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P E T A S C A L E
C O M P U T I N G
S O F T W A R E 

I N T E G R A T I O N

Python Bindings for the  
Open Source Electromagnetic 
Simulator Meep
Meep is a broadly used open source package for !nite-difference time-domain 
electromagnetic simulations. Python bindings for Meep make it easier to use for researchers 
and open promising opportunities for integration with other packages in the Python 
ecosystem. As this project shows, implementing Python-Meep offers bene!ts for speci!c 
disciplines and for the wider research community.

I n photonics and microwave design, it’s es-
sential to be able to accurately simulate 
electromagnetic wave propagation through 
subwavelength-scale structures. To achieve 

this, researchers often use the !nite-difference 
time-domain (FDTD) method.1 Because it mod-
els Maxwell’s equations in a fully vectorial way, 
FDTD is one of the most powerful and general 
techniques, but it’s also rather brute force. It’s com-
putationally intensive, but well suited for massive 
parallelism, making it scalable on large clusters 
or supercomputers. There are several commer-
cial and open source FDTD packages available, 
but many researchers choose the open source  
package Meep, which was developed at MIT2 and 
has a broad user community.

Meep’s standard version de!nes a simulation as 
a script written in the Scheme language. Scheme 
is a powerful and compact programming lan-
guage, derived from LISP and belonging to the 
group of functional programming languages.3,4 
Mostly popular for educational purposes, Scheme 
can present newcomers with challenges in getting 
started. Although not inherently more dif!cult, 
Scheme has a somewhat different syntax, coding 
convention, and execution strategy than more 
mainstream, or imperative, languages. Many re-
searchers interested in Meep aren’t familiar with 
this programming paradigm. 

In contrast, Python follows a more traditional 
approach. Like Scheme, it’s a dynamically typed 
language and is thus well suited for scripting and 
rapid prototyping. It has also become widely ad-
opted over the past decade, both in the industry 
(as in the Google Apps Engine platform) and in 
many open source projects. Python is especially 
popular in scienti!c and academic communities, 
and, as we discuss later, many Python libraries—
most of them open source—are available and cover  
a wide spectrum of functionalities.

Scripting Meep using Python would make Meep 
easier for researchers to use, as well as permit seam-
less integration with other existing Python software. 
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54 COMPUTING IN SCIENCE & ENGINEERING

Here, we describe how Python bindings for Meep 
leverage the tool in several ways, and how the  
research community bene!ts from this extension.

Leveraging Meep with Python
We’ve developed with Python for many uses over 
the years in our research on silicon photonics 
and plasmonics. At Ghent University (UGent)/
IMEC, we’ve developed a litho mask design tool-
kit for silicon photonics in pure Python. We’ve 
also developed add-on tools and libraries for 
electromagnetic modeling, design optimization,5 
and process simulation.6 Our long-term goal is 
to further automate closed-loop optimization of 
photonic circuits.7 To this end, a powerful tool 
like Meep enriches our modeling framework. 
It also broadens our research capabilities in de-
sign optimization because it lets us leverage fully 
vectorial 3D FDTD simulations from inside a  
Python-driven design optimization process. 

Bene!ts of Python Bindings
Python bindings offer several generic bene!ts to 
the wider community of Meep users. First, they 
enable the integration of Meep with existing Py-
thon open source libraries—such as the popular 
Numpy and SciPy (www.scipy.org)—for scienti!c 
computing. Numpy is an extension to the Python 
language that adds support for large, multidimen-
sional matrix operations and related mathemati-
cal functions.8 SciPy is a higher-level library with 
mathematical tools and algorithms. 

Suppose, for example, that we want to ex-
plore a certain parameter space for the optimal  

con!guration of a photonic waveguide—that 
is, we want to use Meep to simulate the wave-
guide’s electromagnetic behavior for various 
parameter values. It’s now possible to use opti-
mization algorithms, such as simulated annealing  
(provided by SciPy) or genetic algorithms (provid-
ed by PyGene), to explore this parameter space on 
a supercomputer and optimize against a particu-
lar target function. Numerical algorithms offered 
by Numpy can be used for processing simulation 
results. Combining these libraries with Meep is  
a promising option for the many researchers  
already familiar with them.

