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Abstract: Spiking neural networks (SNNs) are bio-inspired neural networks that - to an extent -
mimic the workings of our brains. In a similar fashion, event-based vision sensors try to replicate
a biological eye as closely as possible. In this work, we integrate both technologies for the
purpose of classifying micro-particles in the context of label-free flow cytometry. We follow up
on our previous work in which we used simple logistic regression with binary labels. Although
this model was able to achieve an accuracy of over 98%, our goal is to utilize the system for
a wider variety of cells, some of which may have less noticeable morphological variations.
Therefore, a more advanced machine learning model like the SNNs discussed here would be
required. This comes with the challenge of training such networks, since they typically suffer
from vanishing gradients. We effectively apply the surrogate gradient method to overcome this
issue achieving over 99% classification accuracy on test data for a four-class problem. Finally,
rather than treating the neural network as a black box, we explore the dynamics inside the network
and make use of that to enhance its accuracy and sparsity.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Spiking neural networks are a particular type of neural network designed to closely imitate a
biological brain. In contrast to neurons in an artificial neural network (ANN), a spiking neuron
does not have a non-linear activation function. Rather, a leaky-integrate-and-fire (LIF) spiking
neuron has an internal state often referred to as membrane potential. When a neuron receives
an input spike from pre-synaptic neuron, its membrane potential grows and then decays with
a certain time constant, then it rises again if another spike is received. Once the membrane
potential is high enough to exceed a certain threshold, the neuron fires a spike [1–4].

In addition to being more biologically plausible, spiking neural networks are attractive since
their behaviour allows a hardware implementation with low power consumption, because synapses
are only active during the short time a spike is fired. Moreover, in some applications where the
temporal signal is already event-based (as is the case in this work), SNNs become the best fit for
processing such signals due to their temporal and sparse nature [5].

Nevertheless, the main downside of working with SNNs is the difficulty of training them.
Several works in the literature have been carried out targeting training SNNs both in supervised
and unsupervised settings. One of the most popular algorithms for unsupervised learning, known
as spike time-dependent plasticity (STDP) [6–8], exploits the relative delay between spikes.
This is thought to be the closest to how our brain learns [9]. For supervised learning on the
other hand, the approach researchers take is similar to the one used for ANNs, which involves
backpropagation [10–12].

However, since applying backpropagation involves computing the gradient of the loss with
respect to the network weights in the backward path, the following problem arises. A spiking
neuron only fires a spike when its membrane potential exceeds a certain threshold. This means
that the output of the neuron is a non-linear Heaviside function of its hidden state. Differentiating
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such a function gives zero everywhere except at the threshold. Therefore, we end up with a
vanishing gradient which prevents the learning algorithm from finding the optimum values for
the weights. To overcome this issue, one can keep the non-linear Heaviside function in the
forward path when computing the loss, but in the backward path approximate its gradient using a
smoother function. This algorithm is known as surrogate gradient learning, and is discussed in
more detail in section 2. [1,13].

The input to SNNs in this work is provided by an event-based camera. Contrary to traditional
CMOS cameras, an event camera does not capture all the information in the scene in a frame-based
manner. Rather, it only generates spikes whenever the intensity of the captured light changes
[14]. This process, although simple, opened the door for numerous applications in computer
vision and machine learning [14–28].

The application we study here is flow cytometry, which is an analytical technique concerned
with the sorting of cells and micro-particles based on their physical characteristics. A particular
category of flow cytometers is imaging flow cytometry. Here consecutive images are captured
from flowing cells, and then neural networks are trained on the stored images. This approach
however leads to vast amounts of data and significant delay due to the deep neural networks
utilized. In a recent study [29], we showed that an event-based sensor could enhance classification
accuracy while reducing both data storage and the latency of the system. These improvements
were mainly attributed to the automatic background subtraction that occurs at the sensor level.
The problem addressed in that study was applied to a binary classification problem using two
classes of spherical PMMA micro-particles. With a simple logistic regression model, we could
reach above 98% accuracy. However, since our objective is to apply the system to a broader range
of cells where morphological differences may be less distinct, a more complex machine-learning
model such as the SNNs treated here would be necessary.

The rest of the manuscript is structured as follows:

• In section 2, the experiments performed using four classes of micro-particles are presented.
Moreover, the architecture of the spiking networks trained in this work is discussed. We
explore the effect of different parameters on the performance of the neural networks.

• Section 3 reports different results obtained with the current networks. We focus mainly on
the accuracy of the networks by testing them on data coming from experiments other than
those used in training. We will also discuss limiting the temporal activity of the hidden
layer’s neurons, and We will address the sparsity of the network by regularizing its hidden
layer’s activity.

• In section 4 we discuss the implementation of some spiking neural networks trained with
our cytometry dataset on hardware.

• Section 5 sums up the current work and points out to future plans.

