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Abstract

Continuum generation is a device functionality whereby an ultrashort pulse with high
enough peak power is propagated in a nonlinear medium and undergoes significant
spectral broadening to yield at the output a very broadband light signal. While such a
light source has found application in may areas of scientific inquiry, it has been mainly
achieved in silica fibers, which require extremely high peak powers and large lengths
of fibre. In this work, we investigate how such a source can be implemented in a sil-
icon nanowire. With its high cubic nonlinearity, and our ability to pattern it into pla-
nar waveguides with very small cross-sections and with control over their dispersion,
continuum generation in silicon waveguides would require significantly lower peak
powers and be achieved over just a few millimeters of propagation. We present here
a theoretical model to describe nonlinear pulse propagation in silicon nanowaveguides
as well as results from our experimental investigation of nonlinear effects in such struc-
tures.
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Abstract—In this work, we carry out both experimental and theoretical
investigations of nonlinear light-natter interaction in silicon-on-insulator
nanowire waveguides. We show how by engineering the dispersive prop-
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earity χ(3) of silicon in a way that both linear and nonlinear processes would
affect a short pump pulse, leading to effects such as self-phase modulation,
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I. INTRODUCTION

THE past few decades have seen silicon emerge as a material
that can be used to guide and control light in the near in-

frared. The prospects of using silicon nanowires as optical inter-
connects on photonic integrated circuits have boosted much re-
search into silicon photonics. As an optical material, silicon has
unique properties that make it a viable candidate for nanoscale
nonlinear optics. The high refractive index contrast in silicon-
on-insulator(SOI) waveguides provide very tight light confine-
ment. This tight confinement opens doors to devices with very
small footprints and active control of linear dispersive proper-
ties. It offers the additional advantage of creating very high op-
tical field densities, which combined with silicon’s large third-
order susceptibility in the near infrared, have led to the demon-
stration of nonlinear optical effects such as self-phase modula-
tion, two-photon absorption, four-wave mixing and stimulated
Raman scattering. With silicon’s third-order susceptibility more
than two orders of magnitude larger than that of typical fibres,
these processes have been achieved at very modest power levels,
over millimeter-long propagation distances.

Broadband light from continuum generation have found ap-
plications in precision metrology, coherence tomography and
many other areas. Such light sources exploit are mostly based
on microstructured fibers and require long propagation distances
and very high peak powers. In the present work, we investigate
how the interplay between linear and nonlinear effects of sili-
con waveguides can lead to continuum generation on chip-scale
devices.

II. DISPERSION ENGINEERING IN SOI WAVEGUIDES.

Control over the dispersive properties of guiding devices is
of utmost importance, as they govern the temporal profile of
short pulses that propagate therein. In most of its transparent
region and near 1.55 µm, bulk silicon has a large and normal
group velocity dispersion. In a waveguide configuration how-
ever, mode confinement provide and additional component to
the dispersion, which is highly dependent on the waveguide

geometry. Applications such as continuum generation require
careful choice of waveguide dimensions and accurate knowl-
edge of the dispersion over a broad wavelength range. This in-
formation is obtained by using a full vectorial modesolver calcu-
late the effective index for the optical mode of interest, which for
us is the fundamental TE mode. In these calculations,material
dispersion is included via the Sellmeier equation :

n2(λ) = ε +
A
λ2 +

Bλ2
1

λ2 − λ2
1

(1)

where ε = 11.6858, λ1 = 1.1071µm, A = 0.939816µm2 and
B = 8.10461× 10−3 are specific material constants for silicon,
and λ is in µm. Figure 1 shows plots of the group velocity
dispersion coefficient, β2 as a function of wavelength for various
waveguide dimensions, along with that of bulk silicon. Clearly,
choosing the proper waveguide dimensions is key to determine
its dispersive properties. This freedom to tailor the dispersion
at will is extremely valuable in implementing nonlinear optical
devices for light conversion.
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Fig. 1. GVD parameter for the fundamental TE mode as a function of wave-
length. All the waveguides have the same height of 220nm. The blue, red,
purple and green curves correspond to w = 450, 550, 650, and 750nm re-
spectively. The black curve is the dispersion for bulk silicon.

III. ULTRASHORT PULSE PROPAGATION IN SOI
WAVEGUIDES

In SOI wire waveguides, a propagating short pulse high
enough peak power creates an intensity dependent refractive in-
dex and generate free carriers through two-photon absorption
(TPA). The generated carriers in turn affect further propagation
by absorbing some of the photons (free carrier absorption ,FCA



) and by creating a small shift in the refractive index(free carrier
dispersion, FCD). The pulse evolution in the waveguide is then
governed by a nonlinear Schrödinger equation similar to the one
used in fibres, but modified to account both for the high refrac-
tive index contrast, and all the effects absent in fibres. It is given
as follows:

∂a
∂z

= −α

2
a + i

m=∞

∑
m=2

imβm

m!
∂ma
∂Tm + iβ f (ω0, N)a (2)

+ iγe f f

(
1 + iτs

∂

∂T

)
a(z, T)

∞∫

−∞

dτR(T − τ) ∣a(z, τ)∣2

where a(z, T) is the normalized pulse envelope. α represents
the linear losses, mainly sidewall scattering and the infinite sum
describes the dispersive properties. βm are the mth derivative
of the propagation constant taken at the reference wavelength.
The effective nonlinear parameter, γe f f = ωn2

cae f f
+ i βTPA

2ae f f
em-

bodies the nonlinear response of the waveguide. In its expres-
sion, n2 = 6 × 10−18m2/W is the kerr coefficient, βTPA =
5× 10−12m/W the two-photon absorption, and ae f f the effec-
tive modal area. The parameter τs called the shock is responsible
for optical shock formation and self-steepening, while the func-
tion R(τ) is the time domain Raman response of silicon. The
term with β f governs free carrier effects, and is proportional to
the average over the mode cross-section of the TPA-generated
free carriers density N, the time dependence of which is given
by:

∂N
∂t

=
βTPA

2h̄ ωa2
e f f
∣a(z, t)∣4 − N

τc
(3)

Coupled equations (2) and (3) completely describe the dy-
namics of pulse propagation in Si wire waveguides. To model
pulse propagation, we solve them numerically by implementing
a form of the split-step fourier algorithm. The frequency depen-
dence of the nonlinear parameter γe f f is not explicitly included
in our modeling. Figure 2 shows an example of such simula-
tions.We propagate a pulse with T0 = 100 f s and P0 = 3.7W
in a centimeter-long Si wire with 750× 220nm2 cross-section.
These pulse and waveguide parameters are chosen such that, the
soliton number N2 = γe f f P0T2

0 / ∣β2∣ ∼ 3. The launched pulse
thus corresponds to a third-order soliton, given that β2 < 0.
As can be seen from the figure, after propagation over just a
centimeter, the original pulse breaks down into its constituents
solitons, with the generation a dispersive wave generation at the
back of the pulse. The result is is a broadband continuum that
extends over 400nm.

