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Lead Zirconate Titanate (PZT) with its high piezo-electricity and electromechanical 

coupling coefficient (in bulk) promises to be an efficient transducer for electro-

optomechanical applications.  In this work, we investigate the piezoelectric response of 

a thin film of Si-photonic integrated PZT by exciting surface acoustic waves (SAWs) with 

an interdigitated transducer (IDT). Furthermore, we  demonstrate the optical phase 

modulation from the SAW on a PZT integrated waveguide circuit.  

Introduction 

Silicon photonics offers a fast-growing technology platform with applications in several 

important areas such as telecommunication[1], medicine[2], quantum information 

processing[3] etc. A photonic integrated circuit (PIC) consists of several components like 

sources, splitters, filters, modulators, detectors etc. Hybrid integration of novel materials 

is essential to realize these components on Si-photonics chip. In this study, we explore 

the piezoelectric properties of a Si-photonic integrated thin film of Lead Zirconate 

Titanate (PZT). 

 

PZT is a ferroelectric material with a very high piezoelectric coefficient and 

electromechanical coupling coefficient in bulk. However, in most cases PZT deposition 

involves a Pt-buffer layer for preferential crystal orientation and to avoid lead diffusion, 

which makes it optically lossy. Recently a novel approach for depositing highly textured 

PZT-films, using a thin transparent lanthanide based buffer layer, was developed.  The 

high quality of the resulting film was proven through the demonstration of efficient 

electro-optic (EO) modulators on a SiN photonic platform (effective EO coefficient of 

±70 pm/V) and low optical loss (1dB/cm)[4]. Given the promising electro-optic results 

which proved the quality of the material, we now explored the piezoelectric response of 

these thin films here by exciting surface acoustic waves (SAWs). 

SAW excitation with an interdigitated transducer (IDT) 

A SAW is usually excited by applying an RF signal to an IDT. An IDT consists of 

alternate electrodes facilitating alternate electric fields (as shown in figure 1.a) which 

creates periodic strain in the piezoelectric material beneath the IDT. When the RF 

frequency applied to the IDT matches with SAW resonance frequency, a SAW is 

launched in both directions. The wavelength of the primary SAW mode is equal to the 

period of the IDT. 



 

 

  

 

 

 

 

 

 

 

 

 

In Figure 1(a) we show the Comsol simulation of the electric field due to an applied AC 

signal on the IDT deposited on 200 nm of PZT on Si. In figure 1(b) and 1(c) we show the 

Comsol simulated mechanical displacement on applying an AC signal to the same device 

in different poling configuration.   These simulation results prove that in order to have an 

effective excitation of SAW, PZT should be poled in the direction of  the applied electric 

field (in-plane). To achieve that, we first fabricated a parallel rectangular electrodes on a 

PZT/Si sample by direct write lithography (DWL) and Ti/Au 20nm/350nm deposition. 

After poling the sample using these electrodes, next we fabricated the stand-alone IDT in 

the poled region. We characterized the SAW excitation by measuring the electrical 

reflection parameter S11 with a vector network analyzer (VNA) as shown in Figure 2. 

 
  

 

The biggest drawback of poling with the rectangular electrodes is that the IDT structure 

(e.g. period, number of periods etc.) has to be limited in order to fit in a given (limited) 

poling region. This limit makes this poling method impractical for integrated devices. 

Hence, we tested poling the PZT using the IDT itself. Now, due to the alternate poling 

Figure 1 (a) Simulation of the Electric field 

distribution of IDT/PZT/Si device (cross-section) 

shows the alternating field polarity. (b) simulation 

of the electrically driven total displacement for an 

in-plane poled PZT layer (c-orientation). (c) 

simulated total displacement for an out-of-plane 

poled PZT layer (a-orientation). For the electro-

mechanical simulation, an IDT of period 8 µm is 

excited with a 10 V AC signal of frequency equal 

to the  mechanical eigen-frequency of the 

structure (SAW frequency).   

 

Figure 2 (a) Microscope image of IDT with 

period 12 µm (grey color), 6 periods are 

fabricated in between the poling electrodes 

(yellow color) with spacing of 80 µm. The 

poling voltage= 820V is applied for  40 minutes. 