2. Methods

2.1. Experiment

The experimental setup, similar to that in [29], comprises a laser source that emits light with
a wavelength of 632.8 nm. The light passes through a lens and a 25 µm pinhole before being
focused onto a PMMA microfluidic channel. The microfluidic channel utilized is from Chipshop
(Fluidic 156) and is a straight-channel chip integrating foru parallel channels where only one
channel is used. The channel dimensions are 200 µm × 200 µm × 58.5 mm.

The channel contains flowing microparticles that are pumped using a manual syringe pump
connected to the upper port, while a liquid reservoir is connected to the other port as shown in
Fig. 1.
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Fig. 1. Experimental setup for generating training and test datasets. A 633 nm He-Ne
laser is focused using a lens and directed towards a 25 `𝑚 pinhole. The laser light
passes through the pinhole before entering a vertically-mounted PMMA microfluidic
channel, within which microparticles flow downward. The resulting diffraction and
scattering patterns caused by the flowing particles are captured by an event-based
camera connected to a laptop running dedicated software for recording the events
detected at different pixels.

Four different classes of spherical micro-particles which differ in size according to table 1
were used in the experiments. The particles were purchased from PolyAn GmbH.

Particle Class Diameter (`m)

A 9

B 12

C 16

D 20

Table 1. Particle classes and sizes

To prepare the samples, 0.6 ml of particles were diluted with 30 ml of water, and a drop of
X-triton surfactant was added to prevent particle clustering. Multiple separate experiments were
performed for each particle class. Before pumping particles from a certain class, the microfluidic
channel was flushed with water in both directions. This flushing procedure was repeated a number
of times between measurements. The fluctuations in the laser signal due to the diffraction and
scattering effects produced by the flowing particles were recorded using a Prophesee EVK-1-VGA
event camera [30]. This interaction between the light source and the moving particles translates
the features to a higher dimensional space where classification can be done more efficiently. This
resembles the kernel method in machine learning [31] where functions acting on data features
are computed. The advantage here is that such computations are done at high speed in the optical
domain, which accelerates the overall system.

2.2. SNN architecture

During a recording session involving one of the four classes of particles, an event camera captures
the movement of these particles as they enter the field of view illuminated by a laser. The event
camera detects and records events in the form of both positive and negative signals. When a
particle enters the field of view, the camera starts firing events, indicating its presence. The
number of fired events reaches a peak as the particle moves through the field of view, and then

Fig. 1. Experimental setup for generating training and test datasets. A 633 nm He-Ne laser
is focused using a lens and directed towards a 25 µm pinhole. The laser light passes through
the pinhole before entering a vertically-mounted PMMA microfluidic channel, within which
microparticles flow downward. The resulting diffraction and scattering patterns caused by
the flowing particles are captured by an event-based camera connected to a laptop running
dedicated software for recording the events detected at different pixels.

Four different classes of spherical micro-particles which differ in size according to Table 1
were used in the experiments. The particles were purchased from PolyAn GmbH.

Table 1. Particle classes and
sizes

Particle Class Diameter (µm)

A 9

B 12

C 16

D 20

To prepare the samples, 0.6 ml of particles were diluted with 30 ml of water, and a drop of
X-triton surfactant was added to prevent particle clustering. Multiple separate experiments were
performed for each particle class. Before pumping particles from a certain class, the microfluidic
channel was flushed with water in both directions. This flushing procedure was repeated a number
of times between measurements. The fluctuations in the laser signal due to the diffraction and
scattering effects produced by the flowing particles were recorded using a Prophesee EVK-1-VGA
event camera [30]. This interaction between the light source and the moving particles translates
the features to a higher dimensional space where classification can be done more efficiently. This
resembles the kernel method in machine learning [31] where functions acting on data features
are computed. The advantage here is that such computations are done at high speed in the optical
domain, which accelerates the overall system.

2.2. SNN architecture

During a recording session involving one of the four classes of particles, an event camera captures
the movement of these particles as they enter the field of view illuminated by a laser. The event
camera detects and records events in the form of both positive and negative signals. When a
particle enters the field of view, the camera starts firing events, indicating its presence. The
number of fired events reaches a peak as the particle moves through the field of view, and then
gradually drops as the particle exits as shown in the bottom left corner of Fig. 2. The camera
sensor has a temporal resolution of ∆t = 1µs. Taking into account the fact that a particle takes
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10ms to pass through the field of view, we would end up with 10ms/1µs = 10, 000 time steps if we
wanted to use the same temporal resolution for the neural network as for the camera. Therefore,
for computational efficiency, a temporal compression was applied by clustering events into just
70 time bins. For each pixel, and for each simulation step corresponding to such a time bin, we
input a single spike in the network in case the camera generated one or more spikes during that
interval for that pixel.

gradually drops as the particle exits as shown in the bottom left corner of figure 2. The camera
sensor has a temporal resolution of Δ𝑡 = 1`𝑠. Taking into account the fact that a particle takes
10𝑚𝑠 to pass through the field of view, we would end up with 10𝑚𝑠/1`𝑠 = 10, 000 time steps
if we wanted to use the same temporal resolution for the neural network as for the camera.
Therefore, for computational efficiency, a temporal compression was applied by clustering events
into just 70 time bins. For each pixel, and for each simulation step corresponding to such a time
bin, we input a single spike in the network in case the camera generated one or more spikes
during that interval for that pixel.

