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Kerr-nonlinear resonators show great potential both for phase shifting and optical bista-
bility/limiting and may therefore improve the functionality of future optical communica-
tion systems. Here we explain for the first time the principle of phase shifting analytically
in the 1D case. Excellent agreement with numerical simulations is obtained. We demon-
strate optimal design parameters for several signal bandwidths (2, 10, 40 and 100 GHz)
and show that a trade-off between signal bandwidth, input intensity and device length is
to be made.

Introduction
The usability of the ultrafast optical Kerr effect in all-optical processing has always been
hindered by the need for high input power or long devices, because of the small value of
n2 in semiconductors (order 10−13cm2/W). Periodic structures made of resonators how-
ever confine the optical power and slow down the propagation of the pulse. This reduces
the input power or device length needed to achieve a certain phase shift [1, 2]. In addition,
they give rise to new effects like optical bistability [3] and optical limiting [4], which can
not be observed in simple homogeneous structures.

However the action of a resonating structure is not simply boosting the power and slowing
down the pulse. What typically happens, is that its transmission window shifts and, with
it, the window widens or narrows. It can roughly be said that the resonance shift is
determined by the overall value ofn2, while the change of width is due to the modulation
of n2. From here on, we assume the value ofn2 to be constant throughout the resonator
(the underlying idea is to model a weakly corrugated waveguide by a 1D approach).

Linear properties of the resonator structure
The resonator we use, has the following period,
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with h resp.l indicating the higher resp. lower index material,cava integer number and
λc a chosen resonance wavelength. We easily recognize the mirror and cavity part. Any
multiple of this structure has a transmission of 1 forλ = λc. In general, it will take more
than one resonator to achieve a certain phase shift.

The dispersion relationship for an infinite number of resonators in the transmission win-
dow around the central wavelengthλc is in good approximation,
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with ∆ν the resonance bandwidth. The exact sign depends on the number of lower index
layers in one mirror being even or odd. We can rewrite this relation as,
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whereφL ≡ kL is the linear phase change between input and output of a single period (pe-
riod lengthL). On the other hand, the amplitude transmission and phase relation around
λc for a single, isolated resonator is approximately given by,
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Both situations are exactly the same forλ = λc, but deviate substantially when approa-
ching the boundaries of the transmission window.

Kerr-nonlinear properties
As mentioned above, the nonlinear action of the Kerr effect will shift the transmission
window, which will give rise to a shift of the phase. It is clear that this phase shift will
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resonance shift∆νc is approximately given by
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with Ein the input electric field of the resonating structure,r the amplitude reflectivity of a
single mirror,∆n≡ nh−nl andn≡ nh+nl

2 . The first part of equation (5) corresponds to the
expected shift when the cavity would be large compared to the mirrors. The formula can
be derived using a multiple time-scale approach with only the cavity taken into account.
Thecavand∆n

n factor were derived from numerical simulations. However, their existence
can be easily understood. The reflectivity amplitude|r| of a mirror is almost constant
with respect to the wavelength. However its phase can change significantly, certainly
for longer mirrors characterized by a lower index contrast. Therefore the Kerr-nonlinear
phase change in the cavity (leading to a new resonance frequency because of the round
trip phase condition of a resonator) partially serves to compensate this change in the mir-
rors at the new resonance frequency and cannot fully be used for altering the refractive
index in the round trip condition. We obtained a RMS error of 0.5% with this formula

for a large variety of parameters (∆n, n, cav, Ein, n2 andr). A formula for
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derived analytically.

We can now predict the phase shift over 1 period. In the case of an infinite number of
resonators we have,
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since the resonance bandwidth does not change (see introduction). This leads to the fol-
lowing shift atν = νc+ ∆νc

2 (center frequency between the linear and nonlinear resonance
frequency),
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Figure 1: Predicted and simulated|∆φ| versus∆νc
∆ν for a variety of parameters

In Fig. 1, the phase shift|∆φ| over 1 period is plotted versus the relative frequency shift
∆νc
∆ν . A relative frequency shift> 1 is clearly not meaningful for phase shifting proper-
ties since no transmission overlap between linear and nonlinear regime is left. Excellent
agreement is found between (7) and simulation results in the case of an infinite number
of resonators. In the same way, we would naively expect that in the case of a single
resonator,
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This is however only correct for small∆νc: the nonlinear effect will not shift the transmis-
sion relationship homogeneously in the case of 1 period (only one point has|t(ν)|2 = 1).
The shift will instead be proportional to|t(ν)|2 resulting in an asymmetric lorentzian
transmission relation and the phase relation will be distorted in the same way. So the

formula (8) will only be correct if
∣∣∣t(νc + ∆νc

2 )
∣∣∣2 ≈ 1, which can also be seen in Fig. 1.

From this, we can conclude that in the general case of a finite number of resonators,
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which is in agreement with intuitive reasoning.

Design ofπ-phase shifting device
To be of use in practical devices, a phase shift ofπ should be realizable withEin <
200kV/cm, total device lengthLtot < 1mmand reasonable signal bandwidth (overlap of



linear and nonlinear bandwidth, taken into account that only the central half of the trans-
mission window is really usable). However a trade-off must be made since a large signal
bandwidth and smallEin conflict with a large∆φ and thus a smallLtot. This is shown
in Fig. 2 for a realistic example:nh = 2.6, nl = 2.36 (thus a corrugation of≈ 10% and
n2 = 0.6×10−13cm2/W (or 2.4×10−16cm2/V2). The number of mirror layers, the cavity
length and the number of resonators are optimized with respect to the total device length
by means of the analytical results presented above.

Figure 2: Trade-off between input field and device length for several signal bandwidths.

Note that without resonators, the device length needed to achieve a phase shift ofπ would
be about 8cm for Ein = 200kV/cm. This means that resonators give rise to tremendous
improvements for the purpose of phase shifting, however partially limited by the required
signal bandwidth.

Conclusion
The influence of the nonlinear Kerr effect on resonator structures was explained analy-
tically and excellent agreement with simulation results was obtained. Resonators highly
reduce the required input power or device length when used for all-optical phase shifting.
A phase shift ofπ is achievable, however the requirements increase rapidly with the signal
bandwidth and a trade-off must be made.
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