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We demonstrate symmetry breaking in ring-like networks composed of three and four coupled nonlinear cavi-
ties such as photonic crystal resonators. With coupled mode theory we derive analytical conditions for the ap-
pearance of asymmetric states. The rich dynamical behavior is further demonstrated by time-domain calcula-
tions, which show a cyclical switching action that is useful for multi-stable all-optical flip-flops. © 2010
Optical Society of America

OCIS codes: 190.3270, 190.1450, 230.4555.
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. INTRODUCTION
tructures with coupled nonlinear photonic cavities ex-
ibit a rich and intricate dynamical behavior. This opens
p a whole new range of applications such as photonic
eservoir computing [1], slow light engineering [2], and
ll-optical flip-flop operation [3]. Therefore it is important
o develop clear insights into the possible states and in-
tabilities of progressively more complex designs. By now,
etworks of hundreds of coupled cavities have been stud-

ed experimentally in the linear regime [4] and the next
ogical step is to study the effects of the nonlinearities in
maller networks. Network motifs consisting of three or
our nodes [5] already have a significant degree of com-
lexity, and here our aim is to examine the nonlinear
roperties of such photonic cavity designs.
Symmetry breaking is a counterintuitive physical effect

hat describes the appearance of asymmetric states while
he structure under study, and its excitation, is com-
letely symmetric. In previous work [3,6], it was shown
hat two coupled nonlinear cavities can exhibit symmetry
reaking: when equal power is injected on both sides of
he coupled cavities, the reflected output power is differ-
nt on both sides of the cavities due to nonlinear effects.
he symmetry breaking would not be possible in a linear
tructure. In this paper we couple multiple passive cavi-
ies with a Kerr-based nonlinearity in a symmetric struc-
ure. In addition, the system is excited equally from all
ides with a holding beam. We show that these symmetric
etups result in different nonlinear regimes than in the
ase of systems with two cavities, with various kinds of
symmetric states. Furthermore, using time-domain
tudies in the case of three and four coupled cavities, we
emonstrate a multi-state flip-flop operation [7,8]. In
hese cases a cyclical switching action is obtained.

Using coupled-mode theory we derive analytical condi-
ions for the symmetry breaking detuning requirements.
ur description is quite general and therefore indepen-
ent of the exact implementation. The system could be
0740-3224/10/040708-6/$15.00 © 2
mplemented with compact nonlinear photonic crystal
avities [9–11] or ring resonators [12]. Recently demon-
trated hybrid material systems are also a promising so-
ution [13].

In Section 2, we discuss the behavior of three cavities
n a triangular configuration. Using coupled-mode theory
e derive an analytical condition for symmetry breaking

n this structure. Afterwards we look at the different
symmetric states under steady state conditions and we
onclude by studying the dynamical behavior with the
ulti-state flip-flop operation. In Section 3, we do the

ame for a configuration of four cavities: after deriving an
nalytical condition for symmetry breaking and discuss-
ng the steady state behavior, we give insights into the
witching between the asymmetric states.

. THREE COUPLED CAVITIES
. Symmetry Breaking Condition
e apply the coupled-mode theory on a symmetric struc-

ure consisting of three coupled nonlinear cavities as de-
icted in Fig. 1. The time dependence of the amplitude ai
f the resonance modes of the cavities is given by [14,15]

da1

dt
= �i��0 + ��1� −

1

�
�a1 + df1 + db4 + df6, �1�

da2

dt
= �i��0 + ��2� −

1

�
�a2 + df2 + db5 + df4, �2�

da3

dt
= �i��0 + ��3� −

1

�
�a3 + df3 + db6 + df5. �3�

ere fi and bi are the forward and backward propagating
ode amplitudes in the waveguides. We assume the three

avities have the same resonant mode with center fre-
uency � and with at least a threefold symmetry (e.g.,
0

010 Optical Society of America



m
t
t

w
[
l
p
b
c

H
l
a
f

i

S

d
q
a
t

w
w
B
t
i
=
i
s
e

w

t

A
C

fi
a
c
t
t
t

T

T
o
n
i

B
B
c

F
s

Huybrechts et al. Vol. 27, No. 4 /April 2010 /J. Opt. Soc. Am. B 709
onopole) in order to have the same coupling d to the
hree waveguides. The nonlinear frequency shift due to
he Kerr nonlinearity is given by

��i =
− �ai�2

P0�2 , �4�

ith P0 as the characteristic nonlinear power of the cavity
14] and � as the lifetime of the cavity which can be re-
ated to the Q-factor as Q=�0� /2. A formula for the cou-
ling d between the waveguide modes and the cavity can
e derived by applying energy conservation laws on the
oupled-mode equations [15] and we find

d = i� 2

3�
exp�i

�

2� . �5�

ere � represents the phase depending on the waveguide
ength and the reflection properties. For high-Q cavities
nd small detunings, � will be quasi-independent of the
requency.