Visualizing Simulation Results with Python
In Meep’s currently deployed versions, visualiz-
ing electromagnetic !elds relies on external tools 
(with !les for data interchange) and it’s largely 
a manual process. With Python-aware Meep, 
we can develop visualization functionality using 
popular Python libraries such as Matplotlib for 
2D (see http://matplotlib.sourceforge.net) and 
Mayavi2 for 3D (see http://code.enthought.com/
projects/mayavi) and tightly integrate them with 
the simulation script. We can automatically gen-
erate the waveguide’s visualization, the position of 
the excitation source, and the data-collecting 6ux 
planes. This allows for rapid, visual veri!cation of 
the Meep script before running it. 

At UGent, we built this functionality on top of 
the standard Python-Meep, which we integrated 
with a more general simulation framework used 
by our research group (for this reason, it’s cur-
rently a proprietary extension and isn’t included 
in the public release of Python-Meep). Figure 1  
shows a 2D-visualization made by this frame-
work. Because the Python bindings provide di-
rect access to core Meep functionality, we could 
even make a live visualization of the 6uxes or elec-
tromagnetic !elds as the simulation progresses.  
Generally speaking, such automated and ad-
vanced visualization functionalities save time and 
can save reiterations of failed or ill-conditioned 
simulations.

Parallelizing Meep Simulations
Meep’s standard version can be enabled for the 
message passing interface run (MPI-run), which 
means that the computation is distributed over 
multiple computing cores (on one or more nodes). 
MPI is an industry standard that de!nes message 
passing between software components executing 
in parallel.9 Using MPI, we can easily parallelize 
an FDTD algorithm. We can split up the simu-
lation problem in cells: in a given time step, the 

Figure 1. The automatic visualization of a 2D 
simulation landscape based on Python-Meep and 
Matplotlib. This visualization shows a ring resonator 
with access waveguide in silicon (orange), the 
position of the source (tan line), two !uxplanes 
(blue lines), and a probing point (tan circle).
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calculation for one cell is dependent only on the 
cell’s previous states and the surrounding cells’ 
boundaries. Each computing core processes one 
cell and exchanges boundary information with its 
neighbors.

The Python-Meep bindings are fully compat-
ible with Meep’s MPI-capabilities. However, such 
an MPI-distribution doesn’t scale in!nitely: add-
ing cores increases communication and synchro-
nization overhead, which at some point limits 
further scaling. Even if we have a massive amount 
of cores at our disposal (such as on a supercom-
puter or cluster), we often can’t ef!ciently exploit 
the full capacity with one MPI-run alone.

Integration with the IPython Framework
At UGent, we’re developing a generic photonic 
simulation framework based on IPython,10 a 
Python environment enhanced for parallel com-
puting. IPython largely abstracts the technical 
aspects of parallel computing from the user and 
allows robust error handling. It lets users submit 
scripts to a controller, which in turn scatters the 
code to engines on several nodes for execution. 
Results and exceptions are then gathered and pre-
sented to the client shell in a user-friendly manner.

The Python bindings for Meep let us inte-
grate Meep with this IPython framework. Such 
integration shows a clear bene!t, letting us com-
bine MPI-runs of Python-Meep with IPython’s 
scatter-gather capabilities. As Figure 2a shows, 
in this architecture, we basically have a 2D space 
over which we can spread many simulations (such 
as in a parametric scan). The !rst dimension is 
the number of computing cores to which we can 
scale one simulation in an MPI-run. The second 
dimension is the number of different simulations 
that we want to run simultaneously (with each 
simulation assigned a set of MPI-enabled IPython 
engines). In this scheme, we can use the capac-
ity of a cluster or supercomputer in an optimal 
way for a large set of simultaneous Python-Meep 
simulations. Finally, a user interface lets us launch 
simulations for a certain set of parameters and 
view a speci!c simulation’s progress.