What makes spiking neural networks unique is that they possess memory, even in a feedforward
architecture. Indeed, the network’s internal state and the activation of each neuron depend not
only on the current events but also on past events from the flowing particle. This memory enables
the network to capture temporal dependencies and learn patterns in the particle’s movement over
time.

The sensor employed possesses a resolution of 640 pixels in width and 480 pixels in height,
resulting in a total of 307,200 individual pixels. In order to facilitate data processing, we
downscale this to 64 pixels in width and 48 pixels in height, yielding a reduced pixel count
of 3,072. To further analyze and process the captured data, the positive and negative events
originating from these pixels are directed to separate neurons, thereby necessitating the presence
of 6,144 neurons in the input layer of our neural network architecture.

Spikes from the input layer of the network are then multiplied by synaptic weights and fed to
the hidden layer of the network (100 neurons were used in this layer). At each time step, neurons
in the hidden layer with high enough membrane potential will fire spikes which are weighted and
sent to the output layer of the network.

Fig. 2. The architecture of the neural network used in this work. It consists of three
layers: an input layer, a hidden layer consisting of 100 neurons, and an output layer of
4 neurons corresponding to the four classes of particles. The event count during the
passage of a particle through the field of view is a bell-like curve. This traversal period
is split into multiple time bins. During each bin, the corresponding events are sent
to the network. Then, the hidden layer neurons receive a weighted sum of the input
spikes. If the internal state U of a neuron in the hidden layer is excited enough, a spike
S is generated and sent to the output layer. The neuron with the maximum potential is
chosen to be the predicted class.

Fig. 2. The architecture of the neural network used in this work. It consists of three layers:
an input layer, a hidden layer consisting of 100 neurons, and an output layer of 4 neurons
corresponding to the four classes of particles. The event count during the passage of a
particle through the field of view is a bell-like curve. This traversal period is split into
multiple time bins. During each bin, the corresponding events are sent to the network. Then,
the hidden layer neurons receive a weighted sum of the input spikes. If the internal state
U of a neuron in the hidden layer is excited enough, a spike S is generated and sent to the
output layer. The neuron with the maximum potential is chosen to be the predicted class.

What makes spiking neural networks unique is that they possess memory, even in a feedforward
architecture. Indeed, the network’s internal state and the activation of each neuron depend not
only on the current events but also on past events from the flowing particle. This memory enables
the network to capture temporal dependencies and learn patterns in the particle’s movement over
time.

The sensor employed possesses a resolution of 640 pixels in width and 480 pixels in height,
resulting in a total of 307,200 individual pixels. In order to facilitate data processing, we
downscale this to 64 pixels in width and 48 pixels in height, yielding a reduced pixel count
of 3,072. To further analyze and process the captured data, the positive and negative events
originating from these pixels are directed to separate neurons, thereby necessitating the presence
of 6,144 neurons in the input layer of our neural network architecture.

Spikes from the input layer of the network are then multiplied by synaptic weights and fed to
the hidden layer of the network (100 neurons were used in this layer). At each time step, neurons
in the hidden layer with high enough membrane potential will fire spikes which are weighted and
sent to the output layer of the network.

Four neurons are used in the output of the network, corresponding to the four classes of
particles in the experiment. Figure 2 shows the output neurons and their hidden states with
different colors. At the end of the simulation time for each sample, a decision is made as
follows: the neuron with the highest average membrane potential is considered to be the predicted
neuron/class. This is based on the convention in Spytorch [32]. Some other implementations in
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literature base a decision instead on the firing rate/time of the output spikes [33–36]. However,
since the output spike of a neuron is directly related to its membrane potential, both approaches
should give similar results.

2.3. Neuron dynamics

We focus here on a very specific model of spiking neurons, which is the leaky-integrate-and-fire
model. Such neurons have a membrane potential which resembles the hidden state of a neuron in
an RNN. The network consists of a number of layers, each layer is made up of multiple neurons.
The equation governing the membrane potential Ul

i of neuron i in layer l is as follows:

τmem
dUl

i
dt
= −(Ul

i − Ureset) + RIl
i (1)

In this first-order differential equation, τmem is the time constant for the membrane potential.
Ureset is the reset potential, and R and I are the input resistance and current.

