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Abstract. We present a numerical method to simulate the third order Kerr effect
in wavelength scale dielectric structures. The intensity dependent refractive index is
modeled by a spatial grid. By performing iterative linear eigenmode calculations, this
index grid converges to the rigorous continuous-wave non-linear solution. Because
the underlying eigenmode tool is bidirectional, feedback effects such as bistability
can be calculated. We describe the influence of grid size, quantitative agreement
with the literature and a photonic crystal switch.
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1. Introduction

The study of all-optical functions generates an interest in non-linear
effects. A lot of attention is paid to the almost instantaneous Kerr
effect, giving rise to an intensity dependent index change, allowing
very fast processing. The strong confinement in advanced wavelength
scale structures, such as photonic crystals or photonic wires, make it
possible to use these weak effects with modest powers in integrated
devices. Therefore there is a need for accurate and efficient methods to
simulate these structures.
Among the available methods to model complex non-linear devices we
mention the Finite-Difference Time-Domain method (FDTD) (Taflove,
1998) and the Beam Propagation Method (BPM) (Burzler et al., 1996).
Each have their specific characterictics. FDTD e.g. models the full tem-
poral evolution of a pulse-like excitation, but typically demands heavy
calculations. BPM on the other hand propagates with small spatial
steps along a certain direction and is most suitable in situations with
fields propagating primarily in one direction, thus without multiple
reflections.
Here we propose an alternative, building upon the eigenmode expansion
method as implemented in (Bienstman and Baets, 2001). Mode expan-
sion in general has a lot of attractive features such as rigorousness,
efficiency, Perfectly Matched Layer (PML) boundary conditions, etc.
Our non-linear extension enjoys these benefits and in addition, because
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Figure 1. A simple structure with three sections.

we work in the frequency domain, we immediately get continuous-wave
(CW) solutions. To get these solutions in FDTD we need to model
long pulses, leading to long calculation times. Moreover, contrary to
standard BPM, modes propagating in both directions are handled, thus
it is possible to calculate non-linear feedback and interference effects,
such as bistability.
In Section 2 we give a short overview of the linear mode expansion
method and then present the non-linear extension. The method uses a
grid and we will discuss the fineness thereof in Section 3 by a waveguide
example. Then we will compare our results in Section 4 with a bistable
grating structure from the literature. A more challenging device con-
sisting of a photonic crystal cavity will be discussed in Section 5. After
that a review of characteristics and a comparison with other methods
is given in Section 6.

2. Method

The mode expansion method is now well established to model complex
dielectric structures with linear materials. Before embarking upon non-
linear problems it is helpful to review its basic principles.

2.1. Linear eigenmode expansion

After defining a main propagation direction, one divides the structure
in longitudinally invariant sections, as in Fig. 1. The field in such a
section or slab can be described by a superposition of eigenmodes. The
field profiles and propagation constants of these modes are derived from
the transversal index profile. The electromagnetic fields in a section are
in this way reduced to a vector of complex mode amplitudes:

(E (r) ,H (r))←→ A = [Ai] (1)
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Figure 2. An example of spatial discretisation, the middle section is non-linear.

Different sections have different modes, but the mode-matching tech-
nique ensures the continuity of the tangential total field components
and produces the reflection or transmission matrices. Combining these
matrices with the propagation constants one can concatenate different
sections to form a scattering matrix. With a chosen modal input ex-
citation this algorithm gives the mode amplitudes and thus the fields
throughout the structure.

2.2. Extension for the Kerr effect

If we want to simulate the Kerr effect, we have to take into account an
intensity dependent refractive index:

n(r) = n0 + n2I(r), (2)

with n0 the linear index, n2 the Kerr coefficient and I the intensity.
Because the intensity is spatially dependent, the refractive index is too,
so we try to model this by dividing the non-linear section(s) in small
rectangles, as in Fig. 2. Each rectangle will be assigned its refractive
index during each iteration.
Because the intensity or index distribution is not known a priori, the
method is iterative and proceeds as follows. We start from a certain
index distribution, this can e.g. be the linear index or a previously cal-
culated approximate solution. Using this index grid we perform a linear

eigenmode calculation, yielding the fields in the structure. Using the
intensities in the center of each rectangle we can update the refractive
index distribution with Equation 2. If the new index distribution is
equal to the old index distribution, within a certain tolerance, we have
converged to a solution of the full non-linear problem. If not, we repeat
the described procedure.
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Figure 3. Waveguide with a non-linear section in a darker shade.
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Figure 4. Magnitude of reflection coefficient of fundamental mode versus the number
of longitudinal divisions, for different numbers of transversal divisions (inset).

3. Grid size

One intuitively assumes that the results should converge, as the grid
becomes finer. We illustrate this by an example, a waveguide with a
non-linear section, shown in Fig. 3. The multimode waveguide has a
width λ and index 3.0, the cladding has index 1.0. A waveguide section
of length 2λ is considered with n2 = 3× 10−18m2/V2. For this test we
use a high excitation, so that the maximum non-linear index change is
about 0.2.
We varied the number of divisions in the longitudinal and transver-
sal waveguide direction and calculated the reflection coefficient of the
fundamental TE mode. As can be seen in Fig. 4, above a certain
threshold the result remains invariant. More than 50 longitudinal and
4 transversal divisions give good results in this case. Of course the finer
the grid, the longer the calculations take. Note that the spike at 25
longitudinal divisions is the result of a Bragg resonance between the
rough sampling grid and the fundamental waveguide mode. As soon as
the grid becomes finer, its k-vector does not agree anymore with the
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Figure 5. Grating with the non-linear sections in a darker shade.

propagation constant of the mode, and the sharp peak then disappears.
As the required grid size is dependent on the unknown field structure,
there is no simple relation of fineness versus desired accuracy. A solution
is thus to study different grids for one input power, choose an accuracy
threshold and then use this division to determine other related solu-
tions. Another method is to use an adaptive grid, which we will discuss
briefly in Section 6.

