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Fast three-dimensional generalized rectangular
wide-angle beam propagation method

using complex Jacobi iteration
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A fast and efficient three-dimensional generalized rectangular wide-angle beam propagation method (GR-WA-
BPM) based on a recently proposed modified Padé (1,1) approximant is presented. In our method, at each
propagation step, the beam propagation equation is recast in terms of a Helmholtz equation with a source
term, which is solved quickly and accurately by a recently introduced complex Jacobi iterative (CJI) method.
The efficiency of the GR-WA-BPM for the analysis of tilted optical waveguides is demonstrated in comparison
with the standard wide-angle beam propagation method based on Hadley’s scheme. In addition, since the util-
ity of the CJI method depends mostly on its execution speed in comparison with the traditional direct matrix
inversion, several performance comparisons are also presented. © 2009 Optical Society of America
OCIS codes: 000.4430, 220.2560, 350.5500.
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. INTRODUCTION
he wide-angle beam propagation method (WA-BPM) has
ecome one of the most widely used techniques for the
nalysis of optical waveguide (WG) devices [1]. Different
reatments of WA-BPM have been developed. There exist
ational approximants of the square root operator [2], the
xponential of the square root operator [3], the rational
adley approximant operators [4], and the complex Padé
pproximant operators [5] for rectangular coordinates as
ell as an oblique coordinate system [6]. The Hadley-
pproximant-based WA-BPM, hereafter referred to as the
tandard wide-angle beam propagation method (S-WA-
PM), is one of the most commonly used techniques for
odeling optical WG structures.
However, the efficiency and the accuracy of this method

re limited by several factors resulting from either the ap-
roximation of partial derivatives with finite differences
r the staircase approximation of structures calculated. In
any cases the staircase approximation can be elimi-

ated by using coordinate systems, which accurately de-
cribe the geometry of the studied devices. In particular,
he nonorthogonal coordinate systems were employed for
his purpose with a particular success [7,8]. Nevertheless,
hey still suffer from the staircase approximation problem
hen applying the finite difference beam propagation
ethod (BPM) for the analysis of beam propagation in

igh-index-contrast structures. Recently, a solution for
his problem was suggested in [9]. The proposed algo-
ithm results in the so-called slanted-wall beam propaga-
ion, which is well suited for studying wide-angle (WA)
ropagation through a general class of optical WG struc-
ures defined by dielectric interfaces that may be slanted
ith respect to the propagation direction. When used with
n appropriated grid-generation algorithm, the method
llows the modeling of an extremely wide variety of high-
0740-3224/09/071469-4/$15.00 © 2
ndex-contrast structures with good phase accuracy and
nergy conservation. However, this method is limited for
he two-dimensional (2D) beam propagation analysis of
he transverse electric modes.

In addition, it was shown that the oblique coordinate
ystem not only reduces the staircasing problem but also
llows for arbitrary selection of the proper direction of
ropagation [10]. This results in relaxation of computa-
ional efforts in comparison with the standard Hadley-
pproximant-based WA-BPM in the rectangular coordi-
ate. However, the oblique coordinate system is not
rthogonal. Consequently, the power conservation cannot
e general guaranteed.
Recently, by introducing a generalized envelope func-

ion, it was shown that these problems can be overcome
11]. It results in the so-called generalized rectangular

A-BPM, hereafter referred to as the GR-WA-BPM. The
roposed algorithm keeps all the advantages of the S-WA-
PM in the rectangular coordinate system while adding
exibility in the selection of the preferred propagation di-
ection. Since the propagation matrix can be described in
tridiagonal matrix form, it is usually solved by the well-
nown direct matrix inversion (DMI). However, this
ethod is too slow to deal with three-dimensional (3D)

roblems.
Here, we propose to use the recently introduced com-

lex Jacobi iterative (CJI) method to solve the propaga-
ion equation. At each propagation step, the propagation
quation is recast in terms of the Helmholtz equation
ith a source term, which is solved quickly and accu-

ately by the CJI method. Via a performance comparison
f the CJI and DMI methods for both 2D and 3D general-
zed rectangular beam propagations, it is convincingly
emonstrated that the CJI method is very competitive for
emanding problems.
009 Optical Society of America
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. FORMULATION
. GR-WA-BPM Based on Modified Padé Approximants
he 3D scalar Helmholtz equation is given by [1]

�2�

�x2 +
�2�

�y2 +
�2�

�z2 + k0
2n2�x,y,z�� = 0, �1�

here n is the refractive index profile and k0 is the
acuum wave vector. By introducing a generalized enve-
ope function [11]