The amplitudes of the forward and backward propagat-
ng waves are coupled by [16]

f4 = exp�i��b4 + da1, �6�

b4 = exp�i��f4 + da2. �7�

imilar equations hold for the other waveguides.
The analysis will be done in the frequency domain so

/dt will be replaced by i� (with � as the operating fre-
uency). The forward and backward internal waveguide
mplitudes can be eliminated in Eqs. (1)–(3) and we ob-
ain

�i��0 − � + ��1� −
1

�
�a1 + ��2�a1 + a2 + a3� = − df1, �8�

�i��0 − � + ��2� −
1

�
�a2 + ��2�a2 + a1 + a3� = − df2, �9�

a1 a2

a3

f1

b1 f2

b2

b3 f3

f6

b6

b4

f4

f5
b5

A B

C

ig. 1. (Color online) A schematic representation of a symmetric
tructure of three coupled cavities.
�i��0 − � + ��3� −
1

�
�a3 + ��2�a3 + a1 + a2� = − df3,

�10�

ith �=exp�i�� and �=d2 / �1−�2�. In our further analysis,
e will use dimensionless cavity energies A=−�a1�2 /P0�,
=−�a2�2 /P0�, and C=−�a3�2 /P0�, and a dimensionless de-

uning �=���0−��. This detuning � can be expressed also
n terms of the linewidth �� of the cavity mode as �
2��0−�� /��. To examine the effect of symmetry break-

ng we assume equal input powers and phases from all
ides (i.e., f1= f2= f3). The elimination of f1 in the above
quations gives

�−
1

3
+ i��� + A��a1 = �−

1

3
+ i��� + B��a2 �11�

=�−
1

3
+ i��� + C��a3, �12�

ith

�� = � −
2 cos��� − 1

3 sin���
. �13�

We take the modulus squared of Eq. (11) and after fac-
oring we get

�A − B��B2 + �A + 2���B + A2 + 2��A + ��2 +
1

9� = 0.

�14�

similar equation holds for the relation between A and
.
Apart from the symmetric solutions derived from the

rst factor �A=B=C�, there is also the possibility of an
symmetric solution (second factor) if the detuning �� is
hosen correctly and if the solution is stable. The factor of
he asymmetric solution can be seen as a quadratic equa-
ion in B for which the discriminant has to be positive for
he existence of real solutions:

− 3A2 − 4��A −
4

9
	 0. �15�

his condition is fulfilled if A lies between the values

−
2��

3
±

2�9��2 − 3

9
. �16�

hus the asymmetric solution exists if ����	1/�3. In case
f a self-focusing Kerr effect (positive nonlinearity), A is
egative and therefore the condition for symmetry break-

ng is

�� 	
1

�3
. �17�

. Static Solutions
y solving the coupled-mode equations under steady state
onditions, we can find the static solutions as a function of
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he input power. In addition, a stability analysis needs to
e performed to determine which of the possible states
re stable and thus excitable in experiments.
The linear stability analysis is done by evaluating the

igenvalues of the Jacobian matrix for the obtained
tates. Therefore we rewrite Eqs. (1)–(3) into six ordinary
ifferential equations (ODE’s) where the phase and am-
litude are considered separately. The elements of the
acobian matrix are obtained by taking the derivatives of
hese equations to each of the variables (amplitude and
hase of ai). After evaluating this 6
6 Jacobian matrix in
he possible solutions, we can determine the correspond-
ng eigenvalues. If the real part of all these eigenvalues is
egative, the system will move into the direction of the
quilibrium point.

The stable output powers are depicted as a function of
he input power in two different configurations where the
ondition for symmetry breaking [Eq. (17)] is fulfilled
Fig. 2). One can clearly observe that besides the symmet-
ic solution (all output powers the same and equal to Pin),
symmetric solutions show up for a certain range of input
owers (regions I, II, and III). With increasing input
ower, we uncover a distinctive progression through three
ossible symmetry breaking regimes. In region I of Fig.
(a), we distinguish solutions where two out of three out-
ut powers are equal and have a higher value than the
hird output which is low. By increasing the input power,
he two equal outputs split up (region II) and the symme-
ry breaking in the system is complete: all three output

2 2.5 3 3.5 4
2

2.5

3

3.5

4 I II III

0 0.4 0.8 1.2 1.6
0

0.4

0.8

1.2

1.6

Input power [Pin/P0]

