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Abstract: A hybrid integration of nanoplasmonic antennas with silicon nitride waveguides
enables miniaturized chips for surface-enhanced Raman spectroscopy at visible and near-infrared
wavelengths. This integration can result in high-throughput SERS assays on low sampling vol-
umes. However, current fabrication methods are complex and rely on electron-beam lithography,
thereby obstructing the full use of an integrated photonics platform. Here, we demonstrate
the electron-beam-free fabrication of gold nanotriangles on deep-UV patterned silicon nitride
waveguides using nanosphere lithography. The localized surface-plasmon resonance of these
nanotriangles is optimized for Raman excitation at 785 nm, resulting in a SERS substrate en-
hancement factor of 2.5 × 105. Furthermore, the SERS signal excited and collected through
the waveguide is as strong as the free-space excited and collected signal through a high NA
objective.
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1. Introduction

Silicon photonics based on high index-contrast silicon-on-insulator (SOI) waveguides has proven
to be an excellent platform for biosensing. SOI enabled, amongst others, the development of
sensitive and compact refractive index [1] and absorption [2] sensors across the telecom and
mid-infrared wavelength range. The success of the SOI platform is largely due to the use of
standard CMOS-fabrication techniques, which ensures high-volume manufacturing, reproducible
components and potential CMOS compatibility. This inspired the development of a silicon
nitride (SiN) counterpart, paving the way for deep-UV fabricated integrated photonics at visi-
ble wavelengths. The ongoing improvement of different optical components such as low-loss
waveguides [3], spectrometers [4, 5] and hybrid integrated lasers [6] is leading to a maturation of
this SiN platform [7]. Being transparent at near-infrared and visible wavelengths, SiN enables
on-chip fluorescence [8] and Raman spectroscopy [9], as these scattering processes scale with
λ−4. Even though waveguide-based Raman spectroscopy strongly increases the collected Stokes
scattering as compared to free-space sensing [10–13], it remains limited by both the low Raman
cross-section of most molecules and the intrinsic background Raman scattering of the waveguide
itself [10]. Surface-enhanced Raman scattering (SERS) allows to dramatically increase the
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Raman signal from molecules in the close vicinity of plasmonic nano-antennas, even up to
the limit of single-molecule detection [14]. Recent efforts succeeded in combining plasmonic
antennas with Si [15] and SiN [16–18] waveguides, providing proof-of-concept experiments
for integrated localized surface plasmon resonance (LSPR) sensing [18] and even waveguide-
excited and -collected SERS [17]. However, all these approaches rely on multiple electron-beam
lithography steps with critical alignment for writing both the waveguides and the nano-antennas.
Apart from being time-consuming and resource-intensive, the use of e-beam lithography inhibits
exploiting the full functionality of a mature integrated photonics platform. Alternative approaches
combine a waveguide platform with colloidal gold or silver nanoparticles [19–21]. However,
colloidal particles lack the reproducibility of top-down fabricated SERS substrates. In this work,
we develop a nanosphere-lithography [22] (NSL) based technology for patterning deep-UV
fabricated SiN waveguides with gold nanotriangles. We characterize the plasmonic resonance of
these nanotriangles through their absorption spectra and demonstrate efficient waveguide-based
excitation and collection of surface-enhanced Raman spectra at a pump wavelength of 785 nm.
Furthermore, for an equal input power we experimentally find the Stokes scattered power to be
approximately equal when exciting and collecting through the waveguide versus a high numerical
aperture objective. To the best of our knowledge, this is the first demonstration of an e-beam
free platform for on-chip SERS, an important step towards a complete on-chip SERS-platform
combining the sensing area, filters, spectrometer and even the laser on a single chip.