Suppose, for example, that we have a computer 
cluster with 1,600 cores and we want to scan a pa-
rameter space with 150 parameter combinations. 
Let’s assume that each simulation can be ef!-
ciently scaled over 16 cores with MPI. Combining 
MPI and IPython, we can run 100 Python-Meep 
simulations simultaneously, with each simula-
tion consuming 16 cores. If each simulation takes  
30 minutes to complete, we can execute the full 
parameter space in just one hour (30 minutes for  

100 simultaneous simulations on 16 cores per sim-
ulation, followed by another 30 minutes for the 
subsequent 50 simultaneous simulations).

Both dimensions are independent of one another  
and have different scaling properties. Python-
Meep’s scaling behavior over the !rst dimension 
(the number of cores for MPI-run) is similar to 
standard Meep: the Python layer doesn’t interfere 
with the MPI-speci!c commands in the Meep core.

Figure 2b shows the scaling of a benchmark 3D 
simulation with MPI. The total calculation time 
is shown for different resolutions (sizes of compu-
tational volume). This is compared with the scal-
ing we ideally expect—that is, when we double the 
number of nodes, we expect the calculation time 
to halve. For a given resolution, there’s an upper 
limit to the number of cores over which we can 
scale ef!ciently. For a 3D simulation, the commu-
nication and synchronization overhead increases 
with the 4th power of the number of computing 
cores. At some point, the added bene!t of extra 

calculation power is smaller than the additional 
overhead created: in such a case, the total run-
ning times increase. As Figure 2b shows, scaling 
performance is better for more complex, high- 
resolution problems.

For the second dimension (the IPython engines), 
there’s no inherent scaling limit as the different 
IPython engines are essentially separated programs 
running in parallel, with no intercommunication. 
Figure 2c shows a graphical user interface that we 
built with PyQt (www.riverbankcomputing.co.uk/
software/pyqt/intro)  on top of this IPython-based 
framework. Using it, we can conveniently launch 
new Python-Meep simulations and inspect results 
of terminated simulations.

A Taste of Python-Meep 
Figure 3 shows a short example of a Python- 
Meep script, which offers a glimpse of the coding 
conventions. In this example, we calculate the 2D 
electromagnatic !eld pro!le in response to a line 
source located at the left of a straight waveguide. 

IPython largely abstracts the technical aspects 

of parallel computing from the user and allows 

robust error handling. It lets users submit 

scripts to a controller, which in turn scatters the 

code to engines on several nodes for execution. 
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The !eld’s Ez component is periodically written 
to a HDF5 !le, which the user can then further 
process (HDF5 is a standard !le format for scien-
ti!c datasets; see www.hdfgroup.org). 

Figure 4 shows an equivalent script imple-
mented with Scheme. As these code samples 
show, the Scheme version de!nes the problem 
in terms of higher-level expressions. Functional 
languages such as Scheme are inherently highly 

expressive,11,12 and the authors of Meep fully 
exploited this feature when they created the 
Scheme interface. They thus overcame the fairly 
low-level style of the Meep C++ core. Addition-
ally, the Scheme interface was complemented 
with user-friendly functionality that isn’t avail-
able in the underlying Meep C++ core (and 
thus, by default, isn’t available yet in Python- 
Meep).

Figure 2. Integrating Meep with the IPython framework. (a) A schematic representation of 100 simulations— 
each with different parameters—on a supercomputer. Each simulation executes in an IPython engine and  
is scaled with MPI over 16 computing cores. (b) Scaling a 3D Python-Meep simulation with MPI. The actual  
calculation times are shown for different resolutions and compared with the calculation times that we ideally  
expect. (c) The graphical user interface of UGent’s photonic simulation framework, along with the parameters 
used in a range of Python-Meep simulations and the results for each simulation (that is, the transmission 
calculated from the !uxes). The GUI lets users inspect results and subsequently launch new simulations 
(with different parameters) to a computing cluster. This high level of automation aids in the rapid design  
of new components.
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Figure 3. Example of a basic Python-Meep simulation script, which uses its own coordination system.
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from meep_mpi import *

