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Abstract 

Despite ever increasing computational power, recognition and classification 
problems remain challenging to solve. Recently, advances have been made 
by the introduction of the concept of reservoir computing. This is a 
methodology coming from the field of machine learning and neural 
networks that has been successfully used in several pattern classification 
problems, like speech and image recognition. Thus far, most 
implementations have been in software, limiting their speed and power 
efficiency. Photonics could be an excellent platform for a hardware 
implementation of this concept because of its inherent parallelism and 
unique nonlinear behaviour. Moreover, a photonic implementation offers 
the promise of massively parallel information processing with low power 
and high speed. We propose using a network of coupled Semiconductor 
Optical Amplifiers (SOA) and show in simulation that it could be used as a 
reservoir by comparing it to conventional software implementations using a 
benchmark speech recognition task. In spite of the differences with classical 
reservoir models, the performance of our photonic reservoir is comparable 
to that of conventional implementations with the same number of nodes. As 
our implementation uses coherent light for information processing, we find 
that phase tuning is crucial to obtain high performance. 

 



1 Introduction 
Reservoir Computing (RC) is a training concept for Recurrent Neural Networks (RNNs), 
introduced a few years ago, that combines the advantages of both recurrent and feed forward 
neural networks [1,2]. In this framework a randomly initialized RNN, called the 'reservoir', 
is used and left untrained. The states of all the nodes of the RNN are then fed into a linear 
readout, which can then be trained with simple and well established methods. Usually, a 
mere linear regression is used. Hence, the difficulties of training a recurrent network are 
avoided as only the readout is changed.  In this way, the RC approach combines the memory 
and spatio-temporal processing of RNNs with the ease of training of feedforward neural 
networks. Reservoir computing has been demonstrated to equal or outperform other state-of-
the-art techniques for several complex machine learning tasks. An example is the prediction 
of the Mackey-Glass chaotic time series several of orders of magnitude better than classic 
methods [1].   

Although the reservoir itself remains untrained, its performance depends drastically on its 
dynamical regime. Optimal performance is usually obtained near the edge of stability, i.e., 
the region in between stable and unstable or chaotic behaviour, because this regime 
optimizes the system's memory. This region is determined by the total amount of gain and 
loss in the network. Hence, to obtain good performance, we need to be able to tune a 
reservoir's dynamic regime to this edge-of-stability, using a small number of global 
parameters. 

 A common measure for the dynamic regime is the spectral radius, the largest eigenvalue of 
the system's Jacobian, calculated at its maximal gain state (for classical hyperbolic tangent 
reservoirs, this corresponds to the largest eigenvalue of the network's interconnection weight 
matrix). The spectral radius is an indication of the stability of the network. If its value is 
larger than one, the network might become unstable. At each point in time, the actual gain of 
a nonlinear reservoir depends on its state and its input signal(s). Instability occurs if this 
gain on average exceeds one. As the spectral radius gives an upper bound to the system's 
gain at each point in time, the edge of stability is usually found for a spectral radius slightly 
above one. However, tuning the spectral radius close to one often yields reservoirs with 
close to optimal performance. 

 
2 Photonic  reservoir computing 
Most reported results on reservoir computing use a (randomized) network of hyperbolic 
tangent or spiking neurons. However, recent work has indicated that a wide range of 
sufficiently high-dimensional nonlinear dynamic systems can be used as a reservoir. One 
way of explaining the success of reservoir computing is to view the reservoir as performing 
a high-dimensional spatio-temporal pre-processing or filtering of the input. In this view, the 
reservoir essentially mixes the inputs together, so that the interesting features are more easily 
extracted by the readout. A nonlinear mixing often seems to offer advantages over linear 
mixing when dealing with more complicated problems such as speech recognition. 