2. Results

Fabrication of integrated nanotriangles Figure 1 schematically shows how a deep-UV pat-
terned SiN chip is decorated with nanotriangles. The fabrication process is described in more
detail in the methods section. First, a 2.5 − 15 µm wide window is defined across the waveguide
using photoresist. This window is thinned down using oxygen plasma to avoid stacking of the
polystyrene beads. Next, polystyrene beads with a 448 nm diameter are spin-coated on the chip
to form a self-assembled, hexagonally close packed monolayer in this window. These beads act
as a mask for gold deposition. After lifting of the beads and resist, the waveguide is covered with
a repetitive pattern of nanotriangles. Figure 2 shows SEM images of the monolayer of beads and
resulting gold nanotriangles on the waveguide. Because of the 220 nm height difference between
the waveguide and the substrate, the beads form a double layer on the latter. Openings in the
double HCP-layer result in the smaller nanodots visible next to the waveguide in Fig. 2(b).

Spectral properties of the localized surface plasmon resonance The nanotriangles and
waveguides are designed for a Raman pump laser of 785 nm and Stokes emission at 877
nm, corresponding to the 1339 cm−1 symmetric stretching mode (νs) of NO2 in the gold-
binding molecule para-nitrothiophenol (NTP) [23]. A maximal overlap of the LSPR with the
wavelength region of the pump laser and Stokes emission is necessary to achieve a high SERS
enhancement factor. The spectral location of this resonance strongly depends on geometrical
parameters such as the size and aspect ratio of the triangles, as well as the refractive index of the
surrounding materials. For uncoupled gold nanostructures, implying a large separation between
the antennas, the extinction spectrum provides a reasonable indication for wavelength-dependent
enhancement factor [24]. With a gap of approximately 75 nm (Fig. 2(d)), this condition is met
for the nanotriangles. The optimal geometry was experimentally found by tuning the radius of
the polystyrene beads, thinning down the beads with O2 plasma (Fig. 1, between step (2) and (3))
and adjusting the thickness of the evaporated gold. Optimal values of respectively 224 nm, 15 s
and 70 nm were determined from UV-Vis absorption and SERS spectra measured on different
geometries using a top-down, free-space excitation (data not shown). These parameters are used
for fabricating nanotriangles on a SiN waveguide. Figure 3(a) shows the spectral absorption
from different lengths of these nanotriangle patterns on waveguides when excited by a TE
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(3) Gold evaporation and bead liftoff
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Fig. 1. Simplified processing scheme for patterning SiN waveguides with gold nanotriangles.
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Fig. 2. SEM image of (a) a hexagonally close-packed monolayer of polystyrene beads in
photoresist across the SiN waveguide and (b-d) a typical gold nanotriangle pattern on the
waveguide.

polarized supercontinuum source. As expected, the absorbance increases with increasing number
of nanotriangles. Furthermore, the 785 nm pump wavelength and 1339 cm−1 Stokes shift overlap
well with this spectrum, indicating that these structures are suited for exciting surface-enhanced
Raman spectra in the near-infrared. From these data we extract an absorption coefficient for the
gold nanotriangles αp of 1.7 ± 0.5 dB/µm at the 785 nm pump and αs of 2.7 ± 0.5 dB/µm at
the 877 nm Stokes wavelength. From αs , αp we calculate the total collected Stokes power as
function of the length of the nanotriangle section: PR