#define the waveguide material as a function of a vector(X,Y) :
#we create a straight waveguide of widdth 1 over the full length
class epsilon(Callback):

   def double_vec(self,vec):

      if ((vec.y() >= 4) and (vec.y() <= 5)):

   return 12

     else:

    return 1

#create the computational grid of size 16 x 32 with resolution of 10
vol = voltwo(16,32,10)

#create a structure with PML of thickness = 1, using the class 'epsilon'
material = epsilon()

set_EPS_Callback(material.__disown__())

s = structure(vol, EPS, pml(1))

#define a gaussian line source of length 1 at X=1, Y=4
#with center frequency 0.15 and pulse width 0.1
srcGaussian = gaussian_src_time(0.15, 0.1)

srcGeo = volume(vec(1,4),vec(1,5))

#create the fields
f = fields(s)

f.add_volume_source(Ez, srcGaussian, srcGeo)

#export the dielectric
epsFile = prepareHDF5File("./sample-eps.h5")

f.output_hdf5(Dielectric, vol.surroundings(), epsFile)

#define the file for output of the field components
ezFile = prepareHDF5File("./sample.h5")

#define a probing point at the end of the waveguide
#to check if source has decayed
probingPoint = vec(14.5,4.5)

#start the simulation, sending HDF5 output to the file 'ezFile'
runUntilFieldsDecayed(f, vol, Ez, probingPoint, pHDF5OutputFile = ezFile)

!"#$%&'%'%()*+,-./01223334= 546576&&333&894&3:;



58 COMPUTING IN SCIENCE & ENGINEERING

The Python-bindings directly expose the low-
level Meep C++ core, which is re6ected in the 
Python script’s coding style. In Python-Meep, 
we’re now adding similar high-level helper func-
tions to facilitate simulation script writing, and 
we’ll increase this effort in future versions. Al-
though such functions are useful, they’re not 
necessary to take advantage of Meep’s function-
alities. Scheme interface users are limited to the 
functionality it offers, while users of Python-
Meep have more 6exibility: they can use both 
the Meep C++ core’s low-level functionality 
and the Python interface’s higher-level helper 
functions.

Implementing the Python Bindings
In addition to outlining actual technical imple-
mentation of the Python bindings, we now ex-
plain why we choose the Simpli!ed Wrapper and 
Interface Generator (SWIG) as the basic integra-
tion technology and weigh alternative implemen-
tations against each other.

Integrating the Meep Callback Mechanism
The Meep core library (written in C++) pro-
vides a callback mechanism that integrates with 
the simulation script: whenever the runtime en-
gine needs information about a simulation’s spe-
ci!c properties, it calls a user-de!ned function.  
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;define the simulation volume
(set! geometry-lattice (make lattice (size 16 8 no-size)))

;define the geometry of the straight waveguide and the PML layer
(set! geometry (list

 (make block (center 0 0) (size infinity 1)

 (material (make dielectric (epsilon 12))))))

(set! pml-layers (list (make pml (thickness 1.0))))

;define the Gaussian source
(set! sources (list

 (make source

    (src (make gaussian-src (frequency 0.15) (fwidth 0.10)))

    (component Ez)

    (center -7 0))))

;define the resolution
(set! resolution 10)

;start the simulation, sending HDF5 output to file
(run-sources+

  (stop-when-fields-decayed 50 Ez

   (vector3 6.5 0 0)

     1e-3)

  (at-beginning output-epsilon)

  (at-every 0.6 output-efield-z))

Figure 4. Example of a basic Scheme simulations script. As the code sample shows, Scheme uses a different 
coordinate system than Python-Meep.
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This mechanism is used intensively, such as in de-
!ning the simulation volume’s material properties 
or de!ning a custom electromagnetic source.

We developed the Python-Meep bindings us-
ing SWIG, an open source tool that connects 
programs written in C/C++ with a variety of high-
level programming languages.13 As the sidebar, 
“Choosing SWIG” describes, SWIG’s 6exibility 
allows for an elegant integration with this call-
back mechanism. As Figure 5 shows, based on our 
experiences with performance and ease of use for 
the end user, the actual implementation technique 
evolved in three phases.

