
Numerical modeling of a linear photonic system
for accurate and efficient time-domain simulations
YINGHAO YE,1,* DOMENICO SPINA,1 YUFEI XING,2 WIM BOGAERTS,2 AND TOM DHAENE1

1IDLab, Department of Information Technology, Ghent University-imec, Ghent, Belgium
2Photonics Research Group, Department of Information Technology, Ghent University-imec, Ghent, Belgium
*Corresponding author: yinghao.ye@ugent.be

Received 21 November 2017; revised 12 March 2018; accepted 29 March 2018; posted 30 March 2018 (Doc. ID 312773); published 23 May 2018

In this paper, a novel modeling and simulation method for general linear, time-invariant, passive photonic devices
and circuits is proposed. This technique, starting from the scattering parameters of the photonic system under
study, builds a baseband equivalent state-space model that splits the optical carrier frequency and operates at
baseband, thereby significantly reducing the modeling and simulation complexity without losing accuracy.
Indeed, it is possible to analytically reconstruct the port signals of the photonic system under study starting from
the time-domain simulation of the corresponding baseband equivalent model. However, such equivalent models
are complex-valued systems and, in this scenario, the conventional passivity constraints are not applicable any-
more. Hence, the passivity constraints for scattering parameters and state-space models of baseband equivalent
systems are presented, which are essential for time-domain simulations. Three suitable examples demonstrate the
feasibility, accuracy, and efficiency of the proposed method. © 2018 Chinese Laser Press
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1. INTRODUCTION

In recent years, silicon photonic devices and circuits have had
rapid development both in complexity and functionality thanks
to an increasingly mature manufacturing process. At the same
time, several computer-aided design (CAD) tools have emerged
both in academic and industrial areas to analyze the behavior of
silicon photonic designs.

Time-domain simulation of integrated photonic circuits is an
essential part in the design flow, since it gives the most intuitive
assessment of system performance. For some basic photonic com-
ponents, such as waveguides, time-domain simulations can be
analytically addressed because of the simple underlying physical
principles and equations. However, time-domain simulations can-
not be performed analytically when considering more complex
devices or effects caused by parasitic elements. In such scenarios,
different simulation techniques, such as finite-difference time-
domain (FDTD) [1], time-domain traveling wave (TDTW) [2,3],
the split-step method (SSM) [4], coupled mode theory (CMT)
[5], or convolution-based methods [6], operate on the compo-
nent or circuit level. However, a trade-off between efficiency
and accuracy has to be made when using these techniques [5].

In the electronic field, a similar problem holds for distrib-
uted devices, such as nonuniform transmission lines or micro-
strip filters, since no compact circuit models are readily
available for time-domain simulations [7]. A popular solution
is based on a frequency-domain system identification technique

named the vector fitting (VF) algorithm [8], which is able to
build stable and passive rational models of the scattering param-
eters of the devices under study. Then, these frequency-domain
models can be directly converted to an equivalent state-space
representation in the time domain. This technique is widely
applied for electronic systems, for example in Refs. [8–13].

Since the VF method is developed for linear, time-invariant,
passive systems and is based on their transfer function repre-
sentation (e.g., scattering parameters), it is immediately appli-
cable to passive photonic devices and circuits [14]. However,
compared to electronic systems, the frequency range of interest
for photonic systems is typically around [187,200] THz, cor-
responding to a wavelength range of [1.5,1.6] μm. Such a wide
range at high frequencies has a direct impact on the modeling
and simulation processes, which can become very time and/or
memory consuming.

To address this problem, a novel modeling method is pro-
posed in this paper, which is based on baseband equivalent
signal and system representation. In particular, the proposed
modeling approach computes an accurate baseband equivalent
state-space representation, starting from the scattering param-
eters of the photonic system under study evaluated at optical
frequencies. However, such an equivalent state-space model is
complex-valued and not physically realizable. Furthermore, the
stability and passivity constraints on scattering parameters and
state-space models of complex-valued systems, which are fun-
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damental properties for time-domain simulations, appear yet to
be missing in the literature. In this paper, we rigorously discuss
these conditions for the proposed baseband equivalent systems
based on the classic definitions of stability and passivity to val-
idate the feasibility of the proposed time-domain simulation
method. The proposed technique offers two main advantages:
(1) the modeling process is based on the scattering parameters,
which makes it a widely applicable method for generic linear
passive photonic components and circuits; (2) the state-space
representation is a continuous time-domain model, which can
be efficiently simulated in the time domain without involving
convolution, fast Fourier transform (FFT), or inverse fast
Fourier transform (IFFT), thereby making this method robust
and accurate.

The paper is organized as follows. Section 2 presents an
overview of the “standard” modeling approach based on the
VF algorithm, while Section 3 introduces the baseband equiv-
alent signals and systems and describes the novel proposed
modeling framework. The stability and passivity constraints
of such systems are discussed in Section 4. A practical guideline
for the application of the proposed modeling approach is given
in Section 5, while Section 6 validates the proposed method by
means of three pertinent numerical examples. Conclusions are
drawn in Section 7.

2. CONVENTIONAL STATE-SPACE MODELING
OF PHOTONIC SYSTEMS

In both electronics and photonics, the scattering matrix is
widely used to describe the behaviors of passive devices and
circuits

b�s� � S�s�a�s�, (1)

where s is the Laplace variable, a�s� and b�s� are the forward
wave and backward wave, respectively, and S�s� is the scattering
matrix of the system under study, which can be obtained
through simulations or measurements. The aim of the rational
modeling is to find a Laplace-domain model of Eq. (1) in a
pole-residue form as

S�s� �
XK
k�1

Rk

s − pk
�D, (2)

where D ∈ Rn×n,Rk ∈ Cn×n, k � 1,…,K , n and K being the
number of ports of the system under study and the number of
poles used to approximate the scattering parameters, respec-
tively. Typically, all the elements Sij�s� of the scattering matrix
representation in Eq. (2) use a common denominator polyno-
mial and pole set �p1, p2,…, pK �, where such poles are either
real quantities or complex conjugate pairs [8]. The identifica-
tion of poles pk and residue matrices Rk can be performed via
the VF algorithm [8,15–18], starting from a set of the scatter-
ing parameters under study obtained for sr � j2πf r with
r � 1,…,R.

However, it is important to note that the sign convention
ejwt is commonly used in the electronics field to represent the
incident and reflected waves in Eq. (1), while e−jwt is sometimes
adopted in the optics field [19,20]. Hence, the scattering matrix
defined with one sign convention is the complex conjugate of
the other. The VF algorithm is based on the assumption that

the sign convention ejwt is adopted, since it has been originally
developed for electromagnetic problems. In the case when e−jwt

is used to define the scattering parameters under study, a simple
solution is to apply the VF algorithm to the complex conjugate
of the scattering matrix.