IV. EXPERIMENTAL INVESTIGATIONS OF PULSE
PROPAGATION IN SOI WAVEGUIDES

With their very high nonlinear parameter and their small
cross-sections, SOI wires are driven into a strong nonlin-
ear regime by very modest input powers. On the other
hand,nonlinear processes are inherently limited in that, increas-
ing pump powers induce greater nonlinear losses from TPA in
the first steps of propagation. This has been referred to as opti-
cal limiting. For the experimental part of our work, we couple
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Fig. 2. Soliton fission and continuum generation in a centimeter long, 750×
220nm2 Si wire. (a) Time domain input(dash blue) and output (red) pulse
profile. (b) Spectrum at input(dash-blue) and output (red). (c) Density plot
of pulse evolution along the waveguide length.

picosecond and femtosecond pulses centered at 1.55µm in the
designed waveguides. The waveguide output is connected to
a powermeter and a spectrum analyzer. Fig. 3 shows our ex-
perimental demonstration of SPM with ps pulses in SOI wires,
along with spectra resulting from femtosecond pulse propaga-
tion. Simulations agree well with experiment in the former case,
but not so well in the latter, a fact we attribute to our short pulse
source not being optimized for the experiments.
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Fig. 3. Experimental pulse propagation in Silicon wires. (a) SPM with 1.8ps
pulses and shown peak powers propagated in 1cm−long, 650× 220nm2.
(b) corresponding simulations. (c) 20dB bandwith of recorded spectra at the
output of 1cm−long, 750× 220nm2 pumping with femtosecond pulses.

V. CONCLUSION

We have carried out both theoretical and experimental study
of short pulse propagation in SOI wire waveguides. While some
of the effects observed are in good agreement with numerical
modeling, broadband light generation from femtosecond pump
pulses as predicted from theory has yet to be demonstrated ex-
perimentally
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Chapter 1

Introduction

With the invention of the laser by Theodore Maiman in 1960 and the demonstration of
second harmonic generation the following year was born the field of Nonlinear Optics.
Since, it has emerged as a great success of modern optics. The observation of nonlinear
phenomena require high optical intensities, nearly monochromatic sources with good
control over their coherence properties, and the laser just fits those criteria. Develop-
ments both in the nonlinear materials side as well as the laser source have allowed
for an unprecedented control over the way light interacts with matter and have led
to hundreds of practical applications, among which Raman spectroscopy, wavelength
converters and supercontinuum generation.

Parallel to these major advances, the technology that we use to send information
around the world in forms of light pulses transmitted in silica optical fibres matured.
Low-order nonlinear optical effects as we shall see, are created because the dependence
of the polarization induced in a propagation medium by an electric field ceases to be lin-
ear when intensities are high. When such condition are met, the medium can be charac-
terized by its nonlinear susceptibility. Though very small, the third order susceptibility
χ(3) of silica fibres is not negligible, and is not only responsible for the effects such as
self-phase modulation and four wave mixing observed in fibres, but for the whole field
of nonlinear fibre optics as well. Making use of these nonlinear effects in real devices
requires either the use of very high power sources, very long lengths of fibre,or that we
shrink the core size of fibre core to very small dimensions.

These inconveniences, along with the need to miniaturize and integrate optical com-
ponents on chips, have in turn given birth to what has been called nanoscale nonlinear
optics. As the name indicates, the focus has been on the study of in-plane nonlinearities
of dielectric materials patterned into nanometer size guiding structures. With its attrac-
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tive electronic and optical properties, as well as the backing of the CMOS manufactur-
ing technology, silicon seems to be one such material. In fact, the last few decades have
seen tremendous progress in silicon photonics. Simple guiding structures, active opti-
cal devices such as modulators and raman lasers have been successfully implemented in
silicon. Furthermore, the prospects of integration with silicon-based CMOS electronics
now make the idea of microprocessors with optical interconnects not so far-fetched.

The present work aims to investigate the nonlinear optical processes that occur when
very short pulses of light in the ps or f s regime propagate in nanometer-scale silicon-on-
insulator waveguides. With their cross-sections smaller than the wavelength used here,
1.55µm, the dispersive properties of these structures have a strong waveguide disper-
sion component, opening the way to dispersion engineering. Furthermore, the strong
confinement due to the refractive index contrast also results in very high effective non-
linear susceptibility χ

(3)
e f f . The main goal has been to study how to control dispersive

and nonlinear properties so as to experimentally implement the device functionality
whereby short pulses would undergo severe spectral broadening, known as supercon-
tinuum generation.

1.1 Overview of the thesis

The thesis is structured as follows. In Chapter 2, we introduce the silicon photonic wires,
discuss their dispersive properties and show how dispersion can be engineered through
properly selecting waveguide dimensions. The fully vectorial modesolver FimmWave
is used to calculate the effective index across the wavelength range of interest, and dis-
persion information is extracted. We also introduce here the major nonlinear effects
stemming from the cubic susceptibility of silicon. We define the nonlinear polarization
and discuss its effects on pulse propagation.

In Chapter 3, we present a theoretical formulation of short pulse propagation in
silicon waveguides. A propagation equation is derived and a numerical model to solve
it is built.

Chapter 4 goes on to discuss the major processes that in Si wires lead to spectral
broadening and continuum generation. We use our numerical model to demonstrate the
possibility of self-phase modulation, soliton formation and continuum generation. We
also discuss the optical limiting phenomenon that is characteristic of nonlinear media
when strong nonlinear absorption is present.

Finally, Chapter 5 covers our experimental work on nonlinear effects in SPWs, with
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comparison to simulation made whenever appropriate. A short conclusion then fol-
lows.
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Chapter 2

Light Matter Interaction in Silicon
Photonic wires

In this chapter, we discuss the fundamentals of light-matter interaction and the nonlin-
ear processes that occur as an ultrashort pulse of light propagates in a silicon waveg-
uide. Before we get there however, we introduce the linear optical properties of such
wires, focussing on how their design affect their guiding properties such as modal field
distribution and effective refractive index. What is of interest in so doing as we shall
point out is the frequency dispersion of the propagation constant.The nonlinear pro-
cesses that contribute to the spectral broadening we wish to achieve often depend on
phase-matching conditions, and efficient continuum generation relies on our ability to
engineer dispersion to all orders.