Most implementations thus far have been software based, hence the pursuit of finding a 
suitable hardware platform for performing the reservoir calculation. This transition offers the 
potential for huge power consumption savings and speed enhancement. What makes a 
hardware implementation even more attractive is the fact that the computation in RC 
happens through the transient states and changing dynamical behaviour. This is in sharp 
contrast with digital computation where the state is only important after the transients have 
died out.  

Photonics is an interesting candidate technology for building reservoirs, because it offers a 
range of different nonlinear interactions working on different timescales. It also offers the 
promise of being more power efficient. There remain, however, many challenges. If you 
encode the information in changing power levels, then it becomes difficult to have negative 
weights and to subtract signals. A topology made on a 2D chip, which is the case for most 
photonic chips nowadays, limits the freedom in connectivity that exists in software 
implementations, since one would like to minimise the number of crossings. When using a 
coherent light source, the amplitude and accompanying phase start to play a role as well, 



whereas traditional RC is only amplitude based. In this paper we will show through 
simulation results that despite these limitations, photonic reservoirs can perform quite well 
on benchmark problems. 

 
3 Simulation results  
In this section the speech recognition task that we used as a benchmark problem will be 
described, as well as the model we used to simulate a photonic reservoir. In our case the 
reservoir consists of a network of coupled Semiconductor Optical Amplifiers (SOAs). 

 
3 .1  Speech  Recogni t ion  

Speech recognition is a very difficult problem to solve and methods based on ANNs have 
been among the state of the art for a long time. Reservoir Computing with classical neural 
networks has been employed with success for speech recognition. The task used in this paper 
is the discrimination between spoken digits, the words 'zero' to 'nine', uttered by 5 female 
speakers. The dataset and the simulation framework for classical reservoirs is publicly 
available (http://snn.elis.ugent.be/rctoolbox). As is standard for speech recognition, some 
pre-processing of the raw speech signal is performed before it is fed into the reservoir. Often 
these methods involve a transformation to the frequency domain and highlighting certain 
frequencies typical for our ear by using some kind of ear model. The model used for the 
results in this paper was the Lyon ear model [3].  

Reservoir memory is related to the typical time scales of the reservoir itself. Therefore, to 
achieve optimal memory in a reservoir, the relevant time scales of the input signals must be 
adapted to those of the physical reservoir implementation. Audio signals are rather slow, so 
we accelerated the speech signal to accord with timescales typical for the delays in a 
network of SOAs (duration of one digit in the order of a few hundred ps). Hence, although 
we use this task to demonstrate the potential of photonic reservoir computing, we don’t 
propose to use photonic reservoirs as a platform for standard real-time, slow audio signals. 

 
3 .2  S imulat ion  mode l  

SOAs, with a saturation of gain and output power, are the optical device closest to the 
hyperbolic tangent functions used in many ANN implementations. That is the reason we 
chose them as a first medium to verify the usefulness of photonic reservoirs. The SOA model 
we used is one proposed by Agrawal [5]. It captures the most important features such as gain 
saturation, carrier lifetime and phase shift depending on the gain. Spectral hole burning, 
cross gain and phase modulation were not considered, since the operation is set to be at one 
wavelength. 

 A time step based rate equation model, solved by a fourth order Runge-Kutta, of a network 
of coupled SOAs was then plugged into the freely available RC toolbox mentioned earlier. 
This toolbox offers a number of reservoir simulations and benchmark problems that can be 
simulated and tested. Furthermore almost every aspect of it can be changed to make it 
suitable to specific experiments. 

 
3 .3  Resu l t s  

In our experiments the input consists of 77 channels, resulting from the pre-processing of the 
speech data. With such high-dimensional input, the number of nodes needs to be sufficiently 
large. All the experiments were done with a network of 81 nodes. An example of the 
topology used can be seen in Fig. 1, showing a network of 3 by 3 SOAs. The connections are 
made in such a way that they don’t cross. The information flows from the top left to the 
bottom right SOAs with nearest neighbour connections. The feedback is assured by having 
as many feedback connections on the edges of the network as possible without having to use 
crossings. The topology we used was a 9 by 9 network but the construction method was the 
same. 