Then, the rational model in Eq. (2) can be transformed to
state-space form by a simple rearrangement [17,21]

S�s� � C �sI − A�−1B �D, (3)

where A ∈ Cm×m, B ∈ Rm×n, C ∈ Cn×m, D ∈ Rn×n, m � nK ,
and I is the identity matrix in this paper. In particular, A is a
diagonal matrix with all the poles as diagonal elements, while C
contains all the residues, and they can be always converted to
real matrices as long as the poles and residues are real or com-
plex conjugate pairs [17].

Now, it is straightforward to convert Eq. (3) to an equivalent
state-space representation in the time domain [21] as�

dx�t�
dt � Ax�t� � Ba�t�
b�t� � Cx�t� �Da�t� , (4)

where x�t� ∈ Rm×1 is the state vector.
Note that fundamental properties for time-domain simula-

tions, such as the stability and passivity of models in Eq. (4),
must be assured [13]. While the stability of VF models can be
guaranteed by construction by means of suitable pole-flipping
schemes [8], their passivity can be checked and, eventually, en-
forced only after the rational model is computed by adopting
passivity enforcement techniques. Indeed, due to the unavoid-
able numerical approximations, the rational model computed
might be non-passive. Several robust passivity enforcement
methods have been proposed in the literature; see for example
Refs. [16–18]. Now, time-domain simulations can be carried
out by solving the first-order system of ordinary differential
equations (ODE) in Eq. (4) via suitable numerical techniques
[22,23]. These approaches iteratively solve Eq. (4) for a discrete
set of values of the time, which are chosen via suitable algo-
rithms (i.e., fixed or adaptive time-step). In particular, the com-
putational cost of solving Eq. (4) depends on three main
elements:

• the bandwidth of the signals considered, which define the
maximum time-step Δtmax that can be adopted: Δtmax must be
smaller than the highest frequency component of the signals
considered;

• the numerical technique adopted to solve Eq. (4);
• the number of poles K and of ports n of the system under

study, which directly determine the number of states m � nK .

The modeling technique described so far allows one to sim-
ulate any generic linear and passive system in the time or fre-
quency domain, and it has found extensive applications in
electronic engineering problems [8–13]. However, when it
comes to photonic circuits, one substantial difference arises
with respect to the electronic domain: the range of frequency
of interest is typically around [187, 200] THz, corresponding
to a wavelength of Ul � f �, or even higher frequencies for
shorter wavelengths. This has a major impact on the modeling
and simulation complexity of the approach described so far.
Indeed, a large number of poles K can be required to accurately
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model the scattering parameters in the chosen frequency range,
and the passivity enforcement phase can become computation-
ally prohibitive. Furthermore, the corresponding ODE in Eq. (4)
will have a large number of equations, and a small time-step (of
the order of femtoseconds) must be adopted to solve it.

In order to tackle these issues, a novel approach based on
baseband equivalent state-space models is proposed in this
contribution.

3. BASEBAND EQUIVALENT STATE-SPACE
MODELS FOR THE TIME-DOMAIN SIMULATION
OF PHOTONIC SYSTEMS

The basic concepts of baseband equivalent signals and systems
are first introduced in Section 3.A, given their importance in
the definition of the proposed modeling approach, which is de-
scribed in Section 3.B.

A. Baseband Equivalent Signals and Systems
The excitation signal of photonic systems is often an amplitude
and/or phase-modulated signal with optical carrier and elec-
tronic modulating signals, which can be written in the follow-
ing form:

u�t� � A�t� cos�2πf ct � ϕ�t��, (5)

where A�t� is the time-varying amplitude or envelope of the
modulated signal, and ϕ�t� is the time-varying phase. In elec-
tronics or radio-frequency (RF) applications, both A�t� and
ϕ�t� relate to electronic signals, such as voltage, current, or
electric field. In photonics, the optical carrier frequency f c
is much higher than the bandwidth of A�t� and ϕ�t�, given
that the wavelength of light is much smaller than that of
RF signals, so the representation in Eq. (5) is often called a
bandpass signal.

An analytic complex-valued representation of the real-
valued signal in Eq. (5), called the analytic signal, is introduced
here as [24]

ua�t� � u�t� � jH�u�t�� � A�t�ej�2πf c t�ϕ�t��, (6)

whereH�u�t�� is the Hilbert transform of u�t�. In the frequency
domain, Eq. (6) becomes

Ua�f � � 2U � f �Step� f �, (7)

where Ua�f � and U �f � are the Fourier transform of ua�t�
and u�t�, respectively, and Step� f � is a unit step function de-
fined by

Step�f � �
8<
:

1, f > 0,
1
2 , f � 0,
0, f < 0:

(8)

Now, the corresponding baseband equivalent signal of the
bandpass signal is defined as

ul �t� � ua�t�e−j2πf c � A�t�ejϕ�t�, (9)

Ul � f � � 2U �f � f c�Step�f � f c�, (10)

which can be considered as the complex envelope optical signal
representation and is widely used in photonics and optical fiber
communication. The relations between u�t�, H�u�t��, and
ul �t� in the time and frequency domains are [24]

u�t� � Re
�
ul �t�ej2πf c t

�
, (11)

H�u�t�� � Im
�
ul �t�ej2πf c t

�
, (12)

U � f � � 1

2
U �

l �−f − f c� �
1

2
Ul �f − f c�, (13)

where the superscript * denotes the complex conjugate op-
erator.

In the frequency domain, the concepts of analytic signal and
baseband equivalent signal are intuitive: U �f � has a symmetric
spectrum with respect to the positive and negative frequencies,
while Ua�f � has only a non-zero spectrum in the positive
frequencies around the carrier frequency; shifting the spectrum
of Ua�f � in the direction of the negative frequencies of f c [or
equivalently in the time domain by multiplying ua�t� with
e−j2πf c t ] leads to U l �f �. Such relations are illustrated in Fig. 1.

If a system with impulse response h�t� and frequency re-
sponse H � f � operates in the bandwidth BW around f c , sat-
isfying f c ≫ BW, then it can be considered as a bandpass
system. Now, the corresponding baseband equivalent system
can be defined by applying the same concepts described for
the baseband signals. Thanks to the relations among bandpass
signals and systems and their baseband equivalents, it can be
proven that the output signal of a bandpass system can be ana-
lytically recovered from the output of the corresponding base-
band system, as illustrated in Fig. 2. A detailed proof is given in
Appendix A.