2.1 Linear properties of silicon waveguides

2.1.1 Silicon photonic wires and means to interrogate them

By Silicon Photonic Wires (SPWs) or Silicon waveguides, we refer to the ridge waveg-
uide structure that can be seen in Figure 2.1 below. Such structures were pioneered by
Soref and Lorenzo, who first demonstrated the use of silicon as a material for guiding
light in the telecom wavelengths in 1985. The wire made of silicon is patterned on a
1µm thick layer of silica (SiO2), which itself reposes on a thicker silicon substrate.

The wire waveguides used in this work are from the CMOS production line at IMEC-
Leuven, and all have a height h = 220nm for the silicon core layer. Therefore, the only
parameters that remains available to modify and engineer dispersion is the waveguide
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width w, which will typically have values between 350 and 850nm.

 

 

(a)

Si Substrate

w

h 1µ
m

SiO2

Sib

(b)

Figure 2.1: (a) SEM image of cross section. (b) graphical illustration of structure

When propagating through such a structure, light is trapped in the silicon wire
through total internal reflection because of the high refractive index contrast between
the silicon core (n = 3.476), the underlying silica cladding layer (n = 1.444) and the
top cladding layer which throughout this work is air, but could be any other low-index
material such as polymers or chalcogenide glasses. The field distribution in the plane
of the cross-section, which is a solution of Maxwell’s equation, will be called an optical
mode. Our waveguides normally support transverse electric (TE) modes and transverse
magnetic (TM) modes. The TE modes have their electric

−→
E -field oscillating in the plane,

while the TM mode have their magnetic
−→
H -field oscillating in-plane.

To characterize such waveguides, we need to efficiently couple light both in and out.
To do this, two configurations are used and are shown in Figure 2.2 below. Our waveg-
uides have incorporated on them grating coupler structures which allow to couple light
in and out vertically from slightly tilted fibers (8 to 10∘). Those are one-dimensional
gratings etched in a 10-12µm broad waveguides, which are then linearly tapered down
to the width of our waveguide. One problem that arises when grating couplers are used
at both ends, is that their spectral bandwidth is limited. And for applications such as
continuum generation where we seek to generate very broadband light, it is problem-
atic, as much of the light generated through non-linear processes might not make it to
the detector. That is why some of our samples have been cleaved to get rid of the out-
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put grating coupler. Light at the output can then be collected, though less efficiently,
through butt coupling with a fiber or a microscope objective as displayed in Figure. The
gratings are designed to give optimum performance at a wavelength of 1550nm, which
is the used throughout the experiments in this work. The gratings are also optimized to
couple more efficiently to the fundamental TE mode and the linear taper ensures that
light propagating inside our waveguide will mostly be that mode, even when the width
is such that it is possible to support other modes.

2.1.2 Dispersion Engineering in Silicon Photonic Wires

As we pointed out earlier, control of dispersion is crucial in order to implement the
kind of device functionalities we’re looking for, such as wavelength conversion or con-
tinuum generation. Dispersion dictates the temporal properties of ultrashort pulses as
they propagate inside the waveguides, whether or not pulses form temporal solitons
for example will depend on whether the group velocity dispersion is anomalous or not.

The very high index contrast in the SOI structure that we use throughout this work
means that the electromagnetic field propagating in the core will experience very strong
confinement. This has a number of advantages as mentioned in the introduction. First
of all, it ensures that the waveguide geometry is actually governing the dispersive prop-
erties of the waveguide, and second as we shall see, it lowers the power requirements
in order to observe strong nonlinear effects.

Dispersion engineering has been demonstrated in microstructured fibers, and mul-
timode fibers for example. The same has been done in SPWs, first by Chen et al [1] who
showed such wires could be designed to have zero group velocity dispersion (ZGVD)
around telecommunication wavelengths.

To show how dispersion changes as a function of the only parameter available to
us to tune, namely the waveguide width w, we use the fully vectorial 3D modesolver
software FimmWave to compute the effective refractive index ne f f , again for the fun-
damental TE mode which will be the one actually propagating in our waveguide. An
example of the field distribution as computed by Fimmwave is shown in the Figure
below. We then extract the propagation constant given by:

β(ω) =
ne f f (ω)ω

c
. (2.1)
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Experimenten
Meetopstelling : schematisch

Input  and output fibers
tilted at 8‐10°

Input grating coupler

52

Input grating coupler

(a)

 

 

(b)

Figure 2.2: (a) Vertical fiber coupling in and out (b) vertical in coupling, horizontal
out-coupling
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Once we obtain the propagation constant β(ω), the group index ng = c/vg = β1c
with vg being the mode’s group velocity,the group velocity dispersion parameter β2 and
the third order dispertion coefficient β3 will all be readily obtained. All order dispersion
coefficients are simply given by:

βn =
dnβ(ω)

dωn (2.2)

The commonly used dispersion parameter D is related to the GVD coefficient as :
D = −2πcβ2

λ2 , where λ is the wavelength and D is given in ps/nm ⋅ km.
Fimmwave calculations fully account for the material dispersion of both the silicon

core layer and the silica cladding layer through their Sellmeier equation which take the
form:

n2(λ) = ε +
A
λ2 +

Bλ2
1

λ2 − λ2
1

(2.3)

for silicon, the constants appearing in this equation are : ε = 11.6858, λ1 = 1.1071µm,

h

w

(a)

h = 220nmh = 220nm

w=  500nm

(b)

h = 220nmh = 220nm

W =  500nm

(c)

Figure 2.3: (a) Actual structure (b) TE mode intensity profile (c) TM mode intensity
profile
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A = 0.939816µm2 and B = 8.10461× 10−3. Figure 2.4 below shows the effective index
for several waveguide widths as computed by FimmWave.

The effective index is calculated between λ = 1.2 and λ = 2µm, which is our range
of interest, for the fundamental TE mode. It is defined by:

ne f f (λ) =
β(ω)

k0
(2.4)

where β(ω) is the propagation constant obtained by solving Maxwell’s equations with
the appropriate boundary conditions, and k0 = 2π/λ is the free space propagation
constant.