 
Figure 1: the topology used for the SOA simulations 

 

In the experiment we varied two variables: the phase change and attenuation in every 
connection. Although in practice these wouldn’t be the variables that are swept, they are 
orthogonal and therefore provide an interesting insight in the behaviour of the network. In 
reality the input current of the SOAs and the wavelength of the light can be used, but since 
the input current of the SOAs influences the gain, which in turn affects the phase change 
inside an SOA, these variables are not orthogonal.  

The total amount of gain/loss in the network is also calculated by means of the spectral 
radius, mentioned earlier. Since coherent light is used, the signals can be represented by 
complex amplitudes. Since the propagation through an interconnection also corresponds to a 
phase change of the signal, connection weights, too, need to be modeled as complex values. 
Hence, in this work, we use the maximal eigenvalue amplitude of the complex 
interconnection matrix as an extension of the traditional spectral radius measure. In this way 
interference effect is taken into account. 

An example result for one of our experiments is shown in Fig. 2. Here a clear transition at a 
spectral radius around 1 can be seen. Above 1 the results suddenly become a lot worse due to 
the fact that instability kicks in because there is gain in the network. This regime actually 
corresponds with one where some SOAs would become lasers. Our simulation model is 
probably not suited for addressing a network of coupled lasers, so it is not possible to state 
with certainty that this regime is very bad for RC. Maybe some kind of emergent behaviour, 
useful for RC, could arise from coupled lasers, but this is the topic of ongoing investigation.  

Another consequence of using coherent light is the fact that the delay in the connections 
changes the phase of the light according to the wavelength, length and the effective index of 
the connection. For computational reasons all the connections were considered equally long 
in this experiment, which means that the phase change in every connection can be changed at 
the same rate, for example by changing the wavelength. Some variations on the length will 
inevitably exist in real hardware. Preliminary results indicate that this might cause a slight 
deterioration of the optimal result, but this is still under investigation. Phase is important, 
since it determines the interference of the light when it combines in front of every SOA. 
From Fig. 2, it is clear that the network performance depends on the phase change (the 
interference). In fact, below the instability boundary, our system is much more sensitive to 
phase than it is to gain. To make a photonic reservoir robust to process variations and noise, 
affecting the phase behaviour of the system, it is therefore important to design architectures 
with an optimal region that is as wide as possible along the phase axis. The design of 
networks with large optimal areas (making them phase ‘independent’) is the topic of ongoing 
research. An easy way of doing this is working with incoherent light, but the results are 
typical a lot worse for incoherent networks. 

The performance for speech recognition tasks is typically expressed as a Word Error Rate 
(WER). For the experiment in Fig. 2, we can identify a relatively wide optimal region in 
which, with our network of only 81 SOAs, we obtained a WER of about 1%.  This is 
comparable to the results achieved by classical hyperbolic tangent networks with the same 



number of nodes, but other parameters such as the spectral radius and connection fractions 
optimized. The performance, however, of both software and photonic reservoirs could be 
improved when a low-pass filter is added to all of the nodes. In the case of optical 
components this could be achieved by adding a narrowband filter to every SOA. This 
integration of SOAs and filters, however, complicates the fabrication because of the strict 
tolerances on the wavelength selectivity and uniformity of the filters. 

 
Figure 2: Simulation result for a network of coupled SOAs for speech recognition. The x-axis 

shows the spectral radius, the y-axis the phase change in every connection.  The darker the colour, 
the better the performance.  

 

4 Conclusions 
In this paper we have investigated a network of coupled SOAs as a reservoir for RC by 
means of evaluating this kind of reservoir on a benchmark speech recognition task. It turns 
out that SOA reservoirs can be used to solve such kind of complex problems, despite the 
limitations imposed by a practical implementation. In the future, a practical demonstration of 
a chip of SOAs used as a photonic reservoir will be further pursued. 
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