Whenever its membrane potential Ul
i exceeds a chosen threshold Uth, we have it emit a spike.

In discrete time, a spike train is represented as follows:

Sl
i(t) = Σk∈Cl

i
δ(t − tki ) (2)

This is a series of Dirac delta functions with Cl
i representing the time indices of all the spikes

fired by neuron i in layer l. tki is then the actual time at which this neuron fired a specific spike.
A spike is transmitted to its postsynaptic neurons through a current I which is governed by the
following differential equation:

dIl
i (t)
dt
= − Il

i (t)
τsyn
+ ΣjW l

ijS
l−1
j (t) (3)

Here, W are the feed-forward weights. Solving the above linear ODEs yields (after some steps,
see [32]) the following equation

Il
i (t + 1) = αIl

i (t) + ΣjW l
ijS

(l−1)
j (t) (4)

which gives the development of the synaptic current. For the membrane potential, one obtains:

Ul
i(t + 1) = βUl

i(t) + Il
i (t) − Sl

i(t) (5)

α is the synaptic decay rate, and β is the decay rate of the membrane potential. Both are linked
to the time constants discussed above through the following relations:

α = exp
(︃
− ∆t
τsyn

)︃
(6)

β = exp
(︃
− ∆t
τmem

)︃
(7)

The output spike in relation to the membrane potential is represented by the following equation:

Sl
i = Θ(Ul

i(t) − Uth) (8)

where Θ is the Heaviside function shown in Fig. 3.
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2.4. Dead neuron problem and surrogate gradient

Applying backpropagation requires taking the derivative of the Heaviside function in 8 which
yields a delta function with zero gradients almost everywhere. This phenomenon is known as the
dead neuron problem and prevents the learning algorithm from finding a minimum of the loss
function. To overcome this issue, Neftci et al. (2019) proposed a technique known as surrogate
gradient learning in their study [32]. The surrogate gradient involves replacing the gradient of
the Heaviside with an alternative gradient like the derivative of the sigmoid function in figure 3.
Note that this only happens in the backward path. In the forward path, the Heaviside function is
retained.

Fig. 3. A plot showing the output of the neuron as a function of its membrane potential.
The derivative of this function is vanishing almost everywhere which creates the dead
neuron problem. The bottom plot shows the derivative of a sigmoid function which is
the approximation of the gradient used in the surrogate training algorithm.

2.5. Relating the decay rate of the neurons to the event rate from the experiment

One of the crucial parameters in SNNs is the time constant 𝜏𝑚𝑒𝑚 of the neuron. As discussed
earlier in this article, the membrane potential decays to zero (or to a reset value) after it receives
a spike from a pre-synaptic neuron. How fast this decay happens impacts how often this
post-synaptic neuron will emit spikes to the next layer in the network. In some cases, the
post-synaptic neuron might not emit any spikes if its membrane potential decays too quickly. If
no spikes are fired between layers, no learning will happen. Therefore, a good value for the decay
rate has to be found.

One way to choose a good value for the neuron’s decay rate (or time constant) is by including
it in the list of hyper-parameters and doing a grid search over the whole list of hyperparameters.
This however will increase the time it takes to find an optimum network. In this work, we decided
to choose an approximate value based on the firing rate of the event sensor governed by the

Fig. 3. A plot showing the output of the neuron as a function of its membrane potential.
The derivative of this function is vanishing almost everywhere which creates the dead
neuron problem. The bottom plot shows the derivative of a sigmoid function which is the
approximation of the gradient used in the surrogate training algorithm.

2.4. Dead neuron problem and surrogate gradient

Applying backpropagation requires taking the derivative of the Heaviside function in (8) which
yields a delta function with zero gradients almost everywhere. This phenomenon is known as the
dead neuron problem and prevents the learning algorithm from finding a minimum of the loss
function. To overcome this issue, Neftci et al. (2019) proposed a technique known as surrogate
gradient learning in their study [32]. The surrogate gradient involves replacing the gradient of
the Heaviside with an alternative gradient like the derivative of the sigmoid function in Fig. 3.
Note that this only happens in the backward path. In the forward path, the Heaviside function is
retained.

2.5. Relating the decay rate of the neurons to the event rate from the experiment

One of the crucial parameters in SNNs is the time constant τmem of the neuron. As discussed earlier
in this article, the membrane potential decays to zero (or to a reset value) after it receives a spike
from a pre-synaptic neuron. How fast this decay happens impacts how often this post-synaptic
neuron will emit spikes to the next layer in the network. In some cases, the post-synaptic neuron
might not emit any spikes if its membrane potential decays too quickly. If no spikes are fired
between layers, no learning will happen. Therefore, a good value for the decay rate has to be
found.