It can be seen on the plots of Figure 2.4 that, for shorter wavelengths, the confine-
ment provided by waveguides of different size is almost the same, and thus the little
difference in effective index. As wavelength increases, this ceases to be the case, thus
ne f f does have a strong waveguide contribution. To proceed, we fit the refractive index
data with a 9-degree polynomial and calculate its derivatives. Up to the second or-
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Figure 2.4: Fundamental TE mode Effective index for different SPWs
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der, the dispersion coefficients obtained from this method can be considered accurate.
However, as pointed out by Dadap et al [2], because of the accumulative errors due to
successive derivation steps, coefficients beyond the second order are not accurate and
must be determined experimentally. This is done for example by tracking solitonic fea-
tures in experimental data.

For the waveguide dimensions used in this work, SPWs display two zero dispersion
wavelengths (ZDW). Figures 2.5 and 2.6 below shows the group velocity dispersion
coefficient, rather −β2 as obtained from the ne f f data. For smaller waveguides, it is the
second ZDW that is of interest, and it can be shown here that a waveguide slightly wider
than 350nm will have its ZDW exactly at 1.55µm, which is in agreement with the value
w = 360nm found by Osgood et al. For wider waveguide however, it is the first ZDW
that is of interest. The two ZDWs can be clearly seen for the w = 550nm waveguide.

It can be seen from the plots that both ZDWs shift to the red as a result of increasing
waveguide width. We will not show here the plots of higher order dispersion coeffi-
cient, but their value at 1550nm which will be our pump wavelength, is tabulated and

1200 1300 1400 1500 1600 1700 1800 1900
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2  /
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2 /m

1500 1600 1700 1800 1900
−2

0

2

4

6

Figure 2.5: Group velocity dispersion coefficient −β2 as function of wavelength for the
fundamental TE mode. Green curve is for w = 350nm, the blue for w = 400nm, the red
for w = 450nm and the black curve for w = 500nm. The inset zooms on the area where
β2 = 0ps2/m
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Figure 2.6: Group velocity dispersion coefficient −β2 as function of wavelength for the
fundamental TE mode. From left to right are the w = 550nm to w = 850nm in 50nm
increments.

can be found in the appendix. We close this section by alluring to something we shall
discuss at length, namely that experiments in microstructured fibers have revealed that
most efficient continuum generation is achieved when the waveguide is pumped in the
vicinity of its ZDW wavelength, but in the anomalous dispersion regime(β2 < 0). Most
of our waveguides of Figure 2.6 do have 1550nm in the anomalous GVD regime, with
the w = 750nm having the closest ZDW to 1550nm. SPWs however are different from
fibers, and as a result, effective nonlinear susceptibilities are in fact lower for wider
waveguides.

2.1.3 Linear propagation losses in Silicon waveguides

As light propagates in our waveguide, we can expect propagation losses to arise from a
number of reasons.Bulk and surface state absorption are not expected to be significant
in the wavelength range we use. Rayleigh scattering and substrate leakage are another
source, though they will again be neglected. The dominant contribution to linear loss
comes from scattering at sidewall roughnesses. The overall loss value as taken from ref
[4] will be 3 to 3.5dB/cm.
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2.2 Nonlinear processes in Silicon Photonic Wires

We have pointed out earlier that low-order nonlinear effects occur in dielectric media
when the intensity of the propagating field is so strong that the media polarization
ceases to be linear with the field. In SPWs, because of the tight confinement due to
the high index contrast and their very small cross-section, such high intensities can be
easily achieved with modest power levels. In addition, the nonlinear response of sil-
icon is orders of magnitude stronger than that of silica fibers for example. We will in
this section introduce the main nonlinear effects that will affect pulse propagation, and
mathematical formulation of pulse propagation will be given and discussed in a future
chapter.

2.2.1 Nonlinear polarization and Third-order susceptibility of silicon

When the intensity of the propagating field is high enough, the induced polarization
inside the SPW can be expressed as a power series of the electric field:

P(t) = P(0)(t) + P(1)(t) + P(2)(t) + P(3)(t) + ⋅ ⋅ ⋅ (2.5)

or equivalently in the fequency domain:

P(ω) = P(0)(ω) + P(1)(ω) + P(2)(ω) + P(3)(ω) + ⋅ ⋅ ⋅ (2.6)

where P(0) is independent of the field and P(n) is proportional to (E)n. Furthermore,
time and frequency domain fields are related via a Fourier transform:

P(n)(ω) = F
(

P(n)(t)
)
=
∫ ∞

−∞
P(n)(t) exp(−jωt)dt (2.7)

P(n)(t) = F−1
(

P(n)(ω)
)
=

1
2π

∫ ∞

−∞
P(n)(ω) exp(jωt)dω (2.8)

Under the conditions of time invariance and causality, the n-th order polarization is
given by (reference):

P(n)(ω, r) = ε0

(
1

2π

)n−1 ∫ ∞

−∞
dω1 ⋅ ⋅ ⋅

∫ ∞

−∞
dωn ⋅ χ(n)(−ωσ; ω1, ⋅ ⋅ ⋅ , ωn)

...E(r, ω1) ⋅ ⋅ ⋅ E(r, ωn)δ(ω−ωσ) (2.9)

where χ(n) is the n-th order susceptibility tensor. These tensors depend on the nature
and crystalline structure of the dielectric medium. They vanish quicly as n increases,
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and thus are rarely considered beyond the third order. Crystalline silicon has a cen-
trosymmetric structure as it belongs to the m3m class, and as such, its even order sus-
ceptibilities are identically zero. That leaves us with the lowest order-nonlinear suscep-
tibility being the third-order one, and it is the source of the effects investigated in this
work.

If we now consider a monochromatic wave of frequency ω propagating in our SPW,
that is:

E(r, t) =
1
2

Eω(r, t) exp(jωt) + c.c (2.10)

then the polarization response can have frequencies ω, −ω for the first order, and 3ω,
−3ω as well as ω and −ω for the third order. Because of phase-matching requirements,
the third-order harmonic generation process that leads to waves at 3ω is very inneficient
and neglected. When such conditions as well as that of permutation symmetry are
satisfied, the total response at frequency ω as obtained from equation (2.9) is :

P(r, ω) = ε0χ(1) ⋅ E(r, ω) +
3
4

ε0χ(3)(−ω; ω,−ω, ω)
...E(r, ω)E∗(r, ω)E(r, ω) (2.11)

χ(3) is a third-order susceptibility tensor, the real part of which will lead to a nonlin-
ear refractive index or the Kerr effect, and its imaginary part will cause nonlinear loss
via two-photon absorption or TPA. The tensor normally has 81 elements, but for m3m
crystals like silicon however, only 21 elements of the tensor are nonzero, of which only
4 are independent, namely : χ

(3)
1111, χ

(3)
1122, χ

(3)
1212and χ

(3)
1221. Symmetry of the crystal also

requires that χ
(3)
1122 = χ

(3)
1221, and if we neglect frequency dispersion of the tensor as we

will always do throughout this work, Kleinman symmetry is valid and χ
(3)
1122 = χ

(3)
1212.