4. Quantitative comparison

In order to validate the algorithm we have to compare our results with
the literature. We present one example, a grating that exhibits bista-
bility. This phenomenon, arising from feedback in combination with
non-linearity, lies at the basis of many proposed all-optical components.
The grating structure, depicted in Fig. 5, consists of 20 unit cells,
each comprising two films with equal width d = 0.125λ and indexes
respectively na = 1.5 and nb = 2.12. The first material is linear, while
the second has a negative Kerr coefficient n2 = −1. Note that for this
example n = nb

√
1 + n2I. The used frequency (λ = 1µm) lies in the

stopgap just above the bottom edge.
In Fig. 6 we plot the transmission of the grating, which agrees with
Fig. 3 in (Chen and Mills, 1987). At low input power there is very
low transmission, as we are working in the gap. Because of the non-
linearity, at higher powers the system can switch to higher transmission
states. There are even fields with unity transmission, which represent
gap solitons.
With our method one starts with the linear index distribution and
low input power. Gradually increasing the input power yields the low
transmission curve. After the folding point of this curve, there is no
longer a low transmission state and the solution switches to a higher
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Figure 6. Transmission versus input power of the non-linear grating.

Figure 7. Structure of the photonic crystal device, the seven rods between the input
and output waveguide are non-linear. The electric field of a completely transmitting
resonant state is superimposed. The entire computational domain is shown.

non-linear solution. After finding one solution on an upper branch, we
can then increase or decrease the power in steps to map the entire
higher branch. If one would want to model these solutions with FDTD,
the long input pulse would have to be preceded by a sufficiently strong
short one, which complicates matters.

5. Photonic crystal device

Now we present calculation results on a bistable photonic crystal switch,
shown in Fig. 7. This device has been described in (Soljacic et al., 2002)
and is particularly suited for our method. First of all it is obvious
that the smaller the non-linear sections are, the more efficient our
calculations become. In these calculations only the seven consecutive
central rods are considered non-linear, a good approximation as they
experience the strongest fields. Related to this, efficiency is improved
because the linear sections before and after the non-linear rods have
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Figure 8. Transmission versus input power for the photonic crystal switch.

to be calculated only once, as they consist of linear materials, and
therefore their transfer-matrix is power independent. In the longitu-
dinal direction Fabry-Pérot effects are avoided by using non-reflecting
semi-infinite repetitions of the photonic crystal waveguide period.
Let us briefly review the operation of the switch. The larger defect rod
in the center forms a dipole-type cavity mode, which is coupled to input
and output photonic crystal waveguides by tunneling effects through
three normal-sized rods on either side. We operate on a frequency
slightly below the linear resonance frequency of the cavity. So at low
input almost all power reflects to the input waveguide. Increasing the
input power changes the indices of the Kerr rods and the resonance fre-
quency adjusts and shifts through the operating frequency. This means
a stronger excitation of the cavity mode and leads to transmission of
power to the output waveguide. Buildup in the high Q cavity makes
the device even bistable.
This operation is clearly shown in our calculation results in Fig. 8.
Here transmission is defined by dividing the flux of the longitudinal
component of the Poynting vector at the end of the output waveguide
with and without the seven center rods.
For the simulations we used a square lattice, with period 0.6µm, of
square rods with index 3.5 and side length 0.24µm in air. The wave-
length is 1.87µm, which lies in the bandgap and close to the resonance
wavelength 1.8672µm formed by the defect rod with side length 0.36µm.
The non-linear rods have a realistic n2 = 2× 10−19m2/V2. Only sixty
eigenmodes were used in these calculations.
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6. Characteristics and comparison

This section brings together some characteristics and a comparison with
other calculation methods.
An important issue is the number of iterations needed for convergence.
Of course this is dependent on the desired accuracy and the deviation
from a previous solution, but, as in the examples, with reasonable
parameters convergence is mostly reached in about ten iterations. Some
more difficult points however require another update equation, instead
of Equation 2. These are e.g. points close to a folding bifurcation, the
first solution on an upper branch or highly non-linear states, such as
gap solitons. In these cases we use:

n′

new = (nnew + αnold) / (1 + α) , α ≥ 0 (3)

with nnew the index if we used the normal Kerr relation, Equation 2.
With this weighted average we hold on longer to the previous index
distribution nold, the iterations are thus less abrupt. This prevents the
solution from dropping back to more linear branches. Values of α up
to about thirty are sometimes necessary.
Another trait of our algorithm is that other types of Kerr-like non-
linearities can easily be implemented. By adjusting Equation 2 we can
e.g. model a saturable Kerr effect. Absorption has also been applied.
We note that the method is rigorous. There is no approximation in
Maxwell’s equations, so in the limit of an infinite number of modes and
a very fine grid, the solutions are exact.
The bidirectional character of our mode solver gives us an advantage
over unidirectional standard BPM programs. Concerning efficiency we
already mentioned that linear sections need only one calculation and
that we immediately get CW solutions, in contrast with FDTD. More-
over an adaptive grid can be implemented, which means we merge
sections, if their non-linear index contrast is too small, or we refine
them otherwise. In this way the calculation should find its optimal grid.
Although adaptive gridding is very straightforward in our method, this
is not the case with FDTD, as the latter requires special treatments on
the boundaries between different grids.

7. Conclusions

We presented an extension to the eigenmode method which allows
the modeling of 2D structures with Kerr materials. The efficiency of
the linear bidirectional mode-expansion method, combined with the
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smooth convergence to non-linear solutions, makes this method a fast
and flexible alternative to FDTD and BPM.
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