
A Python software framework for the
design of photonic integrated circuits

Emmanuel Lambert – Martin Fiers

Department of Information Technology

Photonics Research Group

Sint-Pietersnieuwstraat 41

9000 Ghent

Belgium

http://photonics.intec.ugent.be

Photonics Research
Setting the scene…

U N I F O R M P Y T H O N S C R I P T I N G

C
O
M
P
L
E
X
I
T
Y

USER

DEVELOPER

U N I F O R M P Y T H O N S C R I P T I N G

C
O
M
P
L
E
X
I
T
Y

USER

DEVELOPER

PCELL ENGINE

(MASK DESIGN)

ELECTROMAGNETIC
SIMULATION FRAMEWORK

VIRTUAL FABRICATION

Generate a material geometry

PICAZZO

Toolkit for design of
photonic components

U N I F O R M P Y T H O N S C R I P T I N G

Eigenmode

solvers
FDTD

Beam

propagation

GDS2

Photonic Development

API

OpenAccess

(e.g. Cadence)

Interfacing to

external design tools

USER

DEVELOPER

• Architecture

• Technical implementation
•Virtual fabrication
•Interface with FDTD simulator

Main architectural concept :

separation of concerns through Mixins

What is a mixin ? Let’s illustrate it ...

class calculating
some scientific data

Mixin-class : visualize 2D with Gnuplot

Mixin-class : visualize 2D with Matplotlib

Mixin-class : visualize 3D with Mayavi

Mixin-class : visualize 3D with Gnuplot

Several alternative

implementations for

visualization

Mixin-class : visualize 2D with Gnuplot

Mixin-class : visualize 3D with Mayavi

Two of them mixed in as

base class when module is

imported

How we do it in Python...

class MyCalculation(MixinBowl):

#core functionality only

def calculate(self):

....

def get_data(self):

...

return (X,Y,Z)

class Visualize3DGnuplot(object) :

def plot_3d(self):

...

class __Visualize__(object) :

def plot_2d(self):

raise NotImplementedError(“Abstract class”)

def plot_3d(self):

raise NotImplementedError(“Abstract class”)

class Visualize3DMayavi(object) :

def plot_2d(self):

...

in the __init__.py file of the package :

MyCalculation.mixin(Visualize2DGnuplot)

MyCalculation.mixin(Visualize3DMayavi)

class Visualize2DGnuplot(object) :

def plot_2d(self):

...

class Visualize2DMatplotlib(object) :

def plot_2d(self):

...

“PCell engine”

LAYOUT

VISUALIZATION 2D / 3D

SYMBOLIC REPRESENTATION

SCHEMATIC (NETLIST) REPRESENTATION

OpenAccess compliance

Applied to our framework ...

. . .

Implementation of the virtual fabrication

VIRTUAL FABRICATION

Generate a material geometry

PICAZZO

Toolkit for design of
photonic components

U N I F O R M P Y T H O N S C R I P T I N G

Mask layout =

a collection of shapes

on different layers

Virtual fabrication =

Can be expressed as

an algorithm with logical

operations on subsets of

the shapes

(AND, OR, XOR, NOT)

Challenge :

transform a mask layout

into

a materials geometry

simulating the physical

fabrication processes

• Geometrical Python packages Shapely and Descartes

• Transform the shapes of the mask layout into Shapely polygons (per layer)

• Apply the logical operations at polygon level through Shapely functions :

shapely.geometry.polygon.Polygon

shapely.geometry.multipolygon.MultiPolygon

AND OR NOT XOR

Shapely : intersection Shapely: union Shapely: Shapely :

difference with the canvas symmetric_difference

• High accuracy :

• “analytical” information about the geometry is maintained throughout

the algorithm

• Allows interfacing with other tools (such as simulators) without loss of

detail

• Great performance :

• Very fast

• Consumes very little memory

Advantages of implementation with Shapely

vs more brute-force approaches:

• Descartes essential for 2D visualization with Matplotlib

(direct plotting of Shapely polygons)

• 3D visualisation with Mayavi surface plot (to be improved)

Interfacing to the Meep FDTD simulator

ELECTROMAGNETIC
SIMULATION FRAMEWORK

VIRTUAL FABRICATION

Generate a material geometry

PICAZZO

Toolkit for design of
photonic components

U N I F O R M P Y T H O N S C R I P T I N G

Eigenmode

solvers
FDTD

Beam

Propagation

• Meep is a popular open source EM FDTD simulator developed by MIT

• It allows scripting through Scheme and C++

Challenge : seamless integration

Material geometry from

virtual fabrication FDTD simulation

Python Scheme / C++

Step towards this goal :

• Python bindings for Meep, based on SWIG

• Released as open source on Launchpad in December 2009

(“Python-Meep”)

Meep core engine

* get material(x,y,z)

(Python) script

describing the simulation

* return material(x,y,z)

Callback : Given a

(x,y,z) coordinate: What

is the material ?

Millions of times

> potential

performance issue

Meep core engine

Callback :

Given a (x,y,z) coordinate:

What is the material ?

PYTHON-MEEP BINDINGS

SIMULATION SCRIPT

PYTHON

C++

STRATEGY 1 :
Accumation of Python
callbacks is a bottleneck

Approaches for interfacing the material data with the Meep callback:

PURE PYTHON

CALLBACK

Approaches for interfacing the material data with the Meep callback:

Callback :

Given a (x,y,z) coordinate:

What is the material ?

PYTHON-MEEP BINDINGS

SIMULATION SCRIPT

PYTHON

C++

STRATEGY 2 :
•Inaccurate (discretization)

•(very) high memory usage

NUMPY MATRIX

with a discretised

representation
of the materials

Meep core engine

Approaches for interfacing the material data with the Meep callback:

Callback :

Given a (x,y,z) coordinate:

What is the material ?

PYTHON-MEEP BINDINGS

SIMULATION SCRIPT

PYTHON

C++

STRATEGY 3 :
• very accurate
• low memory requirements

POLYGON REPRESENTATION of the materials.

Given a point (x,y,z), which polygon is the point in ?

• winding number OR

• ray-casting algorithm

Meep core engine

S
h

a
p

e
ly

 &
 D

e
s

c
a

rt
e

s

N
u

m
p

y,
 S

c
ip

y

M
a

tp
lo

tl
ib

M
a

y
a

v
i2

S
W

IG

Software framework for the design

of photonic integrated circuits