It is important to remark that performing time-domain sim-
ulations of baseband equivalent systems allows one to efficiently
recover the corresponding bandpass signals, thus avoiding the

Fig. 1. Spectra of bandpass signal U �f �, analytic signal Ua� f �,
and baseband equivalent signal Ul � f �.

Bandpass Input Bandpass System Bandpass Output

Baseband 
Equivalent Input

Baseband 
Equivalent System

Baseband 
Equivalent Output

Fig. 2. Time-domain simulation of the bandpass system and base-
band equivalent system.
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expensive time-domain simulations of photonic systems at op-
tical frequencies.

B. Realization of Baseband Equivalent Signals and
Systems
Baseband equivalent signals ul �t� can be easily computed with
Eq. (9), where ul �t� can be a real (amplitude modulation) or a
complex signal (when both amplitude and phase modulation
are applied). For example, in the case of a quadrature amplitude
modulation (QAM), ul �t� can be expressed with respect to its
in-phase component I�t� � A�t� cos ϕ�t� and quadrature
component Q�t� � A�t� sin ϕ�t� as ul �t� � I�t� � jQ�t�.

Note that baseband equivalent signals and systems are
widely used in the simulation of communication systems to
simplify the modulation, demodulation, and filtering process
[24]. In such a scenario, continuous systems and signals are
often first sampled and defined as finite discrete sequences,
and then convolution, FFT, or IFFT are adopted for the
time-domain simulation of the discrete-time representations
of such signals and systems, which could lead to inaccurate
results [6].

In this section, the goal is to build stable and passive con-
tinuous models for baseband equivalent systems in state-space
form, whose time-domain simulation can also capture transient
behaviors. However, a readily baseband counterpart for Eq. (4)
does not exist in the literature. Indeed, baseband systems have
an asymmetric frequency response with respect to the positive
and negative frequencies [similar to Ul �f � in Fig. 1] resulting
in a non-physical, complex valued system, as described in detail
in Appendix A. The VF algorithm [8] is a technique developed
for physical systems with a symmetric frequency response,
which can be described with real or complex conjugate poles:
this situation clearly does not hold for baseband systems, and
VF cannot be directly applied to the baseband response of the
system under study.

In order to reach our goal, the first step is to express a�t�,
b�t�, and x�t� in the system of ODE from Eq. (4) in the form
from Eq. (11), which gives
�

Re dxl �t�ej2πf c t
dt � ARe�x l �t�ej2πf c t � � BRe�al �t�ej2πf c t �,

Re�bl �t�ej2πf c t � � CRe�x l �t�ej2πf c t � �DRe�al �t�ej2πf c t �,
(14)

where al �t�, bl �t�, and xl �t� are the baseband equivalents of
a�t�, b�t�, and x�t�, respectively. Next, using the Hilbert trans-
form and the relation from Eq. (12) to represent a�t�, b�t�, and
x�t� in Eq. (4) leads to
�

Im dx l �t�ej2πf c t
dt � AIm�x l �t�ej2πf c t � � BIm�al �t�ej2πf c t �,

Im�bl �t�ej2πf c t � � C Im�x l �t�ej2πf c t � �DIm�al �t�ej2πf c t �:
(15)

Equations (14) and (15) allow us to write
�

dx l �t�ej2πf c t
dt � Ax l �t�ej2πf c t � Bal �t�ej2πf c t ,

bl �t�ej2πf c t � Cx l �t�ej2πf c t �Dal �t�ej2πf c t :
(16)

After simple mathematical manipulations, Eq. (16) can be
written as

�
dxl �t�
dt � �A − j2πf cI �x l �t� � Bal �t�,

bl �t� � Cx l �t� �Dal �t�,
(17)

which represents a realization of the baseband equivalent sys-
tem by means of the state-space matrices A − j2πf cI , B, C , and
D; in this contribution we define it as baseband state-space
model. It is evident that such a model can be obtained by di-
rectly shifting all the poles of the corresponding state-space
model from Eq. (4) of bandpass system by j2πf c, considering
that A is a diagonal complex-valued matrix with all the poles as
diagonal elements, as mentioned in Section 2.

It is important to remark upon one difference between the
representation in Eq. (17) and the definition of baseband sys-
tems: in Eq. (17), the entire frequency response of the system
under study is shifted in the baseband, while for the baseband
system introduced in Section 3.A, only the frequency response
at positive frequencies is shifted in the baseband. However, in
Appendix B it is rigorously proven that these two representa-
tions are equivalent in terms of time-domain simulations.
Hence, in the rest of the contribution, the expression “base-
band equivalent system” does not refer to the classic definition
given in Section 3.A and Appendix A, but to the new proposed
baseband equivalent “shifted” system, where the entire fre-
quency response of the system under study is shifted in the
baseband.

A similar realization of baseband equivalent systems in the
frequency domain, computed by shifting the poles of the trans-
fer function of the corresponding bandpass system by j2πfc, has
been presented in the electronic domain in Refs. [24,25], but
the derivation is not given. Note that the time-domain simu-
lation methods in Refs. [24,25] are substantially different from
the one presented here. In Ref. [24], once the transfer function
of the baseband equivalent system is obtained, it is first sampled
and converted to an equivalent discrete system, and then the
discrete impulse response is calculated via IFFT. Finally, the
time-domain behavior of the baseband equivalent system is si-
mulated by convolution. In Ref. [25], first the inverse Laplace
transform is adopted to analytically convert the baseband equiv-
alent transfer function to a continuous impulse response, then
a recursive convolution technique is used to perform time-
domain simulations. In contrast, the time-domain simulation
method presented in this paper directly solves the correspond-
ing ODE, which is more straightforward. However, it is crucial
to prove that fundamental properties for time-domain simula-
tions, such as stability and passivity [13], still hold for the pro-
posed baseband equivalent state-space representation.

4. PASSIVITY OF THE BASEBAND EQUIVALENT
SYSTEM

The poles and residues of rational models of electronic and pho-
tonic systems are always real or complex conjugate pairs, as dis-
cussed in Section 2. However, for the baseband equivalent
state-space model in Eq. (17), the poles do not follow this rule
anymore; furthermore, the corresponding frequency response is
not symmetrical with respect to positive and negative frequen-
cies, which makes the baseband equivalent system a non-
physical, complex-valued system. Finally, the most remarkable
difference with respect to bandpass systems is that the impulse
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response of these baseband equivalent systems is not real, and
with a real input, they can generate a complex output.

