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Abstract: We demonstrate a 28 GHz radio-over-fiber system with laser-less, low-cost active 

antenna units using silicon photonics and a GaAs driver and LNA. 7-Gb/s downlink and uplink 

throughput was achieved over 2km SSMF and 5m wireless. 
OCIS codes: (060.2330) Fiber optics communications, (060.5625) Radio frequency photonics 

  

1. Introduction 

Meeting the demands for future wireless mobile communication will require significant changes in the underlying 

network [1]. A first important change is the migration to higher carrier frequencies as these bands offer more 

bandwidth and are less congested than the sub-6 GHz bands. Secondly, a small-cell approach will be adopted to 

increase the overall data capacity of the network. To allow for the densification of the network, a centralized 

approach with distributed low-complexity active antenna units (AAUs) is of paramount importance. In such a 

configuration, centralized offices (COs) contain the high-complexity functionalities, such as the generation and 

processing of the RF signal, and subsequently distribute the generated data to the intended AAU using radio-over-

fiber (RoF) technology. Typical RoF implementations for mmWave distribution rely on IF-over-Fiber and 

accomplish the frequency up-conversion at the AAU [2,3]. This approach requires the distribution of a synchronous 

carrier which is used to generate a local oscillator signal in the AAU. 

In this work, the complexity of the AAU is further reduced by adopting RF-over-Fiber (RFoF). Furthermore, a 

reflective electro absorption modulator (EAM), with compact footprint, is used to realize laser-free AAUs, thereby 

further reducing cost, complexity and weight. In contrast to the broadband approaches used in prior works, a 

dedicated EAM-driver and photoreceiver are designed for optimal performance in the 28 GHz band using a 

combination of GaAs pHEMT electronics and silicon photonics. The signal processing and computing resource 

allocation are transferred to the CO to further simplify the AAU and reduce the latency. This proposed RFoF system 

features low-complexity, low-cost and easy to install AAUs, which is highly desired in centralized networks and 

distributed antenna systems (DAS). Besides small signal characterization, the performance and throughput of the 

RFoF system is evaluated for mmWave communications demonstrating 12 Gb/s transmission over 2km standard 

single mode fiber (SSMF). After introduction of a 5m wireless path 7 Gb/s transmission is obtained.   

 

2.  Experimental setup 

 
Fig. 1: Block diagram and experimental setup for bidirectional 28 GHz RFoF link 



The experimental setup, consisting of both the uplink and downlink of the proposed RFoF system, is shown in  

Fig. 1. In this work, the 5G New Radio channels nr257/258 were targeted with frequency ranges between 24.25 and 

29.5 GHz. Furthermore, nr257/258 adopt a time division duplexing (TDD) scheme [4]. 

The downlink path starts with an arbitrary waveform generator (AWG) that generates an IF signal which is 

subsequently up-converted to the RF frequency. The generated RF signal is amplified by a dedicated narrowband 

GaAs EAM-driver, which offers a small signal gain of 25.2 dB over a 3-dB bandwidth between 24.4 and 29.5 GHz 

with a noise figure of 2.0 dB. The driver has an input referred 1-dB compression point of -20 dBm and consumes 

124 mW. The output of the GaAs driver is fed to a SiGe reflective EAM coupled to silicon waveguides and 

modulates the incident continuous wave (CW) 1550 nm laser tone incident on the EAM. Since the modulator is 

reflective, an optical circulator is required to separate the modulated from the unmodulated light. The reflective 

EAM has a very compact footprint of 340 µm by 220 µm and is fabricated on the iSiPP50G silicon photonics 

platform with a bandwidth far beyond 28 GHz, which opens the opportunity to realize RFoF systems at even higher 

frequency bands, such as the extended frequency range in 5G New Radio and the 60-GHz band used by WiGig. 

An erbium doped fiber amplifier (EDFA) and a variable optical attenuator (VOA) are used to set the power 

launched into the SSMF. At the AAU, the photoreceiver converts the light back to the RF domain and subsequently 

amplifies the signal. The devised photoreceiver comprises a silicon waveguide coupled Ge-on-Si photodetector (PD) 

and a co-designed GaAs low noise amplifier (LNA). The LNA offers 24 dB gain, corresponding to 224 V/W 

external conversion gain, over a 3-dB bandwidth between 23.5 and 31.5 GHz [5]. Its associated noise figure is 2.1 

dB and an output referred third order intercept point up to 26.5 dBm can be obtained with a power consumption of 

303 mW. The devised narrowband GaAs/SiGe transceiver has a total power consumption of 427 mW (driver and 

receiver). A commercial power amplifier (HMC943) is added to ensure that the signal fed to the antenna is 

sufficiently strong (approximately 10 dBm). Furthermore, 4x1 linear and passive antenna arrays with integrated 

Wilkinson splitters are used to achieve beamforming gain in the broadside direction. The downlink signal received 

by the antenna at the user equipment (UE) is first amplified and subsequently monitored by a real-time oscilloscope 

(RTO, Keysight DSA-Z634A). The captured data was demodulated offline in Matlab. 