��x,y,z� = ��x,y,z�exp�ik cos���z + ik sin���x�, �2�

here k=k0nref and nref is the reference refractive index
nd inserting it into Eq. (1), we obtain

�2�

�z2 + 2jk cos �
��

�z
+ P� = 0, �3�

here the operator P is given by

P =
�2

�y2 +
�2

�x2 + 2jk sin �
�

�x
+ k0

2�n2 − nref
2 �. �4�

he generalized envelope function introduces two param-
ters, namely, k and �. These parameters can be freely
hosen to best match the requirements of the problem
tudied. It is known that the standard envelope function
sed in BPMs so far has only one adjustable parameter,
hich is typically referred to as the reference refractive

ndex. This parameter has a major impact on the accuracy
f the calculations and should be carefully selected. By
dding another parameter to the envelope function, an
dditional degree of freedom is gained that allows for de-
oupling the preferred direction of propagation of BPMs
rom the coordinate system used.

Equation (3) can be rearranged as follows:

��

�z
−

j

2k cos �

�2�

�z2 =
jP

2k cos �
�, �5�

hich can be formally written as

��

�z
=

iP

2k cos �

1 −
i

2k cos �

�

�z

�. �6�

quation (6) suggests the recurrence relation

� �

�z�
n+1

=

iP

2k cos �

1 −
i

2k cos �
� �

�z�
n

�. �7�

y using the initial value of � /�z �0=0, this gives us the
ell-known Padé �m ,n� approximant-based WA beam
ropagation formula as follows:
��

�z
� ik cos���

N�m�

D�n�
�, �8�

here N�m� and D�n� are polynomials in X=P /k2 cos2���.
owever, as addressed in our earlier effort [5], Padé

m ,n� approximants incorrectly propagate evanescent
odes. To overcome this problem we reported the modi-
ed Padé �m ,n� approximant. It not only allows more ac-
urate approximations to the true Helmholtz equation but
lso gives the evanescent modes the desired damping. It
s obtained by using the same recurrence formulation of
adé �m ,n� approximants but with a different initial
alue. Here, by following the same steps as in case of the
-WA-BPM based on modified Padé �m ,n� approximants,
e found that the initial value for the recurrence relation

7) in the GR-WA-BPM based on modified Padé �m ,n� ap-
roximants is � /�z �0=−k cos����, where � is a damping
arameter, which can be chosen as well.

. Numerical Implementation of GR-WA-BPM
ne of the most commonly used techniques to numeri-

ally deal with Eq. (8) is the finite difference method [4].
inite difference equations may be derived from Eq. (8) by
learing the denominator and centering with respect to z
n the usual way,

D��n+1 − �n� =
ik cos����z

2
N��n+1 + �n�. �9�

quation (9) can be solved effectively by the multistep
ethod whereby each component step is treated by the

raditional DMI for 2D problems [12]. However, for large
D problems requiring the frequently matrix inversion
uring a propagation direction, it is a numerically inten-
ive task. Recently, we reported the approach solving
hese problems effectively and accurately by using the
ew CJI method [13]. The utility of the CJI technique de-
ends mostly upon its execution speed dominated by the
mount of effective absorption (or medium loss). If the
edium loss is high, the convergence rate is fast. Here,

or GR-WA-BPMs based on the modified Padé (1,1) ap-
roximant, the propagation equation is given by [13]

�1 + �P��n+1 = �1 + ��P��n, �10�

here �=1/ �4k2 cos2����1+ i� /2��− i�z /4k cos���, ��

1/ �4k2 cos2����1+ i� /2��+ i�z /4k cos���, and �z is the
ropagation step size, and is solved by the CJI method as
ollows. By dividing both sides of Eq. (10) by �, it may be
ewritten as an inhomogeneous Helmholtz equation

� �2

�y2 +
�2

�x2 + 2jk sin �
�

�x
+ k0

2�n2 − nref
2 � +

1

�
	�n+1

= 
 ��

�
P +

1

�
��n �11�

r
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� �2

�y2 +
�2

�x2 + 2jk sin �
�

�x
+ k0

2�n2 − nref
2 � +

1

�
	�n+1

= source term. �12�

t is obvious that at each propagation step the 3D beam
ropagation equation is recast as a 2D Helmholtz equa-
ion with a source term. Therefore, it can be solved effec-
ively by the CJI.