Then, it is important to verify if such linear, time-invariant
complex-valued systems still comply with the passivity condi-
tions of “conventional” real-valued systems, which are listed as
follows [26]:

(1) Each element of S�s� is analytic in Re�s� > 0;
(2) I − SH �s�S�s� is a nonnegative-definite matrix for all s

such that Re�s� > 0;
(3) S��s� � S�s��.
The superscript H stands for the transpose conjugate oper-

ator. The first condition is related to causality and stability; the
second one is basically a bound for S�s�; the third ensures that
the associated impulse response is real, which requires the sys-
tem to be real-valued [27]. Evidently, the third condition is not
suitable for complex-valued systems anymore. In this section,
the passivity constraints for scattering parameters of baseband
equivalent systems will be proposed, and a fast assessment of
the passivity of the corresponding baseband equivalent
state-space model will be presented.

A. Passivity Constraints on Scattering Parameters of
Baseband Equivalent Systems
According to Refs. [26,28,29], an n-port electronic system is
passive if, for any τ > −∞ and v�t� ∈ L2n (L2n denotes the
space of all vectors whose n components are functions of a real
variable t and square integrable over −∞ < t < ∞), it holds

Re

Z
τ

−∞
vH �t�i�t�dt ≥ 0, (18)

where v�t� and i�t� are the voltage and current at the system
ports, respectivle. It is important to note that this definition is
given not only for real signals but also for complex ones. By
expressing Eq. (18) in terms of the forward a�t� and backward
b�t� waves, the passivity definition becomes [26,30,31]Z

τ

−∞
aH �t�a�t� − bH �t�b�t�dt ≥ 0, (19)

which is more convenient for describing photonic systems.
Following the same proof process as Ref. [26], particularly

Theorem 2 and Theorem 3, the first and second passivity con-
ditions can be derived from Eq. (19) for the complex-valued
systems studied in this paper. Alternatively, the same conclusion
can be obtained via the approach in Chapter II of Ref. [30],
which gave simpler formal proofs using the theory of distribu-
tions. The interested reader may consult Refs. [26,30] for a de-
tailed and comprehensive proof.

Therefore, in this paper, we propose the following passivity
constraints on the scattering parameters Ŝ l �s� of the baseband
equivalent systems:

(1) Ŝ l �s� is analytic in Re�s� > 0;
(2) I − ŜH

l �s�Ŝ l �s� is a nonnegative-definite matrix for all s
such that Re�s� > 0.

Note that real-valued systems need the extra condition
S�s�� � S��s�, which ensures that the impulse response is real,
so that a real input results in a real output and makes the system
physically realizable. Furthermore, it is clearly mentioned in

Section 4 of Ref. [26] that this requirement is independent with
respect to the passivity definition in Eqs. (18) and (19). There-
fore, this is evidently not required for the passivity of complex-
valued systems, which are proposed only for simulation purposes.

B. Fast Passivity Assessment of Baseband
Equivalent Systems
Passivity conditions require both scattering parameters S�s� and
their baseband equivalent Ŝ l �s� to be bounded by unity, which
implies that all singular values σ of Ŝ l �s� are smaller than unity
at all frequencies

σi� f � < 1, i � 1,…, n: (20)

An efficient and accurate method to assess the passivity
properties of state-space models of electronic and photonic sys-
tems is based on the Hamiltonian matrix M [17], defined as

M �
�
A − BL−1DTC −BL−1BT

CTQ−1C −AT � CTDL−1BT

�
, (21)

where A, B, C , D are the state-space matrices in Eq. (4), while
L � DTD − I and Q � DDT − I .

A state-space model is passive if its Hamiltonian matrix has no
purely imaginary eigenvalues, since any imaginary eigenvalue in-
dicates a crossover frequency where a singular value changes from
being smaller to larger than unity, or vice versa. This approach is
more reliable and efficient than sweeping the singular values over
a set of discrete frequencies, especially for photonic systems,
which are defined over a large frequency range.

A similar Hamiltonian matrix M̂ l for baseband equivalent
systems Ŝ l �s� can be derived by following the procedure in
Ref. [17], leading to

M l �
�
Âl − B̂ lL−1

l D̂H
l C l −B̂ lL−1

l B̂H
l

ĈH
l Q−1

l Ĉ l −ÂH
l � ĈH

l D̂lL−1
l B̂H

l

�
, (22)

where Âl , B̂l , Ĉ l , D̂l are the complex-valued baseband equiv-
alent state-space matrices, while L̂l � D̂H

l D̂l − I and Q̂ l �
D̂l D̂

H
l − I . The derivation of M̂ l is shown in Appendix C.

One can observe that the only difference between M and
M̂ l is the use of the transpose conjugate operator for the
state-space matrices in M l , while only the transpose operator
is required in M . Indeed, state-space models of general elec-
tronic or photonic systems satisfy the conjugacy property
S��s� � S�s��; the corresponding scattering parameters do
not change if the state-space matrices A, B, C , D are replaced
with their conjugate counterparts [17]. Evidently, this is not
valid for the baseband equivalent systems.

Note that the eigenvalues of Eq. (22) can be obtained di-
rectly from the eigenvalues of the corresponding bandpass sys-
tem from Eq. (21). According to Eq. (17), replacing Âl , B̂ l , Ĉ l ,
D̂l in Eq. (22) with

Âl � A − j2πf cI , B̂l � B, Ĉ l � C , D̂l � D

gives

M̂ l � M − j2πf cI , (23)

whereM is the Hamiltonian matrix of the corresponding band-
pass system. Then it is easy to derive (see Appendix C)

λ̂zl � λz − j2πf c , for z � 1,…,Z , (24)
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where Z is the total number of eigenvalues, while λz and λ̂zl are
the eigenvalues of M and M l , respectively.

Hence, the following properties hold:

• If there are passivity violations in a bandpass state-space
model, the corresponding baseband equivalent system from
Eq. (17) is not passive either.

• There is an one-to-one correspondence between the
frequencies where passivity violations occur in the state-space
models of the bandpass and corresponding baseband equivalent.

• The passivity of baseband equivalent state-space models
from Eq. (17) can be guaranteed by applying a “standard” pas-
sivity enforcement algorithm [18,32], to the corresponding
state-space models of the bandpass systems.

5. PROPOSED MODELING FRAMEWORK OF
THE PHOTONIC SYSTEM FOR TIME-DOMAIN
SIMULATIONS

The signals traveling through photonic systems are usually phase-
and/or amplitude-modulated signals over a suitable optical carrier.
The modulating signals are electronic ones, whose spectrum band-
width is normally less than a few hundred gigahertz, while the
carrier frequency is usually defined in the range [187.5,200] THz,
corresponding to a wavelength range of [1.5,1.6] μm.