(a)

(b)

IIIIII

Input power [Pin/P0]

Output power [Pout/P0]

Output power [Pout/P0]

Symmetric
2 Equal outputs
1 Output

ig. 2. (Color online) The states of the output power as a func-
ion of the input power for a structure with (a) �=0.1 and �=
0.5 and (b) �=0.1 and �=2.0. The unstable states are shaded.
owers are different. This state then transforms to region
II where two low output powers are equal and the third
utput is high. When we change the phase �, we find the
ifurcation depicted in Fig. 2(b) where the same states ap-
ear but in a different order. The parameters of the two
xamples are chosen in order to show the three possible
egimes in a single example, but were not optimized for
ossible other conditions. Higher values for the detuning
seem to increase the extinction ratio but also move the

symmetric regime to higher input powers. However, we
id not perform an extensive analysis on this matter.
To have more insight into the symmetric solution of

ig. 2(a), we depict the energy of the resonant modes in
he cavities as a function of the input power (Fig. 3). It
ppears that the symmetric solution itself exhibits also a
ifurcation structure. Despite this bifurcation in the cav-
ty energies of the symmetric solutions, this asymmetry
oes not show up in the output powers of Fig. 2 because
he two branches have equal output powers (cf. conserva-
ion of energy), but a different phase. In the lower branch,
he symmetric solution becomes unstable for certain in-
ut powers and in that range the asymmetric solutions
re possible. This means that we can avoid the symmetric
olutions of the upper branch if we stay below the input
ower threshold of Pin	4.5P0. For the second case (with
=2.0), this bistability in the symmetric solution does not

how up and we find that only stable asymmetric solu-
ions appear in the region of symmetry breaking.

To see the influence of the parameters � and �, we de-
ict the appearance of the different states in Fig. 4 for a
onstant input power of 3.0P0. We can clearly observe the
ame three regions as described before.

. Dynamic Behavior
e can study the dynamical behavior by solving Eqs.

1)–(3) in the time domain. In the third regime of Fig.
(a), it is possible to switch between asymmetric states
here one of the outputs is high and the other two out-
uts are low. This results in a multi-stable flip-flop opera-
ion [7,8]. When a short pulse is applied to two of the
hree ports, the system will evolve to a state where the
hird output port has the high output power. In Fig. 5, the
witching is done between the three possible output
tates. The time is expressed in units of the characteristic
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ig. 3. (Color online) The stable states of the cavity energies as
function of the input power for a structure with ���−�0�=0.1

nd �=−0.5. The unstable states of the symmetric solutions are
haded.



l
i
i
3

W
i
t
o
p
p
s
i
f
e

i

s
s
h
b
p
e
t
a
2
r
o
f
d
t
c
c

3
A
T
c
d

B
(

F
e
P
a
g
g
h
t

Huybrechts et al. Vol. 27, No. 4 /April 2010 /J. Opt. Soc. Am. B 711
ifetime � of the cavity. A constant input power of 3.3P0 is
njected in the three cavities. To achieve switching, this
nput power is increased in two of the three input ports to
.5P0 during a time 30�.
We do the same for the bifurcation diagram of Fig. 2(b).
e work in the same regime as before and find that by

njecting a single pulse in one of the output ports, the sys-
em switches to a state where that output is high and the
ther outputs are low. This is demonstrated for an input
ower of 0.5P0 which is increased to 1.2P0 in case of a
ulse [Fig. 5(b)]. We observed robust switching behavior:
mall variations on the input power do not cause switch-
ng and a variation of 30% on the values of � of the dif-
erent cavities is possible when using higher pulse pow-
rs.

The switching times scale with the Q-factor of the cav-
ty. If we assume the cavity has a Q-factor of 4000, the

-0.6 -0.5 -0.4 -0.3

0.1

0.2

0.3

0.4

0.5

-0.7

III II
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φ [rad]

∆

x

ig. 4. (Color online) The different working regimes for differ-
nt parameters of � and � with a constant input power of
in/P0=3.0. Region I: two equal solutions in the upper branch
nd one in the lower branch (bounded by the brown curve); re-
ion II: three different outputs (bounded by the blue curve); re-
ion III: two equal solutions in the lower branch and one in the
igher branch (bounded by the orange curve). The cross indicates
he working point of Fig. 2(a).
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Fig. 5. (Color online) Switching betw
witching time can be predicted to be 520 ps. This rather
low switching speed is due to the fact that the system
as to travel over a large distance in phase space. It can
e reduced by also adjusting the phase of the injected
ulses, as demonstrated for a single cavity in [17]. The en-
rgy needed to enter the bistable regime is proportional to
he Kerr nonlinearity and becomes lower if the mode has
small volume. In literature, we find typically a value of

.6 mW for photonic crystal cavities [14]. In silicon ring
esonators with a Q-factor of 14,000 an operational value
f about 6 mW is necessary [12]. Two possible suggestions
or a practical implementation of the proposed scheme are
epicted in Fig. 6 as an illustration: the first using a pho-
onic crystal cavity with a hexagonal symmetry in the
avity mode and the other consisting of ring resonators
oupled to waveguides.