. BENCHMARK RESULTS AND
ISCUSSIONS
he efficiency and the accuracy of the GR-WA-BPM in
omparison with the S-WA-BPM were already shown in
11]. There, however, 3D methods were not practical in
iew of the slowness of the DMI. To show the efficiency of
he CJI in comparison with the DMI for 3D GR-WA-BPM
n terms of an execution speed, we perform several bench-

ark tests on both 2D and 3D optical WGs. All simula-
ions were run on a notebook PC using Matlab.

For the 2D case, we consider a 5° tilted WG. In the
ilted WG the fundamental mode for the slab of width w
1 �m and with a cladding index of 3.17 is propagated

hrough 10 �m at a wavelength of �=1.55 �m in a me-
ium of refractive index n=3.4 and with the propagation
tep size of �z=0.05 �m. With a very strict propagation
rror tolerance of 10−9, the CJI method only took 10.9 s,
hereas the DMI method took 35.3 s. The resulting inten-

ity profile for the S-WA-BPM is shown in Fig. 1(a). The
ntensity peaks of a beam propagating along a tilted WG
alculated by the S-WA-BPM and the GR-WA-BPM are
how in Fig. 2. As shown in the figures, the sudden
hanges in dielectric constant resulting from the stair-

ig. 1. (Color online) Intensity profiles along a tilted WG for (a)
he standard and (b) the generalized rectangular wide-angle
ropagations.

ig. 2. Intensity peaks along a tilted WG for the standard (dot-
ed curve) and the generalized rectangular (solid curve) wide-
ngle propagations.
tepping procedure have generated nonphysical ripples in
he waveform and have led to a spurious radiation loss.
his effect is sensitive to index contrast. Low-index-
ontrast problems have been successfully addressed in
he past using this standard method. However, high-
ndex-contrast problems can often generate sufficient
cattering so as to render the method completely useless.
he corresponding intensity profile for the GR-WA-BPM

s depicted in Fig. 1(b). In contrast to the previous case,
ll profiles are relatively uniform and smoother than
hose based on the S-WA-BPM as clearly seen in Fig. 2. It
s worth confirming with the results addressed in previ-
us work [11] that the GR-WA-BPM could be performed
ith a low loss of accuracy in terms of energy conserva-

ion.
For the 3D case, we consider a Gaussian beam with a

aist radius of w0=1 �m propagating in free space (unity
efractive index) with a 10° tilt at a wavelength of �
1.55 �m. Due to the large memory required for the DMI,

he small computational window of 3	3 �m is dis-
retized with a grid size of �x=�y=0.1 �m, and the short
ath length of 1 �m is discretized with a propagation step
ize of �z=0.05 �m. The output beam calculated by the
R-WA-BPM using the CJI and the DMI is presented in
igs. 3(a) and 3(b), respectively. Definitely, the calculated
esults are the same since we are dealing with the same
ropagation equation. Due to the high effective loss in the
ropagation medium, the complex Jacobi method per-
ormed the propagation in only 36.7 s while the DMI re-
uired 323.6 s.
Table 1 shows the performance of the two methods for

ptical structures chosen here. It is clearly seen that the
untimes of the iterative method is substantially lower
han that of the DMI method. For large problems requir-
ng very large storage space and also for structures with a
ong path length with small propagation step size that re-
uire frequent matrix inversions, the DMI technique is
umerically very intensive. In contrast, the CJI technique
an offer rapid convergence and shorter runtimes.

Table 1. Quantitative Comparison of Runtimes (in
seconds) of the DMI and CJI methods for GR-WA

Beam Propagation in WG Structures

ethod

Structure

2D
Tilted WG

(s)

3D
Gaussian Beam Propagating in Free Space

(s)

MI 35.3 323.6
JI 10.9 36.7

ig. 3. (Color online) Magnitude of 3D Gaussian beam after
ropagating 1 �m calculated by the generalized rectangular WA-
PM based on (a) DMI and (b) CJI.



4
I
W
r
m
t
b
i
c

A
P
t

R 1

1

1

1

1472 J. Opt. Soc. Am. B/Vol. 26, No. 7 /July 2009 K. Q. Le and P. Bienstman
. CONCLUSIONS
n this paper, the modified Padé approximants for GR-
A-BPMs have been derived. Furthermore, by using the

ecently introduced complex Jacobi interative (CJI)
ethod, a fast solution for the 3D GR-WA-BPM is ob-

ained. Through a quantitative comparison of runtimes
etween the traditional DMI and the new CJI methods, it
s convincingly demonstrated that the CJI method is very
ompetitive for demanding problems.
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