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Abstract
A new approximate solution for wave propagation in graded-index media is developed whereby
the exact wave propagation equation is replaced by any one of a sequence of higher-order
(m, n) Padé approximant operators. The resulting formulations may be discretized by common
numerical schemes and solvable by existing numerical techniques. The accuracy of this
approximate calculation of the wave propagator is demonstrated in comparison with the exact
result. We then employ the resulting method to investigate wave propagation in metamaterials
with graded-index profiles which change according to a hyperbolic tangent function along the
propagation direction.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electromagnetic (EM) metamaterials, a new class of artificial
composite materials, have recently attracted intensive interest
due to their potential for new applications such as negative
refraction, inverse Doppler effect, and radiation tension instead
of pressure [1, 2], as well as the electromagnetic cloaking
of arbitrary shaped objects [3]. In addition, there has been
growing research interest in the propagation behavior of EM
waves in metamaterials with material properties which change
during the propagation direction.

There exist analytical and numerical approaches to in-
vestigate wave propagation in optical structures incorporating
metamaterials with graded-index profiles such as the invariant
embedding method [4] and the finite difference time domain
(FDTD) method [5, 6]. While the analytical methods
are currently limited to low-dimensionality problems, the
FDTD method is well known as a time-consuming method,
especially for three-dimensional structures. Efforts to find
more efficient methods for large computational problems are
thus very imperative. In this paper, we present a new

1 Author to whom any correspondence should be addressed.

approximate solution for wave propagation whereby the exact
wave propagation operator is approximated by any one of a
sequence of higher-order (m, n) Padé approximant operators.
The resulting formalism offers a substantial advantage in terms
of an accurate and efficient solution of high-dimensionality
wave propagation problems.

2. Formulation

For isotropic metamaterials we assume that their optical prop-
erties can be described by the effective dielectric permittivity
and the effective magnetic permeability. Furthermore, with
EM fields that are periodic in time according to an exp(−iωt)
dependency we can obtain the scalar wave equations for the
electric field (Ey) and the magnetic field (Hx) components
from Maxwell’s equations as follows [7]:

∂2 Ey

∂z2
+ ∂2 Ey

∂x2
+ ∂2 Ey

∂y2
− 1

μ

∂μ

∂z
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∂z
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Table 1. Most useful low-order Padé approximants for wave propagator in terms of the operator X = P
Q2 .
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(1, 1)
X

1 − X

X

1 − 1

1 + iβ/2
X

(2, 2)
X − 2X2

1 − 3X + X2

X −
(

1 + 1

1 + iβ/2

)
X 2

1 −
(

2 + 1

1 + iβ/2

)
X + 1

1 + iβ/2
X2

(3, 3)
X − 4X2 + 3X3

1 − 5X + 6X2 − X3

X −
(

3 + 1

1 + iβ/2

)
X 2 +

(
1 + 2

1 + iβ/2

)
X 3

1 −
(

4 + 1

1 + iβ/2

)
X +

(
3 + 3

1 + iβ/2
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where ε = ε(ω, z) and μ = μ(ω, z) are the frequency-
dependent electric permittivity and magnetic permeability,
respectively. These equations describe the propagation of EM
waves through a medium of which the constitutive parameters
vary along the propagation direction z-axis.

We now start to solve these equations numerically and
investigate the propagation of EM waves through a graded-
index metamaterial structure. The transition between negative
and positive index media was ignored in this paper. We
choose a graded-index profile for both the permittivity and
the permeability to make sure that their first derivative
terms are non-zero. For simplification purposes, we only
consider equation (1) as those for equation (2) are equivalent.
Equation (1) can be rewritten as

Q
∂ Ey

∂z
− ∂2 Ey

∂z2
= P Ey (3)

where P = ∇2
⊥ + ω2με = ∂2

∂x2 + ∂2

∂y2 + ω2με and Q = 1
μ

∂μ

∂z .
We may formally rewrite equation (3) in the form

∂ Ey

∂z
= P

Q − ∂
∂z

Ey . (4)

Equation (4) suggests the following recurrence relation

∂

∂z

∣∣∣∣
n+1

= P

Q − ∂
∂z

∣∣
n

. (5)

This recurrence relation is the well-known form in the
area of guided-wave optics which results in either the real
or the modified Padé approximant operators depending on its
initial value [8–11]. If equation (5) is used to replace the
first derivative of fields with respect to z with an expression
containing only the operator P , then a propagator of the
following form is obtained:

∂ Ey

∂z
≈ N

D
Ey. (6)

where N and D are polynomials in P .

2.1. Real Padé approximant operators

In case the initial value of ∂
∂z |0 = 0 is used, this gives us a real

Padé (m, n) approximant-based wave propagation formula as
follows:

∂ Ey

∂z
≈ Q

A(m)

B(n)
Ey (7)

where A(m) and B(n) are polynomials in X = P
Q2 . The most

useful low-order Padé (m, n) approximant operators are shown
in table 1.