The uplink path first generates an RF signal and subsequently passes the signal over the wireless link. Next, the 

signal is amplified with a commercial low noise amplifier (HMC1040) and fed to the EAM-driver which modulates 

the incident CW laser tone. A reflective EAM was used to enable laser-free operation of the AAU. To separate the 

CW tone incident on the reflective EAM from the modulated light coming from the EAM, an optical circulator is 

used. Subsequently, the light passes through SSMF and is converted back to the electrical domain at the central 

office by making use of the aforementioned photoreceiver.  

3. Results and Discussion 
The transfer function of the RFoF link in optical back-to-back (OB2B) starting from the input of the EAM-driver to 

the output of the photoreceiver is shown in Fig. 2. The 3-dB bandwidth of the link spans from 24.7 to 28.6 GHz and 

shows a small signal gain of 28.4 dB when 3 dBm optical power is incident on the photoreceiver. 

  
Fig. 2: S21 narrowband RFoF link  Fig. 3: Downlink single carrier - 5 x 400 MBaud Multiband,  

exploring maximum RFoF link capacity.  

To explore the maximum RFoF link capacity, downlink multiband single carrier experiments were performed. 

Five 400 MBd channels centered at 25.0, 25.7, 26.5, 27.2 and 28.0 GHz were transmitted simultaneously over the 

fiber-wireless link. The EVM values (normalized to the average power) of the transmitted data are measured in the 

absence of a wireless channel for an OB2B link and compared to different wireless scenarios in Fig. 3. For 1m 

wireless, the EVM stays well below the 8% requirement for 64-QAM [6]. It should be pointed out that the optical 

insertion loss of 2km SSMF has a limited impact on the signal reception quality. When the wireless distance is 



increased to 3m, the 12.5% EVM requirement for 16-QAM is still met [6]. Consequently, using 5-channel multiband 

single carrier data transmission allows for data rates up to 12 Gb/s over 1m wireless distance and up to 8 Gb/s over 

3m wireless distance in a typical indoor environment. At larger distances, fading significantly degrades the signal 

quality.  

To overcome equalization challenges after fading, orthogonal frequency division multiplexing (OFDM) signals 

were also evaluated for this RFoF system. OFDM signals make the data transmission over the wireless channel more 

robust at the cost of increased requirements on the dynamic range of the E/O and O/E converters and its associated 

drivers and amplifiers [7]. The OFDM signal parameters used for each channel and its data rate are summarized in 

Fig. 4(a). Each OFDM channel can support 2.34 Gb/s using 16-QAM. The uplink and downlink path are tested 

separately due to the envisioned TDD duplexing mode [4]. For one OFDM channel, the EVM after 2km fiber was 

below 4%. For three OFDM channels after 2km fiber, all EVMs were below 8% [6] and the averaged EVM was 

around 6%, as shown in Fig. 4(b) and 4(c). For 1m wireless distance, the measured EVMs can even support 64-

QAM. An aggregated capacity of 7.02 Gb/s was achieved over 2km SSMF and 5m wireless distance for both 

downlink and uplink with an EVM that meets the 3GPP specification. 
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Fig. 4: (a) OFDM signal parameters. (b) Measured EVM in RFoF-wireless downlink. (c) Measured EVM in RFoF-wireless uplink. 

4. Conclusion 

We have demonstrated a very low complexity narrowband GaAs electronics/Si photonics transceiver for scalable 

RFoF architectures. The chipset consumes 427 mW, introduces a link gain of 28.4 dB – with 3 dBm optical power – 

and supports a link bandwidth from 24.7 to 28.6 GHz. Furthermore, laser-free active antenna unit operation is 

enabled due to the reflective EAM used in the RFoF transmitters, which reduces the complexity of the active 

antenna units even further. With this transceiver, 12 Gb/s over 2km SSMF was demonstrated and over 7 Gb/s down- 

and uplink were demonstrated for a 2km fiber, 5 m wireless mmWave link with an EVM around 10%. 
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