The proposed modeling approach starts from evaluating the
scattering parameters of the photonic system under study in the
frequency range of interest. Next, an accurate rational model is
computed via the VF algorithm. Stability is enforced during the
model-building phase via suitable pole-flipping schemes [8],
while the model passivity is checked and, eventually, enforced
as a post-processing step via robust passivity enforcement meth-
ods [18,32]. A baseband equivalent state-space representation
from Eq. (17) can now be obtained with guaranteed passivity
by Eq. (24). Such a model can be used to efficiently perform
time-domain simulations. The flow chart of the proposed mod-
eling framework is shown in Fig. 3.

In particular, when it comes to building state-space models
of photonic systems for time-domain simulations, there are two
options:

(1) modeling the frequency range of interest, e.g.,
[187.5,200] THz, noted as Model A (covering a large fre-
quency range);

(2) considering only the frequency range corresponding to
the spectrum of the optical input signals under study around
the carrier frequency, normally a few hundred gigahertz, noted
as Model B (covering a small frequency range).

The corresponding baseband equivalent state-space models
are indicated as Model LA and Model LB, respectively. The
modeling frequency ranges of these four models are illustrated
in Fig. 4 when assuming that f c � 193 THz and the spec-
trum of the optical input signal of interest is 300 GHz. Note
that Model A and Model B can also be used directly to
evaluate the behavior of the chosen photonic system in the
time domain: such modeling strategies follow the approach
outlined in Section 2.

Note that Models A and LA are likely to require more
poles as compared to Models B and LB, since they are com-
puted over a larger bandwidth; the modeling complexity is
higher and the corresponding system of ODE will be larger.
If the scattering parameters under study are very dynamic
in the range [187.5,200] THz, the modeling process can be-
come prohibitively expensive, making it practically infeasible
to build accurate, stable, and passive models. However, this
approach offers more flexibility since the corresponding mod-
els can be used for any value of the carrier frequency in the
frequency range [187.5,200] THz, while Models B and LB
must be constructed anew for each value of the carrier fre-
quency considered.

It is important to note that both Models LA and LB operate
at baseband, which means that a relatively large time step can
be used to solve the corresponding ODE for time-domain sim-
ulation, thereby saving both computational time and memory
storage. Table 1 compares the advantages and disadvantages of
different approaches considered during the model-building and
time-domain simulation process.

Finally, no matter which model is used for the time-domain
simulation, the modeling frequency range must be larger than
or at least equal to the frequency range of the input signals con-
sidered. Indeed, no information on the scattering parameters’
behavior outside such a modeling frequency range is provided
to the VF algorithm: the model obtained via the VF approach
extrapolates the scattering parameters outside the modeling fre-
quency range. Hence, while the state-space model computed is
stable and passive at �0,∞� Hz, it is not possible to guarantee its
accuracy outside the modeling frequency range. Therefore, if
the input signal is noisy, the spectrum of the noise should also
be considered during the model-building phase.

Evaluation of scattering matrix

VF

Shifting poles by 

Stable and passive state-space model of    

Baseband equivalent state-space model

( )rsS 1, ,r R=

( )sS

2 cj fπ

Time-domain simulation

ODE solverBaseband equivalent inputs

Fig. 3. Flow chart of the proposed modeling framework for the
time-domain simulation of photonic systems.
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Fig. 4. Frequency ranges of Models A, LA, B, and LB.

Table 1. Comparison of Different Modeling Strategies

Model Compact Flexible Simulation at Baseband

Model A ×
p

×
Model B

p
× ×

Model LA ×
p p

Model LB
p

×
p
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6. NUMERICAL EXAMPLE

This section presents three application examples of the pro-
posed modeling and simulation technique. The scattering
parameters of the photonic systems under study are evaluated
via Caphe [33], while the time-domain simulations are carried
out in MATLAB [34] via the routine lsim on a personal
computer with Intel Core i3 processor and 8 GB RAM.

A. Mach–Zehnder Interferometer
In this example, the Mach–Zehnder interferometer (MZI)
shown in Fig. 5 is studied, which is formed by two identical
directional couplers (with coupling coefficient 50/50) and two
waveguides with lengths 150 μm (upper one) and 100 μm (lower
one). Both waveguides have effective index 2.35 and group index
4.3 at 1.55 μm and a propagation loss of 200 dB/m. The time-
domain simulation is carried out with the conventional modeling
technique (in Section 2) and the proposed baseband equivalent
modeling approach. For comparison, an analytic model for the
MZI is also built by considering the loss and dispersion of the
waveguides. The directional coupler is assumed to be an ideal
signal splitter or combiner, which adds a π∕2 phase delay to
the cross-coupled signals. The time-domain simulation of this
analytical model is conducted as a benchmark.

The modulating signal is a smooth pulse with amplitude
1 V, a rise/fall time of 5.7 ps, width of 32 ps, initial delay
of 18 ps, and a spectrum bandwidth of 100 GHz. An optical
carrier of frequency f c � 193.72 THz, which is chosen at ran-
dom in the frequency range [187.5,200] THz, is used to trans-
mit the modulated signal through the MZI. Both the
modulated signal at optical frequencies and the smooth pulse
are shown in Fig. 6.

Model A is built starting from the MZI scattering param-
eters in the range [187.5,200] THz, while Model B requires
only the scattering parameters in �f c − Δ, f c � Δ�, where the
choice Δ � 150 GHz allows one to cover the entire spectrum
of the modulated optical signal. In particular, first the frequency
samples have been divided in two groups: one to compute the
desired rational model (modeling data) and the other to verify
its accuracy (validation data). Then Models A and B are built
via the VF algorithm with 67 poles and 8 poles, respectively,
aiming at a maximum absolute error of less than −60 dB be-
tween the model and MZI scattering parameters. Finally,
Models LA and LB can be derived analytically from Models A
and B, as shown in Section 3.B. The accuracy of Models A and
LB in the frequency-domain is shown in Figs. 7 and 8, respec-
tively, which show both the magnitude and the phase of the

P2 P4

P3P1

Fig. 5. Example MZI. The geometric structure of the MZI under
study.

Fig. 6. Example MZI. The electronic signal and amplitude modu-
lated optical signal for the MZI.
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Fig. 7. Example MZI. Comparison of the magnitude (top) and
phase (bottom) of the MZI scattering parameters extracted via
Caphe (full blue line) and Model A (red dashed line), where the green
dots represent the corresponding absolute error.

-100 0 100

Frequency (GHz)

-100

-50

0

M
ag

ni
tu

de
 (

dB
)

-100 0 100

Frequency (GHz)

-1

0

1

2

P
ha

se
 (

ra
d)

S13

S14

S14

S13

Fig. 8. Example MZI. Comparison of the magnitude (left) and
phase (right) of the MZI scattering parameters extracted via Caphe
(full blue line) and Model LB (red dashed line), where the green dots
represent the corresponding absolute error.
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MZI scattering parameters obtained by Caphe and by the cor-
responding state-space models.