Therefore only two elements will be truly independent. Different effects will contribute
to the ultimate values of the susceptibility, with the most important being the bound
electronic Kerr effect, and the Raman response.

2.2.2 The Kerr effect and Two-photon absorption

Let’s consider for the moment that in equation (2.11) the nonlinear susceptibilities are
scalars. Then we have:

P(r, ω) = ε0χ(1) ⋅ E(r, ω) +
3
4

ε0χ(3)(−ω; ω,−ω, ω) ⋅ ∣E(r, ω)∣2 E(r, ω)

= ε0

(
χ(1) + χ(3)(−ω; ω,−ω, ω) ⋅ ∣E(r, ω)∣2

)
E(r, ω) (2.12)

with the complex refractive index nc(ω) = n− jK defined from the relation :

P(r, ω) = ε0

(
n2

c(ω)− 1
)

E(r, ω) (2.13)
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we therefore have, as n≫ K:

n ≈
√

1 + Reχ(1) +
3
4

Reχ(3)(−ω; ω,−ω, ω) ⋅ ∣E(r, ω)∣2

≈
√

1 + Reχ(1) +
3
8

Reχ(3)(−ω; ω,−ω, ω) ⋅ ∣E(r, ω)∣2√
1 + Reχ(1)

≡
√

1 + Reχ(1) +
3
4

Reχ(3)(−ω; ω,−ω, ω) ⋅ Iω

ε0cn0

√
1 + Reχ(1)

≡ n0 + n2 ⋅ Iω (2.14)

where
n0 ≡

√
1 + Reχ(1) (2.15)

and

n2 ≡
3Reχ(3)(−ω; ω,−ω, ω)

4n2
0ε0c

(2.16)

On the other hand, we do have:

K ≈ − Imχ(1)

2n0
− 3Imχ(3)(−ω; ω,−ω, ω) ∣Eω∣2

8n0

≡ − Imχ(1)

2n0
− 3Imχ(3)(−ω; ω,−ω, ω) ⋅ Iω

4n2
0ε0c

≡ K0 + K2 ⋅ Iω (2.17)

where again

K0 ≡ −
Imχ(1)

2n0
(2.18)

and

K2 ≡ −
3Imχ(3)(−ω; ω,−ω, ω)

4n2
0ε0c

(2.19)

K0 and K2 relate to the linear and two photon absorption coefficients as α = 2 ω
c K0 and

βTPA = 2ω
c K2.

What we have just derived in equations (2.16) and (2.19) is remarkable. First of
all, it means that a wave propagating inside our waveguide will induce an additional
intensity-dependent component to the refractive index. This is the Kerr effect and is
the origin of self-phase and cross-phase modulation when short pulses propagate in
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the waveguide. Though the photon energy might not be high enough to put a valence
band electron into the conduction band via a simple transition, two photons can be
absorbed at the same time and result in such a transition as long as h̄ω ⩾

Eg
2 . This is

the two-photon absorption process. It constitutes in itself a source of loss for a pulse
propagating inside the waveguide, but free carriers it generates will also affect pulse
propagation dynamics.

Second and very important, just from the mathematics, it means that:

χ(3)(−ω; ω,−ω, ω) = Reχ(3)(−ω; ω,−ω, ω) + iImχ(3)(−ω; ω,−ω, ω)

=
4n2

0ε0c
3

n2 + i
4n2

0ε0c
3

c
2ω

βTPA (2.20)

and thus

ω

c
n2 +

i
2

βTPA =
3ω

4n2
0ε0c2

χ
(3)
e f f (−ω; ω,−ω, ω) (2.21)

where we have replaced χ(3) by χ
(3)
e f f , which actually contain the symmetry information

of silicon and the propagation and polarization direction of the wave (see [7, 8]). This
tells us that though χ(3)(−ω; ω,−ω, ω) cannot be directly measured, we can compute
it since it is linked to the Kerr coefficient n2 and the TPA coefficient βTPA by a very
simple relation. Measurements of βTPA and n2 have been performed by a number of
researchers and though there are some discrepancies in the data actually obtained, we
will be using some recent measurement results from Bristow et al [3], shown in Figure
2.7 below.

Though we will not consider the frequency dispersion of either n2 or βTPA in our
work, it is instructive to look at the actual data of Figure 2.7. As expected, βTPA de-
creases to essentially zero as we approach the midgap energy, that is λ ∼ 2.2µm, and
matches rather well with theoretical predictions. The Kerr coefficient n2 however in-
creases with wavelength and does not follow the Kramers-Krönig relation predicted
from theory. The reason is because other contributions to n2, namely the Raman and
Stark effects contributions are not included.

2.2.3 Free Carrier effects

The TPA process described in the previous subsection leads to the generation of charge
carriers in the waveguide. These carriers influence further propagation in two ways.
First of all, they can absorb light at any wavelength,and this is the free carrier absorp-
tion. Second, they lead to a change in the refractive index and this has been called free
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only 1�10−14 cm2/W. The remaining discrepancy is likely
due to the neglect of Raman and quadratic stark
contributions27 in the Kramers-Krönig transform as well as
the simple approximation for the nondegenerate �.

In summary we have measured the degenerate two-
photon absorption and Kerr coefficient of bulk Si for 850
���2200 nm associated with absorption across the indirect
gap. The dispersion in the two-photon absorption coefficient
is in good agreement with the functional form of recent the-
oretical predictions by Garcia and Kalyanaraman, consider-
ing the various approximations incorporated in the theory
and the experimental error in the data. The dispersion of the
Kerr contribution to the refractive index shows a factor of 4
variation in magnitude with the peak value located at a
wavelength consistent with that estimated from a simple
Kramers-Krönig transform of the theoretical two-photon ab-
sorption coefficient.
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Betz and appreciate financial support from the Natural Sci-
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(a)

gap can occur for ��1070 nm, its influence is estimated to
be negligible based on the scaling rules of Wherret.23 The
maximum change in refractive index from free carrier
�Drude� contribution is �−10−4, more than an order of mag-
nitude smaller and of opposite sign to that measured by us.
Similarly, band filling and band gap shrinkage effects are
calculated as negligible.24 At several wavelengths it was also
verified that the induced transmission change varied with I0

2,
indicating that cascaded processes such as 2PA followed by
free carrier absorption were negligible. Measurements were
attempted to observe anisotropy in the nonlinear absorption;
however, for ��1400 nm the variation of � with linear po-
larization direction was �5% and within experimental error.