(b)The electrical S11 parameter shows a dip 

(corresponding to SAW excitation frequency) 

varying consistently with the IDT period. (c) 

The electrical S11 response shows SAW 

excitation for the poled PZT, while unpoled PZT 

shows no such response, thus corroborating the 

conclusion from the simulation results. 



 

 

direction in the neighboring electrodes, the SAW resonance frequency is supposed to 

double which we indeed observed in Figure 3(b), confirming the excitation of SAW.  

 

  

PZT thin-film integration with photonic system 

Following the successful demonstration of SAW from a stand-alone IDTs on PZT/Si 

sample, we integrated similar IDTs with silicon waveguide circuits. The waveguides were 

defined in an SOI wafer with a 220 nm thick top silicon layer on a 2 m buried oxide 

layer. Following waveguide definition, the devices were planarized using oxide 

deposition and chemical mechanical polishing (CMP).  Next, similar as described above 

we deposited a 20 nm thick lanthanide-based buffer layer and a 200 nm thick PZT-layer.  

We then defined IDTs on top of the PZT layer as shown in Figure 4(a). 

 

 
  

 

 

 

To characterize the phase modulation in the waveguide from the SAW, we built a 

heterodyne setup as shown in figure 4(c). We mix the optical signal from the DUT with 

that coming through the acousto-optic modulator (AOM) with a modulated frequency at 

200 MHz, in a fast photodetector (PD) and connect them to an electrical spectrum 

analyzer (ESA). This mixing results into two sidebands at frequencies Ω SAW + ωAOM and 

| Ω SAW - ωAOM | which we observe in our preliminary results from the ESA data as shown 

in figure 5(a).             

                                                                                             

Figure 3 (a) Microscope image of an IDT-

IDT system. We apply a poling voltage on the 

IDT for 30-40 min. (b) S11 shows that now for 

the IDT with period 12 µm, the SAW 

frequency has almost doubled (310MHz to 

590 MHz). Further, the resonance frequency 

varies consistently with the change in IDT 

period. The ripples in the S11 signal are due 

to the reflections in the RF cable.   
 

Figure 4 (a) A microscopic image of a 

silicon TE waveguide (width 550nm) 

integrated with an IDT (period 12 µm, 20 

periods, aperture size 180 um). (b) camera 

view shows the landing of a GS probe 

(100µm pitch) on IDT electrode pads. Two 

optical fibers are aligned with the grating 

couplers for the optical transmission 

measurement. (c) A heterodyne-setup is 

used for the measurement of the phase 

modulation in a single waveguide.  

 



 

 

 
Figure 5 (a) Two sidebands appear from the mixing. The maximum sideband amplitude (phase modulation) 

occurs at RF frequency of 576 MHz. (b) The S11 parameter from the same IDT shows dip at 576 MHz. 

These results prove the excitation of SAW on the PZT and the first order mode frequency of SAW is 576 

MHz for the given IDT structure of period 12 µm.  

 

The phase modulation from the SAW is given by ϕ= β*sin(Ω SAW* t); where β is the phase 

change amplitude and Ω SAW is the SAW excitation frequency. β is calculated from the 

peak ratio of the AOM and sidebands in the ESA spectrum. From the data shown in Figure 

5(a),  β is calculated to be 0.03 radians. This phase change amplitude (β) corresponds to 

a VπL ≈ 3.35 V cm. For a similar PZT layer, earlier the electro-optic modulator has been 

reported to give VπL ≈ 3.2 V cm[4]. Hence, we notice that even without any optimization, 

our first preliminary results already give a competitive figure of merit.    

 

Conclusion 
We have shown through simulation and experiment that for an efficient SAW 

transduction, it is essential to have an appropriate poling of the PZT domains. With a 

suitable poling, we have demonstrated the very first piezoelectric response of our 

photonic integrated PZT layer by exciting a SAW, which is confirmed with both electrical 

S11 measurement and optical phase modulation in a waveguide. The preliminary phase 

modulation data, without any device optimization, already shows promising electro-

optomechanical response. Thus it opens the possibility of combining the piezoelectric 

effect of PZT with photonic components to realize various photonic applications such as 

filters, on-chip acousto-optic modulations etc.    
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