Time-domain simulations are carried out with all four mod-
els considered; while for Models A and B a time step of 0.23 fs
is adopted, a time step of 0.4 ps can be used for Models LA and
LB. Meanwhile, time-domain simulation of the analytic model
built according to the underlying physical principle of the MZI
is performed in Caphe to validate the accuracy of the other
models. The outputs at port P3 of Model A, Model LB,
and the analytic model are shown in Fig. 9. According to
Section 3, the magnitude of the outputs of Model LB is the
envelope of the output of Model A, and this fact is exactly illus-
trated by Fig. 9. In addition, it is easy to observe that the output
of Model LB accurately matches the analytic model prediction.

The time for model building and time-domain simulation
for all the different models is presented in Table 2. It clearly
shows that modeling only the small frequency range
(Models B and LB) rather than the large frequency range
(Models A and LA) consumes far less time and results in com-
pact models. Note that the time-domain simulation at base-
band with compact models, such as Model LB, is the most
efficient, which is consistent with the analysis in Section 5.

Finally, the following test illustrates the importance of
choosing the correct modeling frequency range, as mentioned

in Section 5. Let us assume an electronic pulse signal with
width of 1 ps and spectrum in the range [0,6] THz as the input
signal of Models LA and LB of the MZI. The corresponding
output at port P3 is shown in Fig. 10: Model LA still gives very
accurate results compared to the analytic model, while the out-
put of Model LB is not even close to the benchmark. The rea-
son is that the modeling frequency range (12.5 THz) of Model
LA covers the spectrum of the input signal, but this does not
hold for Model LB.

B. Ring Resonator
In this example, a double ring resonator (RR) is composed of
two rings and two waveguides and designed as a narrowband
flat-top filter, as shown in Fig. 11. The two rings have different
circumferences of 20 μm (lower one) and 20.01 μm (upper
one), resulting in slightly different R1 and R2. The ring wave-
guides and bus waveguides have effective index 2.35 and group
index 4.3 at wavelength 1.55 μm. The coupling coefficient
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Fig. 9. Example MZI. The output at port P3 of the MZI, where the
red line is the absolute value of the complex signal obtained by the
time-domain simulation of Model LB, the blue line is the correspond-
ing signal from Model A, and the marker × denotes the same signal
from the analytic model.

Table 2. Example MZIa

Model Time Step
Poles

Number
Model
Building

Time-Domain
Simulation

Model A 0.23 fs 67 2.10 s 35.66 s
Model B 0.23 fs 8 0.028 s 2.16 s
Model LA 0.4 ps 67 2.10 s 0.49 s
Model LB 0.4 ps 8 0.028 s 0.024 s

aEfficiency comparison of the different modeling strategies.

Time (ps)

0 1 2 3 4 5 6 7 8

A
m

pl
itu

de

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Electronic Input Signal
Analytic Model
Model LA
Model LB

Fig. 10. Example MZI. Time-domain simulation of Models LA
and LB with very narrow pulse input signal. The black line is the elec-
tronic input signal, the red solid line is the output at port P3 of the
analytic model, and the blue dashed line and green dotted line indicate
the outputs at the same port of Models LA and LB, respectively.
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Fig. 11. Example RR. The geometric structure of the double ring
resonator.
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between waveguides and rings is 0.2, while the same parameter
between two rings is 0.03.

First, Model A of the ring resonator is built in the range
[187.5,200] THz with 22 poles, while Model B is computed
with 6 poles in the range �f c − Δ, f c � Δ�, with f c �
195.75 THz and Δ � 450 GHz. The maximum absolute
error of both models is less than −65 dB. Next, Model LB
is directly derived by shifting the poles of Model B.
Figures 12 and 13 describe the frequency-domain accuracy
for Models A and LB, respectively.

In this example, a 4-QAM (quadrature phase-shift keying)
modulated input signal is used for time-domain simulations.
The in-phase I and quadrature Q parts of the modulating signal
are the 4-bit sequences (−1, −1, 1, 1) and (−1, 1, −1, 1), re-
spectively, where each bit lasts for 20 ps. As shown in
Fig. 14, the modulating signals are realistic analog signals,
for example, affected by overshoot and undershoot. As men-
tioned in Section 3.B, the baseband equivalent of the modu-
lated input signal can be easily calculated, since I and Q are its
real and imaginary parts, respectively.

After conducting the proposed time-domain simulation, the
outputs of Model LB are complex, and their magnitude are the
envelopes of the outputs of Model A as shown in Fig. 15. Note
that the outputs of Model A can be analytically recovered from
the outputs of Model LB, according to Eq. (B3). Hence,
Fig. 16 shows a side-by-side comparison of the output of
Model A at port P4 and the corresponding value recovered
from Model LB. For a better observation of the accuracy of
the recovered signal, Fig. 17 shows a zoom of Fig. 16 around
t � 45.6 ps, which demonstrates an excellent agreement.

As far as the computational time is concerned, building the
Models A and LB required 0.28 s and 0.04 s, respectively, while
their time-domain simulations took 9.29 s and 0.05 s, respec-
tively, which clearly demonstrates the superior efficiency of the
proposed technique when dealing with amplitude- and phase-
modulated signals.
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Fig. 12. Example RR. Comparison of the magnitude (top) and
phase (bottom) of the ring resonator scattering parameters extracted
via Caphe (full blue line) and Model A (red dashed line), where
the green dots represent the corresponding absolute error.
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Fig. 13. Example RR. Comparison of the magnitude (left) and
phase (right) of the ring resonator scattering parameters extracted
via Caphe (full blue line) and Model LB (red dashed line), where
the green dots represent the corresponding absolute error.
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Fig. 14. Example RR. The modulating signals: in-phase part I and
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obtained by the time-domain simulation of Model LB, and the blue
line is the corresponding signal from Model A.

568 Vol. 6, No. 6 / June 2018 / Photonics Research Research Article



C. Lattice Filter
A fifth-order filter with a Chebyshev window, designed by us-
ing a discrete finite impulse response (FIR) filter design method
[35], is realized via an MZI lattice filter (LF) [36]. As illustrated
in Fig. 18, it is formed by six directional couplers with power
coupling coefficients of 0.008, 0.067, 0.175, 0.175, 0.067, and
0.008, and waveguides with a length difference of 179 μm be-
tween the upper and lower ones, whose effective and group
indices are 2.30 and 4.18, respectively. In practice, due to proc-
ess variations, when manufacturing photonic devices, geomet-
rical or optical parameters can vary in a relatively small range
around their nominal value [37], which in turn can lead to var-
iations in the device frequency response, such as frequency
shifts. In this example, we study the time-domain influence

of frequency shifts in the response of the lattice filter via an
eye diagram analysis.