One way to choose a good value for the neuron’s decay rate (or time constant) is by including
it in the list of hyper-parameters and doing a grid search over the whole list of hyperparameters.
This however will increase the time it takes to find an optimum network. In this work, we decided
to choose an approximate value based on the firing rate of the event sensor governed by the
following inequality

τdecay>∆t
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where τdecay is the decay time constant of the spiking neuron and ∆t is the average time difference
between two consecutive events generated by the sensor. Note that the latter parameter is not a
characteristic of the sensor itself, rather it depends on how fast the particles move through the
field of view which in turn depends on the flow rate generated by the pump and the dimensions
of the microfluidic channel. The value that was finally chosen for the membrane time constant is
10 ms.

2.6. Number of time-steps and the trade-off between latency and accuracy

Another parameter that has a significant impact on the network performance is the number of time
steps. As mentioned earlier, events from each sample are sent to the network over a number of
time steps. Here we experimented with different values for that parameter. It has been observed
that there is a minimum number below which the network performance deteriorates significantly.
On the other hand, using a large number of time steps to simulate the network increases the
latency of the overall system. The value we ended up choosing is 70 timesteps.

3. Results

3.1. Training with the true gradient vs training with a surrogate gradient

The network in Fig. 2 was trained using data from multiple experiments with four different classes
of particles. The network’s weights were optimized using a gradient-descent-based optimizer,
namely the Adam optimizer [37], on the log-loss function. Figure 4 shows the progression of
the training loss over multiple training epochs. The training was performed twice. In the first
approach, the true gradient of the spike with respect to the membrane potential was used. This
gradient is vanishing everywhere except at the threshold point as we discussed in the previous
section. Hence, this did not lead the network to learn the important features present in the data as
evidenced by the almost constant train loss. On the other hand, when the surrogate gradient of
a sigmoid function was used, the loss significantly decreased after 50 epochs showing that the
network was able to optimize its parameters in the direction of minimum loss.

following inequality
𝜏𝑑𝑒𝑐𝑎𝑦 > Δ𝑡

where 𝜏𝑑𝑒𝑐𝑎𝑦 is the decay time constant of the spiking neuron and Δ𝑡 is the average time difference
between two consecutive events generated by the sensor. Note that the latter parameter is not a
characteristic of the sensor itself, rather it depends on how fast the particles move through the
field of view which in turn depends on the flow rate generated by the pump and the dimensions
of the microfluidic channel. The value that was finally chosen for the membrane time constant is
10 ms.

2.6. The number of time-steps and the trade-off between latency and accuracy

Another parameter that has a significant impact on the network performance is the number of time
steps. As mentioned earlier, events from each sample are sent to the network over a number of
time steps. Here we experimented with different values for that parameter. It has been observed
that there is a minimum number below which the network performance deteriorates significantly.
On the other hand, using a large number of time steps to simulate the network increases the
latency of the overall system. The value we ended up choosing is 70 timesteps.

3. Results

3.1. Training with the true gradient vs training with a surrogate gradient

The network in figure 2 was trained using data from multiple experiments with four different
classes of particles. The network’s weights were optimized using a gradient-descent-based
optimizer, namely the Adam optimizer [37], on the log-loss function. Figure 4 shows the
progression of the training loss over multiple training epochs. The training was performed twice.
In the first approach, the true gradient of the spike with respect to the membrane potential was
used. This gradient is vanishing everywhere except at the threshold point as we discussed in the
previous section. Hence, this did not lead the network to learn the important features present in
the data as evidenced by the almost constant train loss. On the other hand, when the surrogate
gradient of a sigmoid function was used, the loss significantly decreased after 50 epochs showing
that the network was able to optimize its parameters in the direction of minimum loss.

Fig. 4. Evolution of the loss with the training epochs. Training using a surrogate
gradient results in a significant drop in the loss after only 50 epochs, while using the
true gradient spike with respect to the membrane potential of the spiking neuron does
not assist the network in learning the classes of particles. This is due to the vanishing
gradient problem discussed in the text.

Fig. 4. Evolution of the loss with the training epochs. Training using a surrogate gradient
results in a significant drop in the loss after only 50 epochs, while using the true gradient
spike with respect to the membrane potential of the spiking neuron does not assist the
network in learning the classes of particles. This is due to the vanishing gradient problem
discussed in the text.

The effect of batch size on both the validation and test accuracy was also investigated. Our
findings indicate that a relatively small batch size, such as 10 samples, can attain minimum train
loss within fewer than 50 epochs (see Fig. 5). However, this approach is typically accompanied by
poor validation accuracy. On the other hand, large batch sizes, such as 300, require a substantially
greater number of epochs to attain minimum train loss, while also avoiding overfitting on the
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The effect of batch size on both the validation and test accuracy was also investigated. Our
findings indicate that a relatively small batch size, such as 10 samples, can attain minimum train
loss within fewer than 50 epochs. However, this approach is typically accompanied by poor
validation accuracy. On the other hand, large batch sizes, such as 300, require a substantially
greater number of epochs to attain minimum train loss, while also avoiding overfitting on the
training data. Thus, a batch size of 30 was determined to offer a favorable compromise between
the aforementioned metrics.