col
∝ γinγout

∫ L

0 P0e−αp xσe−αs xdx
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∝ γinγout P0σ 1 − e−L (αp+αs )αp + αs

Here, σ is the Raman cross-section of the molecule P0 is the laser power incident on the
entrance facet of the chip. The losses when coupling pump light in and the Stokes light out of
the chip are respectively given by γin and γout . Because of the strong absorption of pump and
Stokes light, after only 2.5 µm of nanotriangles the SERS signal reaches 93% of the maximum
value (solid blue curve in Fig. 3(c)). Hence making the nanotriangle stretch longer does not
contribute to a stronger signal. Figure 3(c) also shows the experimentally measured intensity of
the 1339 cm−1 SERS peak on 8 waveguides each for lengths of 2.5 µm, 5 µm, 10 µm and 15
µm, indeed showing no significant differences in signal strength with increasing length.
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Fig. 3. (a) Absorption spectra of waveguides decorated with increasing lengths of nano-
triangle patterns. The LSPR-absorption shows a good overlap with a 785 nm pump laser
and a 1139 cm−1 Stokes shift, respectively green and red shaded. (b) Absorption versus
nanotriangle length at pump and Stokes wavelength measured on four different waveguides
for each length. A linear fit to the data gives an absorption of 2.7 ± 0.5 dB/µm at Stokes
and 1.7 ± 0.5 dB/µm at the pump wavelength.(c) SERS signal strength in function of the
length of the nanotriangle section, showing that the maximum signal is already reached
for a 2.5 µm length. The orange bars give the average of at least 8 different measurements.
The solid blue curve shows the calculated signal strength versus length when collecting the
backwards Stokes scattered light in a reflection mode, as used in this work. The red curve
shows the forward collected Stokes power in a transmission mode.

Surface-enhanced Raman scattering of waveguide-coupled versus free-space coupled nan-
otriangles SERS-spectra of the same nanotriangle patterns are measured using both free-space
and waveguide-based excitation. A commercial Raman microscope is used in both cases, with the
chip placed respectively perpendicular or parallel to the beam path, as shown in Fig. 4(a). This
allows for an accurate comparison between the total free-space- and waveguide- collected Stokes
scattered power for the same input power. Figure 4(b) shows a camera image of the end-fire
coupled chip, placed vertically under a 40x/0.6 objective installed on an upright microscope.
Scattering of the waveguide-coupled pump light, propagating along the green arrow in Fig.
4(b), can be seen at the entrance facet, at the nanotriangle section and at the other end of the
waveguide. The spectra are collected in a reflection mode, meaning that the backscattered Stokes
scattered light is collected by the same objective, as indicated by the dashed red arrow. The
pump light propagates for approximately 1.5 mm through a multimode SiN strip waveguide
before encountering the nanotriangle section. Along this propagation, a strong Raman signal
of the SiN core is generated [10]. As a consequence, the Raman spectra collected through the
waveguide consist of two major contributions, as highlighted in Fig. 5(a). One is the SERS
spectrum of NTP, which in the rest of this work will be quantified by its most prominent peak at
1339 cm−1 (νs NO2). The other is the SiN spectrum, which for our particular SiN consists of a
broad background that decreases monotonically towards longer relative frequency shifts [10]
and has a characteristic peak at 2330 cm−1. Note that the shape and strength of this background
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Fig. 4. (a) Schematic of the confocal microscope used for collecting Stokes scattered light
from both waveguide- and free-space coupled nanotriangles. (b) Camera image of the
chip in bright field (left) and dark field (right). Light is coupled from the top into the
vertically oriented waveguides, and propagates along the waveguide (green arrow) until
the nanotriangle section. Stokes scattered light is collected in reflection (red-dashed arrow).
Scattering of the pump laser can be seen at the entrance facet and nanotriangle section.