For eye diagram analysis, the input signal and time-domain
simulation should last a relatively long period of time (long bits
sequence), which could make the time-domain simulation of
Models A and B unfeasible. In this example, a pseudo-random
sequence of 1000 bits with a bit time of 30 ps and a Gaussian
jitter having a standard deviation of 1.5 ps is used as modulat-
ing signal A�t�. The amplitude of the signal up to 1 ns is shown
in Fig. 19. The total number of time steps required for time-
domain simulations of Models A and B with such an input
signal is 60 million (30 ns/0.5 fs), while this number reduces
to only 30000 time-steps (30 ns/1 ps) for Models LA and LB.

The scattering matrices of the lattice filter are computed in
the range [187.5,200] THz. However, due to the dynamic
behavior of the filter frequency response in such a wide band-
width, the modeling complexity of Model A (LA) is very high.
Considering that the efficiency and accuracy of Model LB have

Fig. 16. Example RR. The output at port P4 of the double ring
resonator. Left: the output of Model A. Right: the recovered bandpass
output from Model LB.
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ble ring resonator around t � 45.6 ps (the green rectangular area in
Fig. 16). The blue line is used for Model A, while the red dash line is
the recovered bandpass output from Model LB.

P2 P4

P3P1

Fig. 18. Example LF. The geometric structure of the MZI
lattice filter.
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Fig. 19. Example LF. Pseudo-random sequence of 1000 bits for
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of the lattice filter due to the tolerances of the manufacturing process.
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been already demonstrated in Sections 6.A and 6.B, only the
time-domain simulation of Model LB is performed.

The sequence signal is modulated on f c � 195.11 THz
(λ � 1.5365 μm), which is chosen as the filter passband center
frequency during the design phase. Due to manufacturing
tolerances, let us assume that the center frequency can shift
to 195.05 THz (λ � 1.5370 μm) or 194.98 THz (λ �
1.5375 μm), as shown in Fig. 20. Model LB is built for each
one of these three situations by adopting a pole shift of
f c � 195.11 THz, since the excitation signal is modulated
on this frequency. In particular, the models for the three
wavelengths considered are built with 36 poles, achieving a
maximum absolute error of −60 dB.

Then, the time-domain simulations can be easily carried out
at the baseband with the pseudo-random sequence of 1000
bits. Figure 21 shows the eye diagram of the power of the com-
plex output signals at port P4 of the three baseband equivalent
systems over a two-bit span resulting from the entire 1000-bit
input stream. It is evident that the signal is completely distorted
when the center frequency shifts from 195.11 to 194.98 THz.
The computational time of the time-domain simulation for
generating each eye diagram is 1.09 s, while building each
model took 1.67 s, which is very efficient. This example shows
that expensive time-domain simulations can be efficiently per-
formed via the proposed technique without a loss in accuracy.

7. CONCLUSION

A novel modeling and simulation technique for passive pho-
tonic components and circuits that is flexible, efficient, accu-
rate, and robust has been proposed in this paper,. Photonics
systems can be characterized by the proposed baseband equiv-
alent state-space models via the robust VF algorithm, which
allows for the time-domain simulations to be conducted at
the baseband rather than at the optical carrier frequency.
The outputs of photonic systems can be immediately recovered
from the outputs of the corresponding baseband equivalent
models, thereby significantly decreasing the simulation time
and memory usage. The passivity conditions of the proposed
baseband equivalent systems are rigorously discussed, and a fast
passivity assessment method for the corresponding state-space
models is presented in this paper. The accuracy and efficiency

of the proposed approach are verified by three suitable numeri-
cal examples.

APPENDIX A: TIME-DOMAIN SIMULATION OF
BASEBAND EQUIVALENT SIGNALS AND
SYSTEMS

If a system with impulse response h�t� and frequency response
H � f � operates in the bandwidth BW around f c , satisfying
f c ≫ BW, then it can be considered as a bandpass system.
Now, in a similar manner as with the baseband equivalent sig-
nal, a baseband equivalent system with impulse response hl �t�
and frequency response Hl � f � can be defined as [24]

hl �t� �
1

2
ha�t�e−j2πf c , (A1)

Hl � f � � H �f � f c�Step�f � f c�, (A2)

where ha�t� is the analytic signal of h�t� and is defined in the
same way as Eq. (6).

Compared with the definition of baseband equivalent sig-
nals, a factor 1/2 is introduced into the definition of baseband
equivalent systems [24]. Again, the relations between h�t�,
H�h�t��, and hl �t� in the time and frequency domains are

h�t� � 2Re�hl �t�ej2πf c t �, (A3)

H�h�t�� � 2Im�hl �t�ej2πf c t �, (A4)

H �f � � H�
l �−f − f c� �Hl �f − f c�: (A5)

It is important to note that baseband equivalent signals and
systems are not physical, but constitute a mathematical represen-
tation developed only for simplifying analysis and simulation of
bandpass signals and systems, as discussed in the following.

Let us assume that the bandpass input signal, system, and
output are u�t�, h�t�, and r�t�, respectively, while their
corresponding Fourier transforms are indicated as U �f �,
H � f �, and R� f �. Then, the following relations hold:

r�t� � h�t� ⊗ u�t�, R�f � � H �f �U � f �, (A6)

where ⊗ represents the convolution operator. Now, the corre-
sponding baseband equivalents of the input signal and system
are ul �t�, hl �t�,Ul � f �,Hl �f �. Hence, the output signal of the
baseband equivalent system can be defined as

Fig. 21. Example LF. The eye diagrams at port P4 of the baseband equivalent systems of the lattice filter with passband center frequency 195.11,
195.05, and 194.98 THz (from left to right).
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rl �t� � hl �t� ⊗ ul �t�, Rl �f � � Hl � f �U l �f �: (A7)

In the following, it is proven that the output of the baseband
equivalent system rl �t�, Rl �f � and the output of the bandpass
system r�t�, R�f � have the same relations as the baseband
equivalent and bandpass signals [see Eqs. (11) and (13)].
Indeed, starting from Eqs. (A6) and (A7), the following
relations can be derived [24]:

R�f ��F �r�t���H �f �U �f �

� 1

2
�Hl �f − f c��H�

l �−f − f c���Ul �f − f c�
�U �

l �−f − f c��

� 1

2
�Hl �f − f c�Ul �f − f c��H�

l �−f − f c�U �
l �−f − f c��

� 1

2
�Rl �f − f c��R�

l �−f − f c��

� 1

2
F �rl �t�ej2πf c t � r�l �t�e−j2πf c t �

�FfRe�rl �t�ej2πf c t �g, (A8)

where the symbol F represents the Fourier transform operator.
Equation (A8) clearly demonstrates that rl �t� is the complex
envelope of the bandpass system output; r�t� can be immedi-
ately obtained from rl �t� [24].