If equation (7) is compared with a formal solution of
equation (1) written in the well-known form

∂ Ey

∂z
= Q

(
1

2
−

√
1

4
− X

)
Ey, (8)

we obtain the approximation formula

1

2
−

√
1

4
− X ≈ A(m)

B(n)
. (9)

Since the operator X has a real spectrum, it is useful

to consider the approximation of 1
2 −

√
1
4 − X by the Padé

approximant operators. Figure 1 shows the absolute values

of 1
2 −

√
1
4 − X and the most useful low-order Padé (m, n)

approximant operators with respect to X . It is shown
that the real Padé (m, n) approximations are a good fit to
the exact solution of the wave equation. Furthermore, it
is clearly seen that the higher order of the approximation
Padé (m, n) is, the more accurate approximation to wave
propagator is obtained. However, if the denominator of the
real approximation Padé (m, n) formula approaches zero, its
absolute value approaches ∞ as clearly seen in figure 2.
Physically, the real Padé approximant operators incorrectly
propagate evanescent modes. To circumvent this problem, we
introduce modified Padé approximant operators as follows.

2.2. Modified Padé approximant operators

By sharing the same idea with the real Padé approximant
operators but using a different initial value we obtain the
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Figure 1. The absolute values of f (X) = 1
2 −

√
1
4 − X and the most

useful low-order Padé approximant operators.

modified Padé approximant operators. Here, we derive this
initial value for the specific problem that we are considering
here.

From equation (4) we can derive the relevant form as
follows:

− 2

Q

∂

∂z
= − 4P

Q2

2 − 2
Q

∂
∂z

. (10)

This equation may be rewritten by

f (Y ) = Y

2 + f (Y )
(11)

where f (Y ) = − 2
Q

∂
∂z and Y = − 4P

Q2 .
Equation (11) suggests the recurrence relation

fn+1(Y ) = Y

2 + fn(Y )
for n = 0, 1, 2, . . . . (12)

Lu [12] has proved that equation (12) can provide a good
approximation to

√
1 + Y − 1 with the initial value of

fo(Y ) = iβ where β > 0 is a damping parameter. (13)

Subsequently, our modified Padé approximant operators
are obtained from the same recurrence formula (5) with a
different initial value of ∂

∂z |0 = −i β

2 Q. The most useful low-
order modified Padé approximant operators are also shown in
table 1.

The absolute value and real part of the modified Padé

(1, 1) approximant of 1
2 −

√
1
4 − X are also depicted in figure 2.

It is seen that the modified Padé (1, 1) (with β = 2) allows a
more accurate approximation to the true wave equation than
the real Padé (1, 1) operator. Furthermore, the real one
incorrectly propagates evanescent modes as its denominator
gradually approaches zero. In contrast, the modified Padé
operator could give waves propagating in evanescent regions
the desired damping as shown in the same figure.

Figure 2. The absolute values (a) and real part (b) of

f (X) = 1
2 −

√
1
4 − X , the most useful low-order real and complex

Padé approximant operators.

2.3. Numerical implementation of Padé-based wave
propagation

One of the most commonly used techniques to numerical
deal with equation (7) is the finite difference method. Finite
difference equations may be derived from equation (7) by
clearing the denominator and centering with respect to z in the
usual way:

B(En+1
y − En

y) = Qn�z

2
A(En+1

y + En
y ). (14)

Equation (14) can be solved effectively by a multistep
method whereby each component step is treated by the
traditional direct matrix inversion (DMI) [11]. However,
for large problems requiring huge amounts of memory, it
is very slow to establish matrix inversion DMI. In the last
decade alternative methods have been proposed to solve
matrix inversion effectively by iteration techniques such as Bi-
CGSTAB [13]. However, for large three-dimensional problems
where the material properties change frequently and which
therefore require frequent matrix inversions, this can still be a
numerically intensive task. Recently, we reported a different
approach by using the new complex Jacobi iterative (CJI)
method [14]. There, the wave propagation equation is recast in
terms of a Helmholtz equation with a source term. The utility
of the CJI technique depends mostly upon its execution speed
dominated by the amount of effective absorption (or medium
loss). If the medium loss is high, the convergence rate is thus
fast.
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Figure 3. The permittivity and permeability vary along the
propagation direction according to a hyperbolic tangent function
assumed in this paper.

3. Example

In order to prove the applicability of this approximant
method, we now employ it to study wave propagation in
an inhomogeneous negative index metamaterial whereby the
effective permittivity and permeability vary according to a
hyperbolic tangent function. Of course, our method works
equally well for positive index graded materials.

We consider an electric wave propagating in a medium
where ε and μ are both always non-zero and are given by the
following functions (see figure 3):

ε = −ε0εeff(ω)(tanh(ρz) + 2),

μ = −μ0μeff(ω)(tanh(ρz) + 2),
(15)

where ρ (=10+6) is a positive parameter ensuring index
profiles to be graded and the first derivative of ε and μ are
therefore non-zero. We assume a wave with wavelength of
λ0 = 1 μm propagating in such a medium of εeff(λ0) =
μeff(λ0) = 1. Figure 4 shows the comparison of the calculated
results obtained by the solution from the real Padé operator, the
modified Padé operator and the true wave equation (which are
solved directly by the finite element method in the commercial
software—COMSOL multiphysics [15]). It is seen that the
result obtained from the modified Padé operator allows a better
agreement to the true wave equation than that of the real one.

4. Conclusions

In this paper, we have derived a new approximate solution
for wave propagation in graded-index media based on Padé
approximant operators. The resulting formulas allow accurate
approximations to the true wave equation. This results in
a promising tool to investigate wave propagation in media
where the permittivity and the permeability change during
propagation direction.
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