scales with the waveguide length and depends not only on the waveguide material but also on
the exact deposition parameters. Figure 5(a) shows a raw waveguide-excited SERS spectrum, as
well as a SiN background spectrum collected from a reference waveguide without plasmonic
antennas. The latter is rescaled for equal peak intensity at 2330 cm−1 (Fig. 5(a), inset) because
of differences in propagation length and absorption. The lack of NTP peaks on the reference
spectrum also proves that the NTP peaks indeed originate from gold-bound molecules on the
nanotriangles.
To compare the waveguide-excited SERS signals to a free-space excitation, we subtract the SiN
background and rescale the spectrum to compensate for a total coupling loss (γinγout ) of 8
dB. The rationale behind compensating for these coupling losses is a future integration of the
spectrometer [5] and light source [6] on the chip, eliminating the need for edge-coupling and thus
minimizing losses in between components. On a shorter term it is possible to substantially reduce
coupling losses by optimizing the waveguide design for a specific coupling geometry. Free-space
excited SERS spectra are collected top-down across the same waveguide using a 100x/0.9 NA
objective, with the chip placed horizontally under the microscope. This is close to the highest
possible etendue using an air objective, and thus results in the strongest possible SERS spectrum
collected in free space for this particular SERS substrate. An average spectrum is calculated
over the first 2.5 µm of nanotriangle pattern on the waveguide, as this part contributes to over
90% of the waveguide-coupled Raman signal. Figure 5(b) shows both free-space and waveguide
excited SERS spectra for a typical waveguide, both having the same shape and approximately
equally magnitude. This comparison was made for multiple waveguides on two different chips.
The integrated SERS intensity of the 1339 cm−1 peak for each individual nanotriangle-patterned
waveguide is shown in Fig. 5(c) for both free-space and waveguide-based excitation. From this
data, we conclude that exciting and collecting surface-enhanced Raman spectra through the
waveguide is at least as efficient as through the high NA objective. When the guided power
in the waveguide equals the power through the objective, an equal amount of Stokes scattered
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photons is collected by both systems. Note that this does not imply that both the field intensity
and collection efficiency are individually identical in both systems. A difference in mode volume
and the asymmetry of the nanotriangles on the SiN waveguide can lead to a different excitation
or collection efficiency in both systems [25, 26].

500 1500 2500

C
ou

nt
s 

[a
.u

.]

Waveguide SERS
SiN Background

2000 2300

N
T

P
 

13
39

 c
m

-1

Si
N

23
30

 c
m

-1

Stokes Shift [cm-1]

(a)

500 1500 2500

Waveguide SERS w/o SiN
Free space SERS

C
ou

nt
s 

[a
.u

.]
Stokes Shift [cm-1]

(b)

Free Space
Waveguide

Chip 1 Chip 2
104

105

106

107

SS
E

F
 (

13
39

 c
m

-1
 p

ea
k)

(c)

Fig. 5. (a) 4-NTP SERS signal acquired through the waveguide (solid blue) and the SiN
background spectrum on a blank reference waveguide (dashed green). The 1339 cm−1 is
used for quantifying the enhancement factor. The inset shows a characteristic peak for our
SiN at 2330 cm−1. (b) Waveguide collected SERS spectrum (solid blue) after subtracting
the SiN background and scaling with the coupling losses, compared to a free-space collected
SERS spectrum (dashed red) acquired on the same nanotriangle section. (c) SSEF for free-
space excitation and collection compared to the signal strength using a waveguide-based
measurement, acquired on multiple waveguides on two different chips.

To enable a quantitative comparison with other (future) integrated SERS platforms, we
calculate the SERS substrate-enhancement factor for the gold nanotriangle patters as described
by Le Ru et al. [27]. The SSEF is defined as the ratio between the average signal per molecule on
the SERS substrate and that in a bulk, spontaneous Raman measurement: SSEF=ISERS IRaman ×

NVol NSur f

= ISERS IRaman × He f f ρµAu µNTP Am = (2.5 ± 0.7) × 105

In this definition, the intensity of the Raman and SERS signals are scaled to the same excitation
power and integration time. The ratio between the number of molecules in a bulk measurement
and those adsorbed on the gold surface can be calculated from the bulk molecule density ρ
(6.022 × 107 molecules/µm3), the effective height He f f of the collection volume (150 µm), the
density of the 4-NTP molecules on the gold µNTP (4.4 × 106 molecules/µm2) [28], the surface
area of a single nanotriangle Am (0.023 µm2) and the density of the metal nanostructures µAu
(11.5 triangles/µm2). It is important to remember that, although this calculation assumes the
use of exactly similar conditions (objective, microscope, pinhole etc.) for acquiring SERS and
spontaneous Raman spectra, the final enhancement factor is independent of the optical setup.
An exact translation of this free-space enhancement factor to a waveguide-coupled number is
not straightforward because of the intrinsic differences in both geometries, and therefore outside
the scope of this paper. Qualitatively, we conclude that SERS signals are in the same order of
magnitude while the number of molecules excited in both cases is similar.

