

CONCLUSION

- Aspect Ratio Trapping combined with nanoridge engineering allows to grow excellent material on 300 mm wafers
- We demonstrated:
 - PL-lifetime > 1 ns
 - Material gain > 4000 cm⁻¹
 - Optically pumped lasing with high SMSR at 1.05 μ m
 - With both index and loss coupled gratings
 - Emission at 1.3 μm

45

- Efficient coupling scheme to silicon waveguides

PhD-thesis Yuting Shi, available from http