. FOUR COUPLED CAVITIES
. Symmetry Breaking Conditions
he analysis for the symmetric structure of four coupled
avities (Fig. 7) is similar to the previous one. The time
ependence of the resonant modes of the cavities is now

da1

dt
= �i��0 + ��1� −

1

�
�a1 + df1 + db5 + df8, �18�

da2

dt
= �i��0 + ��2� −

1

�
�a2 + df2 + db6 + df5, �19�

da3

dt
= �i��0 + ��3� −

1

�
�a3 + df3 + db7 + df6, �20�

da4

dt
= �i��0 + ��4� −

1

�
�a4 + df4 + db8 + df7. �21�

y using the same definitions as before and Eqs. (6) and
7), we rewrite these in the following form:
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�i��0 − � + ��1� −
1

�
�a1 + ��2�a1 + a2 + a4� = − df1,

�22�

�i��0 − � + ��2� −
1

�
�a2 + ��2�a2 + a1 + a3� = − df2,

�23�

�i��0 − � + ��3� −
1

�
�a3 + ��2�a3 + a4 + a2� = − df3,

�24�

�i��0 − � + ��4� −
1

�
�a4 + ��2�a4 + a3 + a1� = − df4.

�25�

o find a condition for symmetry breaking, it is assumed
hat all inputs are equal �f1= f2= f3= f4�. By combining the
rst and the third equation, we obtain an equation simi-

ar to Eq. (12):

�−
1

3
+ i��� + A��a1 = �−

1

3
+ i��� + C��a3, �26�

ith

(b)(a)

ig. 6. (Color online) Two possible implementations of the pro-
osed scheme using (a) photonic crystal cavities and (b) ring
esonators.
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ig. 7. (Color online) Schematic representation of a symmetric
tructure of four cavities coupled by waveguides.
�� = � −
2

3
cot �. �27�

he same relation can be derived for B and D when com-
ining the second and the fourth equation. When we ap-
ly the same reasoning as in the previous case of three
oupled cavities, we find the following condition for sym-
etry breaking with a self-focusing Kerr effect (positive
onlinearity):

�� 	
1

�3
. �28�

In Fig. 8 the conditions for three and four coupled cavi-
ies are depicted graphically as a function of � and �.

. Static Solutions
e can solve the coupled-mode equations again under

teady state conditions and perform a stability analysis
hich takes now a Jacobian matrix of 64 elements to be
valuated at each point. We can depict the stable output
owers as a function of the input power for a configura-
ion where the symmetry breaking condition is fulfilled;
ee Fig. 9. In this configuration, there are two different
symmetric solutions. The first one to show up has a left-
ight symmetry with two pairs of equal output powers
e.g., A=B and C=D). In the next solution, two opposing
avities have the same output power and the other two
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ig. 8. (Color online) Schematic representation of the symmetry
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ig. 9. (Color online) Stable states of the output power as a
unction of the input power for a structure consisting of four cavi-
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ith a thin line.
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utputs are, respectively, higher and lower (e.g., A=C and
�A�D). By increasing the detuning a whole range of

ther states can be found resulting in very complex state
iagrams. When analyzing the energy in the cavities, we
bserve a similar behavior as in Fig. 3 where we have a
ifurcation in the symmetric solution which becomes un-
table in the lower branch.

. Dynamic Behavior
s demonstrated in Fig. 10, we can again switch between

he different states by injecting pulses. We describe in
ore detail the solution with two pairs of equal outputs.
y injecting a short pulse in a port with a high output,

hat output becomes low and the port at the opposite side
ill become high. We inject the pulses by increasing the

nput power from 1.2P0 until 1.4P0 during a period of 5�.
cyclical switching action ensues: the state rotates as a

esult of the switching pulse.

. CONCLUSION
e demonstrated analytically and numerically symmetry

reaking in structures composed of three and four cavi-
ies. An intricate bifurcation behavior with different re-
imes is uncovered and dynamical studies demonstrate a
ulti-stable and cyclical flip-flop operation. With hun-

reds of coupled cavities currently being studied experi-
entally in the linear regime [4], nonlinear dynamics in

maller networks is the logical next step.
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