3. Conclusion

In conclusion, we have demonstrated a relatively easy process for patterning individual dies of
deep-UV waveguides with gold nanotriangles in a post-processing step. The absorption spectrum
of this nanopattern is well suited for Raman spectroscopy in the near-infrared, a wavelength
region interesting because of its low absorption by biological specimen, reasonably strong
scattering and low background fluorescence. SERS data show that the SSEF of this pattern
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is 2.5 × 105, and that excitation and collection of SERS spectra through the waveguide is at
least as efficient as using the best possible air objective. Although the enhancement factor of
the nanotriangles presented in this manuscript is not among the highest reported in literature,
nanosphere-lithography has also been used to fabricate high-performance SERS substrates, at
least under free-space excitation [23, 28, 29]. Variations of these can possibly be combined
with photonic waveguides. The hybrid integration of nano-plasmonic antennas with a mature
integrated photonics platform is a prerequisite for fully integrated spectroscopic sensors. We
are convinced that further technological developments on this topic will lead to breakthrough
applications that are currently limited to free-space SERS sensing.

4. Methods

Fabrication As shown in Fig. 1, we start from a deep-UV patterned die containing 220 nm
high by 1.4 µm wide SiN waveguides. After cleaning the chips, a 2.5− 15 µm wide open window
is patterned in AZ MiR 701 positive photoresist using UV-contact lithography (SÜSS MA6),
resulting in a resist thickness of approximately 700 nm. This resist is thinned down to less than
400 nm using O2 plasma (Vision 320 RIE, 50 sccm O2, 75 W, 100 mTorr, 235 s), after which the
polystyrene beads are spin-coated on the chip. The resist must be thinner than the size of the
polystyrene beads to avoid stacking of the beads at the edges of the window. Typically, 40 µl of
a 3.75 w% in 2/1 methanol/water mixture of 448 nm polystyrene beads (Microparticles GMBH)
was used for a two-step spin coating. First a HCP monolayer is formed at a speed of 2100 rpm
and an acceleration of 1600 rpm/s during 45 seconds, followed by the removal of excessive
beads and solvents at 5000 rpm and 1000 rpms during 40 seconds. Note that these parameters
should be slightly changed depending on the chip size (4 cm2), humidity and temperature in
order to acquire an optimal arrangement of the beads into an HCP-monolayer. After spin-coating,
an additional 15 s of O2 plasma is applied. This reduces the size of the beads such that the
resulting nanotriangles will have the optimal dimensions for a LSPR around 785-870 nm. The
O2 plasma also improves the adhesion of metals to the SiN surface. First a 1-4 nm Ti adhesion
layer is sputtered, followed by the thermal evaporation of a 70 nm Au layer (Leybold Univex
450). Finally, the polystyrene beads are removed in dichloromethane and the resist is lifted off

in acetone. The chips were characterized through scanning electron microscopy on a FEI Nova
600 Nanolab Dual-Beam FIB system, using a voltage of 18 kV and a through the lens (TLD)
detection.

Transmission measurements Nanotriangle extinction spectra were measured as described by
Peyskens et al. in the supplementary information of [17]. Light from an NKT EXR-4 supercon-
tinuum source is filtered through a near-IR transmitting filter and coupled in a fiber. This fiber is
plugged into a fiberbench consisting of 3 parts: an achromatic fiber collimator which converts
the fiberized light to a free-space beam, a free-space broadband polarizer which polarizes the
unpolarized light into a TE-beam and an aspheric lens used to focus the free-space beam on the
input facet of the chip. At the output facet a lensed fiber is used to capture the transmitted light.
This lensed fiber guides the light into an optical spectrum analyzer (Advantest Q8381). Extinction
spectra of the nanotriangle-covered waveguides were calculated relative to the transmission of a