In a !rst straightforard implementation, Python- 
Meep provides an abstract Callback class 
from which the user inherits in pure Python.  
In that class, the user implements the required 
functionality, such as de!ning the material prop-
erties (see Figure 3). However, for many complex 
simulations—such as those with high resolution—
the performance of this pure Python callback was 
insuf!cient because the callback function for de-
!ning materials is typically called a million times 
or more. The overhead of swapping from C++ 
to Python—subsequently running a piece of in-
terpreted Python code and returning the results 
back to C++—is small, but it becomes problematic 
when the callback is executed hundreds of thou-
sands or millions of times.

Initially, we addressed this drawback by let-
ting users de!ne a callback function in C or C++, 

with the rest of the simulation script in Python. 
In this scheme, the user’s C++ code is compiled 
at runtime and dynamically linked with the 
Python-Meep bindings: the callback is then 
done completely inside the C++ domain. This 
solution provides the required performance. The 
Python package “weave” allows for very elegant 
inclusion of inline C/C++. It largely abstracts the 
user’s overhead for mixing Python with C/C++. 
Nevertheless, combining two languages remains 
a drawback for some end users, particularly those 
who aren’t familiar with C/C++.

In the original Scheme interface, the perfor-
mance issue with this repeated callback occurs less 
often because Meep’s authors largely bypass the 
standard callback mechanism. This results in a 
tighter integration of the C++ core and the Scheme 
de!nitions. We subsequently worked toward  
a similar solution that would allow a pure Python 
de!nition of even complex high-resolution simu-
lations. The breakthrough came by combining 
SWIG with Numpy matrices.

Numpy is known for its great performance 
because it stores and processes its data in C and 
exposes only a thin interface to Python. There-
fore, if we de!ne a Numpy matrix in Python 
with our simulation volume’s material prop-
erties, the matrix is directly accessible from 
Meep using C coding conventions (basically, a 
pointer). The integration then comes down to 
writing a wrapper around the Meep callback 

CHOOSING SWIG

As alternative approaches for implementing our Python 
wrapper, we initially compared both SWIG1 and 

Boost.Python (www.boost.org/doc/libs/1_43_0/libs/python/
doc/index.html). 

Boost is a well-established and recognized set of open 
source C++ libraries that runs on almost any operat-
ing system. Its Boost.Python subset supports seamless 
interoperability between Python and C++. We had very 
good experiences with “Boost.Python; it offers a tutorial, 
the semantics of the API are clear, and it required only 
limited code writing. However, there was one important 
drawback: during the technical build process, we had to 
link our code to Boost-speci"c dynamic libraries. Although 
such libraries can be compiled from source, they have a 
large footprint. This is a major dependency that poses an 
additional threshold for deployment on third-party systems 
such as supercomputers. We prefer to keep Python-Meep 
lightweight, with as few dependencies as possible. There-
fore, we decided to use SWIG.

SWIG is a dedicated framework for connecting C/C++ 
programs with many different programming languages. We 
must write an interface "le, from which SWIG’s engine gen-
erates two additional "les: one with C code and the other 
with Python code. There are no other dependencies. Once 
this code is generated, it can be transferred to any operat-
ing system and compiled there. The footprint is thus limited 
and users don’t need to install SWIG on their host systems.

SWIG’s documentation is quite detailed, but the seman-
tics of various constructs aren’t always easy to understand. 
The technical implementation was rather complicated 
and required much trial and error before we obtained the 
required behavior. The typemap de"nition was especially 
error prone and hard to debug. These were serious draw-
backs. However, once up and running, the Python/C++ 
interface works without a !aw.

Reference
1. D.M. Beazley, “Using SWIG to Control, Prototype, and Debug 

C Programs with Python,” Proc. 4th Int’l Python Conf., IOS Press, 

1996; www.swig.org/papers/Py96/python96.html.
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functionality. This wrapper retrieves the actual 
values from the Numpy matrix and returns them  
to Meep.

