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Reservoir computing is a neuromorphic computing paradigm which is well suited for hardware 

implementations. In this work, we present first experimental results on an enhanced reservoir architecture. 

This architecture has lower optical losses and improved mixing behavior compared to the architectures 

used in previous silicon photonic reservoir computing designs. 

Introduction 

Reservoir computing is a machine learning technique in which a nonlinear dynamical 

system which is also called the reservoir is used for computation. While it was originally 

implemented as an efficient way to train a neural network [1], it has now grown to a 

method which is commonly used for classification and regression tasks. Unlike other 

techniques which optimize the recurrent neural network (RNN) itself to solve a task, the 

RNN is not modified during training in reservoir computing. Instead, a linear combination 

is used to train an optimal classifier in the high dynamical state space to which the signal 

is projected by propagation through the reservoir. By keeping the recurrent network 

unchanged and train only on the level of the linear output layer makes reservoir 

computing a computationally cheap method. 

Integrated photonic reservoir computing 

Although computer science was the original field in which reservoir computing was used 

as a cheap way to optimize a neural network, it is perfectly suited to be implemented in 

various hardware platforms. Those dedicated implementations do not suffer from 

classical digital computer bottlenecks which occur for classical software implementations 

of reservoir computing, but are specifically designed to operate neuromorphic computing 

schemes. One such hardware implementation that is especially suited for reservoir 

computing is silicon photonics. Silicon photonics is a CMOS-compatible platform in 

which light can be guided, split and combined on a silicon chip. As the reservoir itself is 

not changed in reservoir computing, a passive network of splitters and combiners, 

connected using waveguides, is perfectly suited to embody the physical reservoir. 

Linearly combining the signal at readout nodes can in principle be done fully integrated, 

but in this work we still made use of grating couplers which couple the light out to an 

external photodiode. The post processing is done afterwards on a classical computer.  

 

Silicon photonic reservoir computing approaches with a waveguide-based approach 

typically employ the swirl architecture [2, 3]. This architecture was initially defined in 

[4] and illustrated in figure 1. The swirl architecture is designed as a RNN and can thus 

be used as a reservoir but has some shortcomings in terms of losses and mixing, 

fundamental for the silicon photonics platform: Modal radiation induces losses at each 2 
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x 1 combiner (for example node 7). These losses are inherent for non-symmetrical 

reciprocal splitting devices as on average there is a 50% modal mismatch between the 

two input channels. In terms of mixing, some nodes are partially withdrawn from the 

dynamics, only consisting of one input and one output (the corner nodes). In general, the 

most interesting behavior in swirl reservoirs will be at the center, by definition of the 

architecture, while it could be beneficial to also bring the outer layers more into play.  

Figure 1: Reservoir architectures on a topological level. Left: SWIRL architecture. 

Right: Four-port architecture. 

In this work, we used the four-port architecture [5] instead of the swirl architecture, which 

reduces the problems concerning excessive losses by avoiding 2 x 1 devices and by only 

employing 2 x 2 devices instead. This topology is schematically illustrated in Figure 1.  

Fiber distortion compensation  

An application for which our approach is very well suited is distortion compensation in 

optical communication links. The technology which is used commercially in typical 

systems nowadays is the digital signal processor (DSP). This is a dedicated digital 

electronics chip. Its main disadvantages are speed limitations for future increasing data 

rates, high power consumption and latency due to processing. The concept of photonic 

reservoir computing approach is a future proof competitor as it is faster than classical 

electronics, has virtually no latency and is orders of magnitude more power efficient. 

 

In this work, a proof-of-concept experiment for distortion compensation was carried out 

using a 25 km standard single mode optical fiber (SSMF), together with a nonlinear 

amplifier (EDFA) close to saturation, to enhance the nonlinear effects in the system and 

thus make the task more challenging. A scheme of the measurement setup is shown in 

figure 2.  

  



 

 

Figure 2: Schematic of the measurement setup. Components from left to right: laser, 

polarization controller, modulator (32GBPS), optical fiber (SSMF), amplifier (EDFA), 

polarization controller, photonic reservoir chip, amplifier (EDFA),  tunable filter, 

photodetector, real time oscilloscope (RTO). Arbitrary waveform generator (AWG). 

 

The performance of our system was compared to a linear feedforward equalizer for which 

time-shifted copies of the distorted signal are linearly combined to compensate for fiber 

distortion effects. 

The BER we get for this task using the reservoir computing approach is lower than 1e-4. 

If we compare this to the tapped filter reference which reaches a BER of order of 

magnitude 1e-1, we can conclude that the reservoir computing approach indeed performs 

orders of magnitude better on this task. This finding is visualized in figure 3, where we 

compare an eye-diagram for both cases. 

 

Figure 3: Visual comparison of the eye-diagram for both cases. (left: tapped filter, right: 

reservoir computing) 
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