Typical closed and open aperture z-scan traces are shown
in Fig. 1 for �=1220 nm. They display the shapes expected
from Eqs. �1� and �2�. Fits to the data yield �
=2.1±0.4 cm/GW and n2= �4.7±2.0��10−5 cm2/GW. Val-
ues of � as a function of � are illustrated in Fig. 2. The data
are displayed along with values measured by others, as indi-
cated. The experimental results are consistent within experi-
mental error, which, in our case, is mainly related to obtain-
ing values of peak laser intensity and small differences in
beam shape with tuning. Not shown is the result �
�5 cm/GW obtained by Sabbah and Riffe25 since this is
only an estimate. Overall, one sees that � tends to zero for

��2200 nm, corresponding to a photon energy of Egi /2.
The � increases with decreasing wavelength before exhibit-
ing a broad peak or plateau for ��1200 nm. Also illustrated
in Fig. 2 is the theoretical dispersion curve for the degenerate
� based on the calculations of Garcia and Kalyanaraman20

�GK�. While Dinu19 earlier had only considered26

“forbidden-forbidden” �f-f� indirect gap transitions, GK also
incorporated “allowed-forbidden” �a-f� and “allowed-
allowed” �a-a� optical transitions and showed that these latter
processes dominate � for photon energies below Egi. Overall,
�=�n=0

2 ��n�, with n=0,1 ,2 for a-a, a-f, and f-f transitions.26

The contribution of each process depends on fundamental
photon energy �	
� as ��n�=2CF2

�n��	
 /Egi� for a material-
dependent constant C, with the factor of 2 accounting for
phonon emission and absorption processes in indirect gap
optical absorption. For parabolic electron and hole bands
and x=	
 /Egi, F2

�n��x�= ���2n+1�!! /2n+2�n+2�!��2x�−5�2x
−1�n+2, with the assumption that phonon energies are �Egi.
The f-f process, much weaker than the two other processes,
peaks at 	
�5Egi /2 and only begins to dominate when lin-
ear absorption becomes strong. The other two processes peak
for photon energies near Egi. Given the difficulty in account-
ing for all the phonon-assisted processes, we fit our data with
the functional form �=�n��n� to obtain C=43 cm/GW. As
seen in the figure, apart from the need to incorporate the
scaling parameter, the dispersion characteristics of � are con-
sistent with the GK calculation.20

Figure 3 shows our measurements of n2 along with the
measurements at 1300 and 1550 �m by Dinu et al.18 The
value of n2 increases by a factor of 4 with increasing wave-
length until 1800 nm, after which it declines slightly in
value. Also shown is a theoretical estimate based on the
Kramers-Krönig transform �n2�
�=c /�	��
 ,
�� /
2

−
�2d
�� which makes use of the nondegenerate � with the
approximation27 ��
 ,
��=���
+
�� /2�. While the experi-
mental and theoretical estimates peak at approximately the
same wavelength, the estimate gives values well below the
measured results. Including 2PA associated with direct gap
transitions17 in the calculation shifts the estimate upward by

FIG. 1. �Color online� Typical z-scan traces for 125 �m thick Si at 1220 nm
with a peak intensity of 7.8 GW/cm2. �a� Open aperture z trace. �b� Closed
aperture z-scan trace with S=0.13. The thin solid lines are best fits based on
Eqs. �1� and �2�.

FIG. 2. �Color online� Measured value of � �squares� as a function of
wavelength for a 125 �m thick sample silicon wafer. Data from other
sources are also given: circles �Ref. 7�, uptriangles �Ref. 15�, down triangles
�Ref. 9�, and diamonds �Ref. 18�. The solid curve represents the best fit
based on calculations of Garcia and Kalyanaraman �Ref. 20�.

191104-2 Bristow, Rotenberg, and van Driel Appl. Phys. Lett. 90, 191104 �2007�

Downloaded 08 May 2007 to 128.138.107.99. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp

(b)

Figure 2.7: (a) Measured values of n2 (squares) as function of wavelength. Diamonds
are data from Dinu et al. [5]. Solid line is Kramers-Krönig transformation of solid curve
in b. (b) Measured values of βTPA (squares) as a function of wavelength. Triangles and
diamonds are data form other sources. Solid line is best theoretical fit. (After ref [3])

carrier dispersion. Because of their momentum relaxation times (average time required
for the carrier to lose its original momentum due for example to a scattering event, given
by τ = µm∗

q ) shorter than a ps, free carriers will be able to follow oscillations of the prop-
agating wave almost instantaneously(see [8]). This leads to an additional polarization
component that can be correctly described by the Drude model. The net result is a free
carrier susceptibility given by:

χ f = 2n0
[
n f + icα f /2ω

]
(2.22)

where n f is the free carrier index change and α f describes the free carrier absorption.
They are given by [9]:

n f = −
q2

2ε0n0ω2

(
N
m∗e

+
N0.8

m∗h

)
(2.23)

α f =
q3N

ε0cn0ω2

(
1

µem∗e
+

1
µhm∗h

)
(2.24)

with q the electronic charge and µ the mobilities.
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What’s interesting in equations (2.23) and (2.24) is that both n f and α f will follow
the time variation of the carrier concentration. This is very important as it can be used
to monitor carrier dynamics in silicon waveguides.

Considering only generation through TPA and a carrier lifetime τc comprising both
carrier drift and diffusion, the rate at which free carrier concentration changes can be
derived as:

∂N
∂t

=
βTPA I2

2h̄ ω
− N

τc
(2.25)

where I will be the intensity of the field inside the waveguide. This as we shall see,
would allow us to incorporate all the effects described here into a model to describe
pulse propagation inside the waveguide.

2.2.4 The Raman Response

As pointed out when describing the discrepancies between theory and the data of Fig-
ure 2.7, Raman scattering constitutes an additional third-order process in silicon. Ra-
man scattering is that process which couples light and phonons, the net effect when
two pulses with spectra separated by a Raman vibrational frequency co-propagate is
the transfer of energy from one to the other. If it is however a monochromatic wave
at frequency ωp propagating alone, it will create a scattered stokes wave at ωs down-
shifted from the pump signal by one Raman frequency, ωR = ωp − ωs. For silicon,
the Raman response can be assimilated to a Lorentzian downshifted from the pump by
ωR/2π = 15.6THz with a spectral width ∆ω/2π = 105GHz.