Figure 5 further illustrates this architecture in 
contrast with the other two. Code-wise, we provide 
a user-friendly class CallbackMatrix from which 
the user inherits. In the class, users create a Numpy 
matrix, with its size corresponding to the dis-
cretized simulation volume (or a multiple for better 
accuracy). This architecture offers great perfor-
mance and lets users work in pure Python. How-
ever, it increases memory consumption because we 
have to store the Numpy matrix before it’s inter-
faced to Meep. Figure 6 illustrates the technique 
for the straight waveguide example in Figure 3.

Let’s take a more detailed look at the techni-
cal implementation. As the last line of code in  
Figure 6 shows, the Python-Meep function set_
matrix_2D is used for interfacing the Numpy 
matrix with the underlying C++ code. In the C++ 
code of the Python-Meep wrapper, the function 
signature is

void set_matrix_2D(double* matrix,  

int dimX, int dimY, ...). 

Similarly, for a 3D simulation we have 

void set_matrix_3D(double* matrix,  

int dimX, int dimY, int dimZ, ...).

The !rst parameter is of type double* and is a 
pointer to the actual values in the Numpy matrix. 
The following two or three int parameters indi-
cate the matrix dimensions. In Python the matrix 
is of type numpy.ndarray.

Our goal is to seamlessly pass the Numpy 
matrix as a parameter to the functions set_
matrix_2D and set_matrix_3D. We therefore 
have to de!ne some kind of translation between 
the Python type numpy.ndarray and an equiva-
lent tuple of parameters double* and int in C++. 
In SWIG, the technique for such a translation is 
called a typemap. Typically, de!ning typemaps is 
a complicated and tedious task. Luckily, a range 
of Numpy typemaps are already available in the 
open source community (numpy.i14). These type-
maps are called IN_ARRAY2 and IN_ARRAY3 for 
2D and 3D Numpy arrays, respectively.

In our SWIG de!nition !le, we must link the 
signature of the set_matrix_2D function with 
the typemap. We do this using the code below. 
When we pass a Numpy array to the function in 
Python, it’s automatically expanded in the C++ 
function’s three or four corresponding parameters. 

Figure 5. Alternative architectures implemented for de"nition 
of the material properties in the simulation volume. (a) The "rst 
architecture uses a pure Python class for callback. In this case, 
the C++/Python boundary is crossed whenever callback occurs 
(potentially millions of times for material de"nition). (b) The second 
architecture uses inline C/C++ for large simulation volumes with 
many grid points. The callback occurs completely in the C/C++ 
domain, offering great performance. (c) With the third architecture, 
users work in Python alone, creating a Numpy matrix with the 
material de"nition. Meep can directly access this matrix using a 
pointer. This also offers great performance, but with increased 
memory consumption.
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//Include the Numpy header file,  

so that Numpy types are known

%{

#define SWIG_FILE_WITH_INIT

#include <numpy/npy_common.h>

%}

//Include the Numpy typemaps

%include "numpy.i"

%init %{

  import_array();

%}

%apply (double* IN_ARRAY2, int DIM1,  

       int DIM2)

       {(double* matrix2, int dimX,  

       int dimY)}; 

%apply (double* IN_ARRAY3, int DIM1,  

        int DIM2, int DIM3)

       {(double* matrix3, int dimX,  

          int dimY, int dimZ)};

Similarly, we needed typemaps for interfac-
ing parameters that represent complex numbers. 
Both Python and C++ have separate de!nitions of 
a complex type and thus we need a mapping or 
translation for seamless integration. The de!ni-
tion of these typemaps is quite complicated; for 
details, consult the !le py_complex.i in the pub-
lic Python-Meep distribution.

All three of these techniques for de!ning ma-
terial geometries are available to Python-Meep 
users. The Numpy matrix approach is preferred 

for moderately sized simulations with relatively 
simple geometry. For very large simulation vol-
umes, using a C/C++ callback function might 
be more appropriate, as it has lower memory re-
quirements. It’s also important to consider the 
simulation of bended waveguides: the approach 
with the Numpy matrix discretizes the geometry 
and thus creates a staircase approximation of the 
waveguide edges. In some cases, this might im-
pact the simulation’s accuracy. In such case, using 
a C/C++ callback function is more appropriate, as 
the simulator will then always dispose of a perfect 
representation of the geometry. 