APPENDIX B: BASEBAND EQUIVALENT
“SHIFTED” SYSTEM

In the following, we prove that the baseband equivalent
“shifted” system represented by Eq. (17) is equivalent to the
based equivalent system hl �t� in Eq. (A1), in the sense of
time-domain simulations.

According to Section 3.B, the transfer function Ĥ l � f � and
impulse response ĥl �t� of the proposed baseband equivalent
state-space model from Eq. (17) can be described as

Ĥ l � f � � H �f � f c� � Hl �f � 2f c� �Hl �f �, (B1)

ĥl �t� � h�t�e−j2πf c t , (B2)

since it is obtained by shifting all the poles of the corresponding
state-space model of a bandpass system by j2πf c, considering
that A is a diagonal complex-valued matrix with all the poles as
diagonal elements.

By comparing the results obtained in Eqs. (B1) and (B2) to
the baseband equivalent system definition given in Eqs. (A1)
and (A2), one difference is clear: only the frequency response
of H �f � at positive frequencies is shifted by f c in the defini-
tions Eqs. (A1) and (A2), while in Eqs. (B1) and (B2) the entire
frequency response of the bandpass system considered is
shifted. This difference is illustrated in Fig. 22.

Then it is proven that the relation in Eq. (A8) still holds for
baseband equivalent “shifted” systems calculated by means of
Eqs. (B1) and (B2). Indeed, the output signals of the bandpass
system in the frequency-domain can be written as

R� f ��F �r�t���H �f �U �f �

�1

2
Ĥ l �f −f c��Ul �f −f c��U �

l �−f −f c��

�1

2
�Ĥ l �f −f c�Ul �f −f c��Ĥ�

l �−f −f c�U �
l �−f −f c��

�1

2
�Hl �f −f c�Ul �f −f c��H�

l �−f −f c�U �
l �−f −f c��

�1

2
�Rl �f −f c��R�

l �−f −f c��

�1

2
F �rl �t�ej2πf c t� r�l �t�e−j2πf c t �

�F fRe�rl �t�ej2πf c t �g, (B3)

where

H �f � � Ĥ l �f − f c�,
H �f � � H��−f �,

Ĥ l �f − f c� � Ĥ�
l �−f − f c�, (B4)

Ĥ l �f − f c�Ul �f − f c� � Hl �f − f c�U l �f − f c�,
Ĥ�

l �−f − f c�U �
l �−f − f c� � H�

l �−f − f c�U �
l �−f − f c�:

(B5)

Note that Eq. (B5) holds because Ĥ l �f − f c� and
Ĥ�

l �−f − f c� have a non-zero frequency response at both
positive and negative frequencies, while U l �f − f c� and
U �

l �−f − f c� have a non-zero frequency response only at pos-
itive and negative frequencies, respectively.

Finally, Eq. (B3) demonstrates that the state-space represen-
tation from Eq. (17) of the baseband equivalent “shifted” system
can effectively be used to replace the expensive time-domain
simulations of the bandpass system.

APPENDIX C: HAMILTONIAN MATRIX OF
BANDPASS EQUIVALENT SYSTEM

Following the procedure in Ref. [17] and assuming that Ŝ l �s�
is the scattering matrix of a baseband equivalent system,
such a system is switching from a non-passive to a passive state

Fig. 22. Spectra of bandpass system H �f �, baseband equivalent
system Hl �f �, and baseband equivalent “shifted” system Ĥ l �f �.
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(or the other way around) at the frequencies where
I − ŜH

l �s�Ŝ l �s� � 0. To identify these frequencies, with input
jul j ≠ 0, we write

wl � �I − ŜH
l �s�Ŝ l �s��ul � 0, (C1)

yl1 � Ŝ l �s�ul , (C2)

yl2 � ŜH
l �s�yl1, (C3)

wl � ul − yl2 � 0: (C4)

Let us assume that Ŝ l �s� has state-space parameters Âl , B̂l ,
Ĉ l , D̂l ; while Â

H
l , Ĉ

H
l , B̂

H
l , D̂

H
l are the state-space parameters

of ŜH
l �s�. Then, Eqs. (C2) and (C3) can be written in the form

jωx l1 � Âlx l1 � B̂ lul , (C5)

yl1 � Ĉ lx l1 �Dlul ; (C6)

−jωx l2 � ÂH
l x l2 � ĈH

l yl1, (C7)

yl2 � B̂H
l x l2 � D̂H

l yl1; (C8)

which can be simplified as

jω
�
x l1
x̂ l2

�
�

�
Âl 0

−ĈH
l Ĉ l −ÂH

l

��
x l1
x l2

�
�
�

B̂l

−ĈH
l D̂l

�
ul , (C9)

�
D̂H

l Ĉ l B̂H
l

�� x l1
x l2

�
� �I − D̂H

l D̂l �ul : (C10)

Combining Eqs. (C9) and (C10) leads to

jω
�
x l1
x l2

�
�

�
Âl − B̂lL−1

l D̂H
l Ĉ l −B̂lL−1

l B̂H
l

ĈH
l Q−1

l Ĉ l −ÂH
l � ĈH

l D̂lL−1
l B̂H

l

��
x l1
x l2

�
,

(C11)

where

L̂l � D̂H
l D̂l − I , (C12)

Q̂ l � D̂l D̂
H
l − I : (C13)

Thus, the Hamiltonian matrix of the baseband equivalent
systems is

M̂ l �
�
Âl − B̂lL−1

l D̂H
l Ĉ l −B̂lL−1

l B̂H
l

ĈH
l Q̂

−1
l Ĉ l −ÂH

l � ĈH
l D̂lL−1

l B̂H
l

�
, (C14)

and its imaginary eigenvalues jω give the angular frequencies ω
where Eq. (C1) is satisfied and the matrix I − ŜH

l �s�Ŝ l �s� is
singular.

Finally, by indicating the eigenvalues of M̂ l with the symbol
λ̂zl , the following equation holds:

λ̂zl

�
x l1
x l2

�
� M̂ l

�
x l1
x l2

�
: (C15)

Now, assuming that a matrix M exists with eigenvalues λz

satisfying M̂ l � M − j2πf cI leads to

λz
�
x l1
x l2

�
� M

�
x l1
x l2

�
� λ̂zl

�
x l1
x l2

�
� j2πf c

�
x l1
x l2

�
, (C16)

which indicates that

λ̂zl � λz − j2πf c , for z � 1,…,Z: (C17)
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