

THE MORPHIC PROJECT: ENABLING LARGE SCALE PROGRAMMABLE PHOTONIC CIRCUITS USING MEMS

<u>M.U. Khan</u>^{1,2}, W. Bogaerts^{1,2}, N. Quack³, K. B. Gylfason⁴, P. Verheyen⁵, P. O'Brien⁶, C.L. Arce⁷, M. Garcia⁸

¹Ghent University - IMEC, Photonics Research Group, Department of Information Technology, Ghent, Belgium ²Center for Nano- and Biophotonics (NB-Photonics), Ghent, Belgium ³ École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

⁴Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden

⁵Interuniversity Microelectronics Centre (IMEC), Heverlee 3001, Belgium

⁶Photonic Packaging Group, Tyndall National Institute, Lee Maltings Complex, Cork T12R5CP, Ireland

⁷Commscope Connectivity BVBA, Belgium

⁸VLC Photonics, Valencia, Spain

Abstract: In MORPHIC, we are enhancing the capabilities of already established silicon photonics platform with low-power and non-volatile MEMS actuators to achieve programmability and re-configurability of the photonic circuits. The combining of high speed silicon photonics, non-volatile MEMS actuation, electronics controlled reconfigurable connectivity and high level design methodologies and programming interface in a package will lead to a complete Field-Programmable Photonic Integrated Circuits (FP-PIC) platform. Ultimately, technology platforms for both generic FP-PIC and Application-Specific Photonic Integrated Circuits (AS-PIC) with possibility of volume manufacturing will be demonstrated.

Fig 1: The proposed generic Field-Programmable Photonic Integrated Circuits (FP-PIC) using non-volatile MEMS building blocks.