Fig. 5. Learning curve when different batch sizes (10 and 100) are used. For larger
batch size, the training algorithm needs more epochs to reach minimum loss. On the
contrary, using a very small batch requires a smaller number of training epochs but
leads to over-fitting on training data.

3.2. Regularizing hidden layer activity

One of the main characteristics of an SNN that makes it attractive for applications requiring low
power consumption, is the fact that these networks are only active when spikes are emitted. To
maximize this benefit, one should aim at making the neurons silent most of the time. Therefore,
we modifying the loss function by including a regularization term.

𝐿 = −Σ𝑀
𝑗=1𝑦 𝑗 log( �̂� 𝑗 ) + _Σ𝑁

𝑘=1𝑆𝑘 (9)

In the previous equation, the first term corresponds to the traditional negative log-likelihood loss,
which runs over all the samples from 𝑗 = 1 to 𝑗 = 𝑀, where 𝑀 is the number of samples. �̂� is
the predicted value by the network, while 𝑦 is the actual label of the sample. The second term is
the regularization term with its regularization parameter _ and 𝑆𝑘 representing the total number
of spikes fired by neuron 𝑘 . Note that we only include neurons in the hidden layer.

Figure 6 shows the effect of adding such a regularization term on the dynamics of the network.
The activity of the neurons in the hidden layer is shown using a raster plot. It resembles a binary
heat-map with a black pixel in case there is a spike fired and a white pixel when the membrane
potential is not high enough for a spike to be fired. The network with no regularization shows
a large number of spikes generated at different time steps. If this were to be implemented on
hardware, it would mean that the chip would require relatively high power for inference. On the
other hand, the regularized network suppresses such high activity by penalizing the total number
of fired spikes in the hidden layer.

The regularization parameter _ controls the strength to which the activity in the hidden layer is
suppressed. When a relatively high value of 10−3 was used, no spikes were fired at all. Having
nothing to be propagated to the output layer, the network could not learn anything, since it
focuses on minimizing the regularization term while ignoring the logloss term. After optimising
hyperparameters, It was found that a value of 6.7 ∗ 10−6 gives a good compromise between the

Fig. 5. Learning curve when different batch sizes (10 and 100) are used. For larger batch
size, the training algorithm needs more epochs to reach minimum loss. On the contrary,
using a very small batch requires a smaller number of training epochs but leads to over-fitting
on training data.

training data. Thus, a batch size of 30 was determined to offer a favorable compromise between
the aforementioned metrics.

3.2. Regularizing hidden layer activity

One of the main characteristics of an SNN that makes it attractive for applications requiring low
power consumption, is the fact that these networks are only active when spikes are emitted. To
maximize this benefit, one should aim at making the neurons silent most of the time. Therefore,
we modifying the loss function by including a regularization term.

L = −ΣM
j=1yj log(ŷj) + λΣN

k=1Sk (9)

In the previous equation, the first term corresponds to the traditional negative log-likelihood
loss, which runs over all the samples from j = 1 to j = M, where M is the number of samples.
ŷ is the predicted value by the network, while y is the actual label of the sample. The second
term is the regularization term with its regularization parameter λ and Sk representing the total
number of spikes fired by neuron k. Note that we only include neurons in the hidden layer.

Figure 6 shows the effect of adding such a regularization term on the dynamics of the network.
The activity of the neurons in the hidden layer is shown using a raster plot. It resembles a binary
heat-map with a black pixel in case there is a spike fired and a white pixel when the membrane
potential is not high enough for a spike to be fired. The network with no regularization shows
a large number of spikes generated at different time steps. If this were to be implemented on
hardware, it would mean that the chip would require relatively high power for inference. On the
other hand, the regularized network suppresses such high activity by penalizing the total number
of fired spikes in the hidden layer.

The regularization parameter λ controls the strength to which the activity in the hidden layer is
suppressed. When a relatively high value of 10−3 was used, no spikes were fired at all. Having
nothing to be propagated to the output layer, the network could not learn anything, since it
focuses on minimizing the regularization term while ignoring the logloss term. After optimising
hyperparameters, It was found that a value of 6.7 ∗ 10−6 gives a good compromise between the
two terms in the loss function, achieving high classification accuracy while resulting in sparse
network dynamics.
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two terms in the loss function, achieving high classification accuracy while resulting in sparse
network dynamics.

(a)

(b)

Fig. 6. Raster plot showing the activity in the hidden layer of two different trained
neural networks. In (a), the network was trained using a loss function consisting only of
the logloss term. On the other hand, the network in (b) has a regularized loss function.
These samples were drawn randomly from the dataset. Both networks achieve the same
goal of predicting the correct label of a sample, but the second network is much more
sparse, making it more power efficient.