A fourth, more advanced technique was re-
cently added to Python-Meep that allows the 
de!nition of the material geometry based on 
polygons. In this approach, the Python script 
de!nes a set of polygons, whereby each polygon 
outlines an area with unique material properties. 
The polygon coordinates are interfaced by the 
callback class with the Meep core engine without 
consuming large amounts of memory or process-
ing time. Meep then disposes of an analytically 
correct representation of the materials and can 
resolve a full material geometry without recur-
ring callback to Python. This results in excellent 
performance and great accuracy. 

Interfacing External Data  
with a Python-Meep Script
Posters on FDTD mailing lists frequently express 
concerns about specifying external sources— 
that is, electromagnetic sources that are de!ned 
by some other software and exported as data !les.  
Python has extensive features for interchanging 

class epsilon(CallbackMatrix2D):

       def __init__(self, volume):

         CallbackMatrix2D.__init__(self)

         #create a numpy matrix with correct size and
         #default value of 1.0 (air)
         resolution = volume.a

         grid_points_x = 16*resolution

         grid_points_y = 32*resolution

         self.eps = numpy.ones([grid_points_x, grid_points_y],dtype = float)

         #set the epsilon value for y in the range [4,5] to 12.0
         #(this defines the straight waveguide)
         index_begin = 4*resolution

         index_end = 5*resolution + 1

         self.eps[:, index_begin:index_end] = 12.0

         #send the matrix to the Meep core
         self.set_matrix_2D(self.eps, volume)

Figure 6. Combining SWIG with Numpy matrices to describe the straight waveguide in Figure 3. The user 
inherits from CallbackMatrix2D and assigns the Numpy matrix to an attribute.
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data that come in handy in such a case. One example  
is the excitation of a speci!c mode of a photonic 
waveguide (a photonic waveguide can typically 
guide waves with speci!c pro!les, or modes). 

Realistic simulations often let just one speci!c 
mode be excited at a time. The only solution then 
is to create a source with the exact spatial amplitude 
shape of the mode that we want to excite. Python-
Meep conveniently addresses this problem. The 
commercial package Fimmwave (www.photond.
com/products/!mmwave.htm) is well known for cal-
culating such modes. We can use Fimmwave to calcu-
late a target model’s spatial amplitude and export the 
resulting matrix to a text !le. In Python-Meep, we  
create a callback function that uses this matrix to  
calculate the source’s exact amplitude pro!le. We 
then run the Python-Meep simulation with a custom 
source that matches accurately with the waveguide’s 
physical properties. At UGent, we implemented 
such an integration scheme between Fimmwave and 
Python-Meep in several simulations (see Figure 7). 
During these efforts, the availability of Python’s 
Numpy library proved useful because the resolu-
tion of the matrix that Fimmwave exports might not 
be the same as the resolution we want to use in the 
Meep FDTD simulations. Using Numpy, we can 
conveniently interpolate values to get the !eld pro-
!le value at each target position in the FDTD grid.

W e distribute the Python-Meep 
bindings under the terms of the 
GNU General Public License, ver-
sion 2. The source code is publicly  

available on Launchpad (https://launchpad. 
net/python-meep), and we welcome further con-
tributions to the project’s development. 
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Figure 7. The shaping of an electromagnetic source in Python-Meep. 
(a) The "eld pro"le without spatial shaping of the source compared to 
(b) a "eld pro"le when the source is shaped according to an amplitude 
matrix calculated by Fimmwave and imported by Python-Meep. A 
"eld pro"le that is useful for a realistic design should have a constant 
spatial distribution of the power intensity over time for a given cross-
section. In (a), there are major changes over time in the power intensity’s 
spatial distribution for the chosen cross-section. In contrast, (b) shows a 
constant spatial distribution of the power intensity across the waveguide. 

(a)

(b)
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