Though the Raman response in silicon is very important and has been used to demon-
strate lasing in silicon waveguides(see [6]), the Raman bandwidth is too narrow for the
effect to be as significant as in fibres when short pulses propagate in Si waveguides. The
formalism to include it when describing the dynamics of pulse propagation will follow
along the same line, with the introduction of a Raman susceptibility tensor and Raman
induced polarization. Again this becomes significant when two pulses separated by
ωR are copropagating, we then speak of stimulated Raman scattering. If the pulses are
separated by less, they will interact via four-wave mixing, which is a χ(3) effect.

2.3 Summary

We have seen both the linear and the relevant nonlinear optical process that may happen
in Silicon in general. We have stressed the possibility silicon photonic wires offer to
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engineer their dispersion characteristics, which is of paramount importance. The effects
we have described in this chapter can be summarized in the figure below (from [10]).2.7 Complete nonlinear picture 27

valence

band

conduction

band

Kerr effect n
2

thermal
th

FCA 
a

2PA

surface
carr

FCD 
r

thermalization

Figure 2.8: When light enters in this material, it can be absorbed through
two-photon absorption and give rise to a change in the refractive index ef-
fect proportional to the light intensity: the Kerr effect. Free carriers that are
excited through the 2PA process, can give rise to free-carrier absorption and
associated a refractive index change: free carrier dispersion. After a while,
these carriers will recombine and in the case of submicron structures (such as
photonic wires), this is mainly due to surface recombination. This interband
relaxation together with the intraband relaxation effects from carriers created
due to 2PA and FCA will meanly lead to phonon creation, which results in
heating of the structure and gives rise to thermal expansion and a thermal re-
fractive index change. Due to conduction and convection, the structure finally
cools down to a steady-state temperature.

1.55µm), one of the most interesting semiconductor materials for Kerr-
nonlinear effects.

Using equations (2.46), (2.47) and (2.49), the complete picture can be
summarized in these three equations:

dI

dz
(z, t) = −αaddI(z, t)− βII

2(z, t)− σaN(z, t)I(z, t) (2.51)

dN

dt
(z, t) =

βII
2(z, t)

2~ω
− N(z, t)

τcarr
(2.52)

dT

dt
(z, t) =

βII
2(z, t) + σaN(z, t)I(z, t)

ρCp
− T (z, t)− T0

τth
(2.53)

with τcarr the carrier and τth the thermal life time. At the wavelength
of 1.55 µm, linear absorption is negligible and the main free carrier con-
tribution is the plasma effect.

For high-bitrate operation, an average carrier and heat distribution
will be generated since τcarr and τth are relatively high: dN

dt ≈ dT
dt ≈ 0,

Figure 2.8: Summarizing nonlinear optical processes in silicon waveguides. As a strong
light field enters the waveguide, it induces an intensity-dependent refractive index
change: the Kerr effect. Two photons can be absorbed at the same time and this is
TPA. Carriers generated by TPA can absorb light and induce a refractive index change,
FCA and FCD. They also recombine, mostly at the surface as shown. These relaxations
create phonons, will heat up the system.

These are the foundations we will use in the next chapter to build a model to un-
derstand how ultrashort pulses are affected as they propagate in a silicon waveguide,
particularly how the interplay between dispersion and nonlinear effects can lead to sig-
nificant spectral broadening.
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Chapter 3

Theory of ultrashort pulse propagation
in Silicon Photonic Wires.

We have in the previous chapter identified the major nonlinear effects in Si wires and
defined nonlinear susceptibility tensors, along with the nonlinear polarization associ-
ated with each them. Here we provide a mathematical formulation of how these pro-
cesses interact with each other and with waveguide dispersion to govern ultrashort
pulse propagation inside the Si Wires.

3.1 Frequency domain propagation equation

Our starting point to develop the equation that governs pulse propagation inside the Si
wires is the Maxwell wave equation, namely:

−→∇ 2−→E − 1
c2

∂2−→E
∂t2 = µ0

∂2−→P
∂t2 (3.1)

where
−→
P is the induced polarization in the propagation medium. We can write

−→
P as

linear and nonlinear components:

−→
P =

−→
P L +

−→
P NL (3.2)

The linear component
−→
PL = ε0χ(1)−→E and we insert it in equation (3.1) to obtain:

−→∇ 2−→E − 1
c2 (1 + χ(1))

∂2−→E
∂t2 = µ0

∂2−→P NL

∂t2 (3.3)
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Keeping in mind that n2
0 = 1 + χ(1) and transforming the previous equation to the

frequency domain, we obtain:
[
−→∇ 2 +

ω2n2
0(ω)

c2

]
Ẽ = −µ0ω2P̃NL (3.4)

We now make a general assumption in that the nonlinear polarization resulting mainly
from the third order nonlinearity and free carrier effects will be a perturbation to the lin-
ear wave equation and will not affect the modes of the waveguide. This generally holds,
as the magnitude of the nonlinear effects is indeed very small. Under such assumption
we write:

Ẽ = F̃(x, y, ω)Ã(z, ω) (3.5)

where F̃(x, y, ω) governs the transverse mode profile(see for example Figure 2.3). Sub-
stituting Ẽ in equation (3.4), we obtain:

Ã(z, ω)∇2
T F̃(x, y, ω) + F̃(x, y, ω)

∂2

∂z2 Ã(z, ω) +
ω2n2

0(ω)

c2 F̃(x, y, ω)Ã(z, ω)

= −µ0ω2P̃NL (3.6)

We now multiply both sides of this equation by F̃∗(x, y, ω) and integrate over the whole
transverse plane to obtain :

Ã
∫∫

F̃∗∇2
T F̃dxdy +

∂2

∂z2 Ã
∫∫ ∣∣∣F̃

∣∣∣
2

dxdy + Ã
ω2

c2

∫∫ ∣∣∣F̃
∣∣∣
2

n2
0(ω)dxdy

= −µ0ω2
∫∫

F̃∗P̃NLdxdy (3.7)

which we rewrite as:

∂2

∂z2 Ã(z, ω) + β2(ω)Ã(z, ω) = −µ0ω2
∫∫

F̃∗P̃NLdxdy
∫∫ ∣∣∣F̃

∣∣∣
2

dxdy
(3.8)

where β(ω) is the propagation constant we introduced in the previous chapter and is
given by :

β2(ω) =

ω2

c2

∫∫ ∣∣∣F̃
∣∣∣
2

n2
0(ω)dxdy +

∫∫
F̃∗∇2

T F̃dxdy
∫∫ ∣∣∣F̃

∣∣∣
2

dxdy
(3.9)

The waveguide linear dispersion we described in the previous chapter and the plot of
Figure 2.4 (ne f f (ω) = c

ω β(ω)) are obtained from equation (3.9) after the modesolver
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has computed the mode profile under the boundary conditions imposed by the waveg-
uide geometry [8]. Indeed, waveguide geometry plays an extremely important role in
determining its dispersive and even birefringence properties, this has been investigated
in great detail by Daniel et al [12].