3.3. Results for optimal hyperparameters

After running a grid search over the learning rate and the regularization parameter, their optimal
values were found. Then, a final training loop was performed on the combination of training
and validation splits. The resulting network was tested on data coming from a newly unseen
experiment to assess its generalization capabilities. Figure 7 shows the output membrane potential
for randomly-chosen samples both with suboptimal (_ = 10−5, learning rate = 10−3) and optimal
(_ = 6.7 10−3, learning rate = 10−3) hyperparameters. The optimized network resulted in much
higher classification accuracy, which is also illustrated by the confusion matrix in figure 8.
Furthermore, the significant difference between the membrane potential of the correctly predicted
neuron and those of the other three neurons indicates that the network gives its prediction with
high confidence.

Fig. 6. Raster plot showing the activity in the hidden layer of two different trained neural
networks. In (a), the network was trained using a loss function consisting only of the logloss
term. On the other hand, the network in (b) has a regularized loss function. These samples
were drawn randomly from the dataset. Both networks achieve the same goal of predicting
the correct label of a sample, but the second network is much more sparse, making it more
power efficient.
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3.3. Results for optimal hyperparameters

After running a grid search over the learning rate and the regularization parameter, their optimal
values were found. Then, a final training loop was performed on the combination of training
and validation splits. The resulting network was tested on data coming from a newly unseen
experiment to assess its generalization capabilities. Figure 7 shows the output membrane potential
for randomly-chosen samples both with suboptimal (λ = 10−5, learning rate = 10−3) and optimal
(λ = 6.7 10−3, learning rate = 10−3) hyperparameters. The optimized network resulted in
much higher classification accuracy, which is also illustrated by the confusion matrix in Fig. 8.
Furthermore, the significant difference between the membrane potential of the correctly predicted
neuron and those of the other three neurons indicates that the network gives its prediction with
high confidence.

(a) (b)

Fig. 7. Membrane potentials of the four nodes in the output layer for different randomly-
chosen samples. The output in (a) is obtained from a network with parameters less
optimal than those of the network in (b). This resulted in the fact that the first network
gave more errors. Moreover, the difference between the membrane potentials in a
random sample is more significant in the second network meaning that it is also more
confident of its predictions than the first network.

Fig. 8. Confusion matrix of the text experiment. The maximum percentages located
on the diagonal imply that the network is accurate on data coming from experiments
unseen in the training folds.

4. SNN hardware implementation on Intel’s Loihi chip

Finally, we investigated implementing the inference stage of the SNN on specialised electronic
hardware using the second generation of Intel’s Loihi chip [38]. This neuromorphic chip was
used only for inference of the SNN, the training was still done conventionally on a GPU. We
tested two different networks, one consisting of a single hidden layer with 512 neurons and
another consisting of two hidden layers with 512 neurons each.

Regarding the mapping of the output obtained in Fig. 1 onto the Intel’s Loihi chip, to prepare
our event data for processing on the Loihi chip, we implement two key pre-processing steps:

1. Downsampling: We initially downsample the event camera’s resolution by 20x, resulting
in a 32x24 pixel grid with two channels. During this process, duplicate events are retained.

2. Leaky Integrate-and-Fire (LIF) Neurons: Subsequently, we pass all samples through
a layer of LIF neurons. Each downsampled pixel corresponds to a neuron indexed by 𝑥

Fig. 7. Membrane potentials of the four nodes in the output layer for different randomly-
chosen samples. The output in (a) is obtained from a network with parameters less optimal
than those of the network in (b). This resulted in the fact that the first network gave more
errors. Moreover, the difference between the membrane potentials in a random sample
is more significant in the second network meaning that it is also more confident of its
predictions than the first network.
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Fig. 7. Membrane potentials of the four nodes in the output layer for different randomly-
chosen samples. The output in (a) is obtained from a network with parameters less
optimal than those of the network in (b). This resulted in the fact that the first network
gave more errors. Moreover, the difference between the membrane potentials in a
random sample is more significant in the second network meaning that it is also more
confident of its predictions than the first network.

Fig. 8. Confusion matrix of the text experiment. The maximum percentages located
on the diagonal imply that the network is accurate on data coming from experiments
unseen in the training folds.

4. SNN hardware implementation on Intel’s Loihi chip

Finally, we investigated implementing the inference stage of the SNN on specialised electronic
hardware using the second generation of Intel’s Loihi chip [38]. This neuromorphic chip was
used only for inference of the SNN, the training was still done conventionally on a GPU. We
tested two different networks, one consisting of a single hidden layer with 512 neurons and
another consisting of two hidden layers with 512 neurons each.