reference waveguide: E(λ) = 10 log10

[
T (λ)re f

T (λ)NSL

]
Chip labeling Chips were first cleaned with acetone, isopropanol and water and dried under a
stream of nitrogen. Next, a short oxygen plasma (PVA-TEPLA GIGAbatch 310 M, 6000 sccm
O2, 600 W, 750 mTorr, 120 s) was used to further remove organic contaminants and render the
surface hydrophilic. Immediately after, the chips were immersed for three hours in a 1 mM
solution of 4-nitrothiophenol (NTP, sigma N27209) in ethanol. After incubation, the labeled
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chips were thoroughly rinsed with ethanol and water to remove excessive NTP molecules and
again dried under a stream of nitrogen. Subsequently the chips were cleaved to allow for end-fire
coupling. Three different chips were measured, in all cases the SERS spectra were acquired
within 3 days after labeling.

Surface-enhanced Raman spectra All Raman spectra were acquired on a WITec Alpha 300
R+ confocal Raman microscope equipped with a 785 nm diode laser (Toptica, XTRA II) and
a spectrometer using 300 lpmm grating diffracting the light onto a -70 C cooled CCD camera
(Andor iDus 401 BR-DD). Figure 4(b) shows a sketch of the setup. All SERS spectra were
measured with a laser power of 250 µW at the entrance facet of the microscope objective, and the
polarization of the pump beam was set to TE using a half-wave plate. Note that a low irradiance
is necessary to avoid the photoinduced reduction of p-NTP into dimercaptoazobenzene [23].
We observed this from a change in relative strength of the 1339 cm−1 and 1080 cm−1 peaks
when increasing the power above 500 µW , both for waveguide- and free-space coupling. Stokes
scattered light is collected in a 100 µm core multimode fiber, simultaneously functioning as
confocal pinhole, for both waveguide and free-space excitation. Free-space excited spectra were
acquired through a Zeiss 100x/0.9 EC Epiplan NEOFLUAR;∞/0 objective across the waveguide
with a spatial resolution of 250 nm and an integration time of 0.23 s per pixels. Next, the average
spectrum is calculated over the first 2.5 µm of nanotriangles on the waveguide, being the part
of the waveguide that contributes to 95% of the signal. In the waveguide-excited case, the light
was end-fire coupled into the chip using a Nikon 40x/0.6 S Plan Fluor ELWD DIC N1;∞/0-2.0
objective. Stokes scattered light was collected in reflection through the same objective. These
spectra were acquired over 100 averages at an 0.23 s integration time.

Coupling losses The efficiency of coupling the pump laser and Stokes light respectively in-
and out of the chip was quantified in a transmission measurement on the WITec Alpha 300 R
microscope, where two identical objectives Nikon 40x/0.6 S Plan Fluor ELWD DIC N1;∞/0-2.0
are placed on both edges of the end-fire coupled chip. A total transmission loss at 785 nm of
6.2 ± 0.23 dB was measured over 6 different waveguides. We neglect propagation losses in the
2 mm long waveguides. Collecting Stokes scattering in transmission is more efficient than in
reflection for waveguides with negligible loss. This is because both paths can be independently
aligned for respectively the excitation wavelength of 785 nm and Stokes emission at 877 nm. In
reflection, chromatic aberrations of the objective inhibit an optimal alignment. An additional
loss of 1.8 ± 0.48 dB is taken into account to compensate for the difference in Raman intensity
at a Stokes shift at 1339 cm−1 when collected in reflection as compared to transmission. This
brings the total coupling loss to 8 ± 0.71 dB.

Quantification of enhancement factor SSEF The effective height of the confocal volume
He f f was determined from an axial scan over a TiO2 on CaF sample, using a 200 µm multimode
fiber as a pinhole: He f f =

∫
µ⊥ (z)µ0dz Here, µ0 and µ⊥ (z) are respectively the Raman intensity

in focus and at a distance z from the focal plane. The surface area of a single nanotriangle (Am)
covered by gold-binding molecules is calculated from SEM images. The shape of the nanotriangle
is approximated as a triangular-based pyramid with a 150 nm base and 75 nm height.
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