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A new complex Jacobi iterative technique adapted for the solution of three-dimensional 
(3D) non-paraxial beam propagation is presented. The beam propagation equation for 
analysis of optical propagation in waveguide structures is based on a novel modified 
Padé(1,1) approximant operator we recently proposed. The effectiveness of our new 
approach is demonstrated in comparison with the traditional direct matrix inversion. 
Our method is targeted towards large waveguide structures with a long path length. 

 
Introduction 
The Padé-approximant-based non-paraxial or wide-angle (WA) beam propagation 
method (BPM) has become one of the most commonly used techniques for modeling 
optical waveguide structures [1]. However, the method was originally limited to 2D 
structures due to the lack of efficient solvers. Recently, C. Ma et al. [2] presented a new 
3D WA-BPM also based on Hoekstra’s scheme. By using a technique for shifting the 
simulation window to reduce the dimension of the numerical equation and a threshold 
technique to further ensure its convergence, this approach shows accuracy and 
effectiveness. However, the resultant propagation scheme can be very slow if either the 
problem size is large or the structure or the boundary conditions are changing as the 
propagation proceeds, requiring frequent reinversions of the propagation matrix. Thus, 
it is imperative to find more efficient solution methods for 3D WA-BPM.  
Recently, the complex Jacobi iterative method, a new iterative technique for solution of 
the indefinite Helmholtz equation, was introduced [3]. For beam propagation of wave 
profiles within a 2D cross section, the beam propagation equation can be cast in terms 
of a Helmholtz equation with source term, but that equation needs to be solved 
efficiently since numerous propagation steps are routinely required during the course of 
a problem solution. For this purpose the complex Jacobi iterative (CJI) method is 
proposed and shown to be highly efficient. 
The beam propagation equation for analysis of optical propagation in waveguide 
structures is based on a modified Padé(1,1) approximant operator we recently proposed 
[4]. Our modified Padé approximant propagation operators allow more accurate 
approximation to the true Helmholtz equation. Furthermore, since the utility of the CJI 
technique depends mostly upon its execution speed in comparison with the direct matrix 
inversion (DMI) method, we also present several speed comparisons. Numerical 
implementations are carried out for 3D optical waveguide structures.  
 
Modified Padé approximation operators



 

 
Recently we proposed the WA-BPM algorithm based on the Padé approximation using 

the following recurrence relation with initial value of βk
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 ( β is a damping 

parameter) [4]:  
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Padé(1,1) approximant-based WA beam propagation formula as follows: 
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WA-beam propagation formulation 

 Basic equation 
By using the modified Padé(1,1) approximant, the 3D semivectorial WA beam 
propagation equation can be written  as follows: 

nn PP φξφξ )1()1( *1 +=+ +
 

(3) 

where k
zi

ik 4)2/1(4
1

2

∆
−

+
=

β
ξ

, the complex conjugate of 
*ξ ξ and the 

propagation step.  
z∆

 WA-BPM using CJI 

By dividing both sides of Eq.(3) byξ , it may be written as an inhomogeneous 
Helmholtz equation 
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Thus the beam propagation can be cast as a 2D Helmholtz equation with source term in 

an effective medium with loss of 
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high for a typical choice of . This is a condition that favors rapid convergence for 
the CJI method. 
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 WA-BPM using DMI 
By discretizing Eq. (4), we find that 
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Eq. (6) is an 2M by 2M matrix equation for an M by M mesh grid. However, each row 
of the coefficient matrix has no more than five non-zero values. As a result, this sparse 
matrix equation can be efficiently solved using various methods. In our calculations, the 
sparse matrix solver-UMFPACK package has been used. 

 

Benchmark results 
We now employ the WA-BPM using the new CJI and the traditional DMI methods to 
perform benchmark tests on 3D optical waveguide structures. We first consider the 
Gaussian beam propagation in a straight rib waveguide and guided-mode propagation in 
a Y-branch rib waveguide [4]. The Gaussian beam with a waist radius mw µ3.00 = has 
been injected into the rib waveguide at wavelength mµλ 55.1= . Due to the large 
memory required for DMI, the small computational window of mx µ22 is discretized 
with a grid size of myx µ1.0=∆=∆ , and the short path length of 2 mµ  is discretized 
with a propagation step size mz µ1.0=∆ . The resulting runtime of DMI is 177.9 seconds 
while runtime for CJI is only 4.7 seconds.  
For a Y-branch, the initial rib waveguide is split into two 5-degree tilted waveguides. 
The longitudinal dimension is mh µ11 = .The fundamental mode of the ridge waveguide 
of width mw µ2=  for polarization TE mode at mµ−55.1 wavelength is used as the 



 

excited field at z=0. The propagation step size is mz µ1.0=∆ . Due to the high effective 
loss in the propagation medium the complex Jacobi method performed propagation only 
in 5.9 seconds while DMI required an amount of 268.9 seconds.  

 
TABLE 1 

Quantitative comparison of runtimes of the direct matrix inversion and 
the complex Jacobi iteration for WA beam propagation in waveguide 

(WG) structures 
 3D Structure 

  
Method 

Straight rib 
WG 

Y-branch rib 
WG 

DMI 177.9 s 268.9 s 
CJI 4.7 s 5.9 s 

 
 
 
 

 
 
Table 1 shows the performance of the two methods for the optical waveguide structures 
chosen here. It is clearly seen that the runtime of the iterative method is substantially 
faster than that of the DMI method. For large problems requiring very large storage 
space and also for structures with a long path length with small propagation step size 
that require frequent matrix inversions, the DMI technique is numerically very 
intensive. In contrast, for typical choices of zk∆ the CJI technique offers rapid 
convergence and shorter runtimes. 

Conclusion 
A new complex Jacobi iterative method adapted for the solution of 3D WA beam 
propagation has been presented. A quantitative comparison of runtimes between the 
traditional direct matrix inversion and the new complex Jacobi iterative method for 3D 
WA beam propagation demonstrates convincingly that the complex Jacobi iterative 
method is very competitive for demanding problems. 
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