Regarding the mapping of the output obtained in Fig. 1 onto the Intel’s Loihi chip, to prepare
our event data for processing on the Loihi chip, we implement two key pre-processing steps:

1. Downsampling: We initially downsample the event camera’s resolution by 20x, resulting
in a 32x24 pixel grid with two channels. During this process, duplicate events are retained.

2. Leaky Integrate-and-Fire (LIF) Neurons: Subsequently, we pass all samples through
a layer of LIF neurons. Each downsampled pixel corresponds to a neuron indexed by 𝑥

Fig. 8. Confusion matrix of the text experiment. The maximum percentages located on the
diagonal imply that the network is accurate on data coming from experiments unseen in the
training folds.
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4. SNN hardware implementation on Intel’s Loihi chip

Finally, we investigated implementing the inference stage of the SNN on specialised electronic
hardware using the second generation of Intel’s Loihi chip [38]. This neuromorphic chip was
used only for inference of the SNN, the training was still done conventionally on a GPU. We
tested two different networks, one consisting of a single hidden layer with 512 neurons and
another consisting of two hidden layers with 512 neurons each.

Regarding the mapping of the output obtained in Fig. 1 onto the Intel’s Loihi chip, to prepare
our event data for processing on the Loihi chip, we implement two key pre-processing steps:

1. Downsampling: We initially downsample the event camera’s resolution by 20x, resulting
in a 32x24 pixel grid with two channels. During this process, duplicate events are retained.

2. Leaky Integrate-and-Fire (LIF) Neurons: Subsequently, we pass all samples through
a layer of LIF neurons. Each downsampled pixel corresponds to a neuron indexed by x
(ranging from 0 to 31), y (ranging from 0 to 23), and p (representing the two channels).
The membrane potential vxy(t) of each neuron evolves over time according to the number
of spikes nxy(t) received at time t, with parameters σ = 0.9, w = 1.0, and vthr = 3.0.
Additionally, a refractory period Trefr = 2 ensures that all incoming spikes are ignored for a
brief duration after a spike occurrence. After each spike at time t∗, the membrane potential
is reset to vxy(t∗ + 1) = vrest = 0.

These pre-processing steps lead to approximately 85% compression of the dataset. Importantly,
our entire pre-processing pipeline is designed to be compatible with the neuromorphic chip
utilized in this experiment.

The Loihi 2 chip comprises 128 neurocores, each of which may simulate up to 8192 neurons.
The 1-layer SNN occupies 44 neurocores, utilizing 6,620 synapses in total. On the other hand, the
2-layer SNN takes up 57 neurocores and uses 13,039 synapses overall. The energy consumption
of the inference on the chip scales proportionally to the number of synaptic operations. When
analyzing a single sample of 10ms at a sampling time of 10µs, the 1-layer SNN needed 392,200
synaptic operations. On the other hand, the 2-layer SNN required 6,072,829 synaptic operations,
thus 15 times more than the 1-layer network. The time it takes to run a sample through the 2-layer
SNN is however only 4 times longer than for the 1-layer network since many of the operations in
the 2-layer network are executed in parallel and not sequentially. The accuracy of both networks
is comparable, with the 1-layer network actually outperforming the larger 2-layer network. The
1-layer network showed an average test accuracy of 98.13% while the 2-layer network showed an
average test accuracy of 97.44%, averaged over different data splits.

4.1. Latency estimation

Estimating the inference latency on Intel’s Loihi chip involves several considerations. Regarding
computation on the chip itself, based on our estimations considering the number of time steps
per sample and the clock frequency, we anticipate the computation latency to be less than 1
millisecond.

However, a significant concern lies in the communication to the chip, which has been
challenging to precisely gauge due to several factors. Notably, we encountered limitations in
estimating communication latency. At the time, the real event-based communication interface
was still under development, thus we had to resort to using an alternative, albeit slower, interface.
This resulted in an approximate latency of around 20 seconds per sample. We plan to conduct
experiments with the new communication interface to gain better insights into the true latency
characteristics when interfacing with the Loihi chip.

For more information on the implementation on Loihi, see the paper by Abreu et al. [39].
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5. Conclusion

To summarize, this work integrates spiking neural networks and event-based vision sensors for
the purpose of classifying micro-particles in label-free flow cytometry. While our previous
work used a simple logistic regression with binary labels and achieved high accuracy, this study
recognizes the need for a more advanced machine-learning model to adapt to a wider range of
cells. To overcome the challenge of training such networks, the surrogate gradient method was
effectively applied resulting in classification accuracy of more than 99% on test data. The study
also explores the dynamics inside the network and focuses on enhancing not only the accuracy
but also the power efficiency through regularizing the loss function. The results demonstrate the
potential of this integrated approach for improving the classification of micro-particles through
and suggest possibilities for future research in flow cytometry.
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