageous. However, in
classical eigenmode methods, the structure needs to be enclosed
between two perfectly conducting metal walls in order to dis-
cretize the mode spectrum. This causes parasitic reflections, be-
cause the radiation lost in the bend is totally reflected at the
metal walls and can disturb the simulation results. In fact, these
parasitic reflections make it completely impossible to determine
the radiation losses of the waveguide modes, since they will all
have real propagation constants because of energy conservation
in lossless media enclosed by perfect reflectors.

Another approach to calculate these radiation losses is to
eliminate the metal walls and estimate the losses from the leaky
modes of the completely open structure. These leaky modes
are complex improper solutions to the open dispersion relation
because their fields profiles increase exponentially toward
infinity in the cladding [4]. Although this technique is suited to
determine the loss of individual modes, it is well-known that
leaky modes do not form a complete set and can, therefore,
generally not be used to describe an arbitrary field. This means
that leaky mode expansion is not suited to study, e.g., the
minimization of the transition loss between a straight and
a curved waveguide, because the scattering at the interface
between these two sections will give rise to a field that contains
more components than a single leaky mode.

In this letter, we present a different eigenmode approach that
does not have these disadvantages. We keep the structure en-
closed between two metal walls, but we clad these with a per-
fectly matched layer (PML), which can absorb incident radia-
tion without any additional parasitic reflections, regardless of
wavelength, incidence angle, or polarization [5]. This allows
us to accurately model radiation losses, while at the same time
keeping a discrete set of eigenmodes.

The rest of this letter is organized as follows. In Section II, we
will briefly review the eigenmode expansion method combined
with PML boundary conditions. Section III will focus on the
influence of PML on the modal spectrum of waveguide bends.
Simulation results on the radiation losses of the fundamental
mode will be given in Section IV. In Section V, we will use
the technique to model the more complicated problem of de-
termining the optimal offset at the transition between a straight
and a curved waveguide. Finally, Section VI will summarize and
conclude this letter.
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II. EIGENMODE EXPANSION WITH PML

For the sake of completeness, we will briefly reiterate the
main points of the PML eigenmode expansion method, which
we already described in more detail in [6].

PML is included in the model by making use of the complex
coordinate stretching technique [7], which states that a PML can
be described by a layer with a real refractive index, but with a
complex thickness. The imaginary part of this complex thick-
ness provides the reflectionless absorption of the incident fields.

The rest of the eigenmode expansion model follows naturally;
the dispersion relation is solved for the propagation constants
of the eigenmodes in each longitudinally invariant section of
the device under study. From their field profiles and the overlap
integrals of these modes, the scattering matrix describing the
interface between two different sections is constructed using the
mode-matching technique. Finally, the scattering matrix of the
entire sequence of sections making up the device is calculated.

Because eigenmode expansion does not rely on spatial dis-
cretization, it typically requires far fewer unknowns and far less
computational effort than other models.

III. M ODAL SPECTRUM OFCURVED WAVEGUIDES IN THE

PRESENCE OFPML

In this section, we will study the propagation constants of
a curved waveguide with the following properties: core index
3.24, cladding index 3.17, width m, bending radius

m. After conformal transformation, we obtain an ex-
ponential field profile, which we approximate with a sufficiently
fine staircase profile (50 steps). The total thickness of the low
index cladding is 10 m, that of the high index is 17m. The
PML is incorporated by giving the outermost staircase step in
both claddings an imaginary thickness of -0.5jm, which turned
out to be sufficient for the calculated radiation losses to be inde-
pendent on a further increase in PML absorption. The operation
wavelength is 1.55 m, and we study the TM modes.

In the absence of PML, i.e., with zero imaginary cladding
thickness, all modes lie on the coordinate axes, which as we
already said makes it impossible to determine the radiation loss
of the bend modes. Moreover, apart from the modes guided by
the bend, there are also modes guided only by the outer high-
index region of the cladding, which has a much higher refractive
index than the waveguide core.

With the introduction of PML, the modal spectrum is com-
pletely different, as can be seen in Fig. 1, showing the distri-
bution of hundred eigenmodes for the waveguide structure de-
scribed in the beginning of this section. The fundamental mode
is easily identifiable as the mode marked “A” in Fig. 1, as it
lies closest to the positive real axes (top edge of the figure) and
closest to the index of the core. Other branches of modes exist
with higher losses, e.g., the branches containing mode B or C.

Fig. 2 shows the magnitude of the magnetic field for modes
A, B, and C, together with the transformed index profile. It is
clearly visible that mode A is guided by the waveguide, but leaks
some power to the outside of the bend (right side of the figure),
where it has a plane-wave like component indicative of radial
radiation loss. The modes B and C are not guided by the bend,
but only by the high index occurring in the outer cladding.

Fig. 1. Distribution of propagation constants in then -plane. Horizontal axis
is the realn -axis and vertical axis the imaginaryn -axis.

Fig. 2. Transformed index profile and magnitude of the magnetic fields of the
modes marked in Fig. 1.

Fig. 3. Radiation loss per 90as a function of bend radius and index contrast.

IV. RADIATION LOSSES

Fig. 3 shows the calculated radiation losses of the same
waveguide geometry as used previously, as a function of
bending radius and refractive index contrast (as obtained by
varying the cladding index). The radiation loss was calculated
from the imaginary part of the effective index. The results
follow the well-known trends that losses increase for shorter
bending radius and for lower index contrast, both because
of lack of confinement. There is a very good quantitative
agreement with results obtained from a leaky mode analysis
[8]. This is not surprising, because for high PML absorption,
some modes in the spectrum converge to the leaky modes of
the corresponding structure, as we already showed in [9].
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Fig. 4. Optimal lateral offset between a straight and a curved waveguide to
maximize transmission at their interface.

V. OPTIMAL OFFSET

Because of the mismatch between the modal profiles of the
straight and the curved waveguide, scattering will occur when
light propagates across the interface between a straight and a
curved waveguide. As the mode in the curved section is located
closer to the outer waveguide edge (see Fig. 2), it makes sense
to laterally offset the straight input waveguide in order to get a
better match between the field profiles. By numerically varying
this offset, we can determine its optimal value where the trans-
mission of the fundamental mode across the interface is max-
imal. The results are shown in Fig. 4, for the same geometry as
from Section III. These results are also compared to an approx-
imate formula derived in [10]

(3)

The agreement is very good for large bend radii. For smaller
bends, the results start to differ slightly, because the radiation
losses become more prominent and these losses are more accu-
rately captured by the rigorous PML eigenmode expansion tool.

VI. CONCLUSION

We presented an alternative approach to model conformally
transformed curved waveguides. This approach is based on

vectorial eigenmode expansion combined with PML absorbing
boundary conditions, such that radiation losses can be accu-
rately determined. We investigated the modal spectrum of these
waveguides in the presence of PML and verified our model
by comparing it to previously published results in literature.
We believe the proposed method is more accurate than both
BPM (because BPM introduces approximations) and classical
eigenmode methods (because hard walls are replaced with
PML boundaries).
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