When no nonlinear polarization is induced, the solution of equation (3.8), which is
then a simple Helmhlotz equation, will be of the form e±iβ(w)z. These are forward and
backward propagating waves with constant transverse field distributions. Assuming
that the field will propagate only in the forward +z direction, we can use the slowly
varying envelope approximation (SVEA):

∂2

∂z2 + β2(ω) =

(
∂

∂z
+ iβ(ω)

)(
∂

∂z
− iβ(ω)

)
≈ 2iβ(ω)

(
∂

∂z
− iβ(ω)

)
(3.10)

Equation (3.8) then becomes:

∂

∂z
Ã(z, ω) = iβ(ω)Ã(z, ω)− µ0ω2

2iβ(ω)

∫∫
F̃∗P̃NLdxdy

∫∫ ∣∣∣F̃
∣∣∣
2

dxdy
(3.11)

We will now replace the nonlinear polarization P̃NL by the proper expression. We will
consider mostly the free carrier and χ(3) contributions. And thus:

P̃NL = P̃
f
+ P̃

(3)
(3.12)

The third-order component is obtained from equation (2.9) as follows:

P̃
(3)

=
3
4

1
(2π)2

∫∫∫
dωjdωkdωl ⋅ χ(3)

ijkl(−ωi; ωj,−ωk, ωl)Ẽ(r, ωj)Ẽ
∗
(r, ωk)Ẽ(r, ωl) (3.13)

where the factor 3
4 accounts for the combinations of frequencies and we have explicitly

expressed the nonlinear polarization (see [11]). As for the free carriers contribution, a
calculation from the Drude model gives it in the time domain as follows:

P f (r, t) = ∑
ωu

(
Ne(r, t)pe(ωu) + Nh(r, t)ph(ωu)

)
(3.14)

where pν is the polarization response of a single carrier, obtained from the Drude model

as pν(ω) = ε0
q2τν

ε0m∗ν

( −1
ω(ωτν + i)

)
E(ω, r, t). Thus, for a single frequency wave propa-

gating in the waveguide, we can write in the frequency domain:

P̃
f
(r, ω) = ε0χ f (−ω; ω)Ẽ(r, ω) (3.15)
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where χ f (−ω; ω) is the free carrier susceptibility, and is obtained as:

χ f (−ω, ω) =
q2τe

ε0m∗e

( −1
ω(ωτe + i)

)
Ñe(r, ω) +

q2τh
ε0m∗h

( −1
ω(ωτh + i)

)
Ñh(r, ω) (3.16)

. By separating the susceptibility in real and imaginary parts for free carrier and free
carrier absorption, we arrive at equation (2.22).

We will now replace the electric fields in equations (3.13) and (3.15) by the expres-
sion (3.5), but first we normalize Ã(z, ω) such that its time domain counterpart has
units of power, that is:

Ã(z, ω) =

√
2Z0

n
ã (3.17)

Substituting all of this into equation (3.11) , we obtain the propagation equation below:

∂

∂z
ã(z, ω) = iβ(ω)ã(z, ω) + iβ f (−ω; ω)ã(z, ω) (3.18)

+
∫∫∫

γijkl(−ω; ωj,−ωk, ωl)ã(z, ωj)ã
∗(z, ωk)ã(z, ωl)dωjdωkdωl

In the term representing the free carrier contribution, we have defined β f (−ω; ω) as :

β f (−ω; ω) =
ω

2ne f f (w)

∫∫
χ f (−ω; ω)

∣∣∣F̃(x, y, ω)
∣∣∣
2

dxdy
∫∫ ∣∣∣F̃(x, y, ω)

∣∣∣
2

dxdy
(3.19)

What this means, is remarkable. The net effect of free carriers will result from an overlap
between carrier distribution and mode profile. This can be seen by noting that if χ f is
linear in carrier densities (that is ignoring the 0.8 power in equation (2.23), which is a
valid approximation), then we have:

β f (−ω; ω) =
ω

2ne f f (ω)
χ f (−ω; ω, Ñ); with Ñ =

∫∫
Ñ
∣∣∣F̃(x, y, ω)

∣∣∣
2

dxdy
∫∫ ∣∣∣F̃(x, y, ω)

∣∣∣
2

dxdy
(3.20)

As the free carrier effects are linear in electric field, the expression for β f can be further
simplified since these effects will manifest themselves in the time domain mainly as a
perturbation of the propagation constant(see [8]). By combining equations (3.20) and
(2.22), we do obtain:

β f (ω, N) =
n0(ω)

ne f f (ω)

[
ω

c
n f +

i
2

α f

]
(3.21)
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It is now clear that both FCA and FCD will be significantly different in a waveguide
when compared to bulk silicon. First of all there is an apparent enhancement factor that
is the ratio between bulk and effective indices. Would the carrier density distribution
be the same in bulk and in the waveguide, both FCA and FCD will be enhanced in
the waveguide since ne f f is much smaller than the bulk index due to the confinement.
Second, the average carriers density value used to compute FCA and FCD coefficients
will be the one given by (3.20) which expresses the fact that only a fraction of the field
will generate carriers and that they will interact with that fraction which is actually
confined in the silicon waveguide. This, as pointed out in [7], is a direct consequence
of the fact that only part of the mode actually overlaps with the silicon waveguide.

The last term in the propagation equation (3.18) governs the nonlinear processes we
discussed in the previous chapter. The effective nonlinear coefficient is given by:

γijkl(−ω; ωj,−ωk, ωl) =
3ω ⋅ χ(3)

ijkl(−ω; ωj,−ωk, ωl)

4ε0c2(nωnjnknl)
1
2

∫∫
F̃∗ω F̃j F̃∗k F̃ldxdy

∏
ν=ω,j,k,l

[∫∫ ∣∣∣F̃ν

∣∣∣
2

dxdy
] 1

2
(3.22)

We can simplify this expression by writing it as:

γijkl(−ω; ωj,−ωk, ωl) =
3ωηωjkl

4ε0c2a(nωnjnknl)
1
2
⋅ χ(3)

ijkl(−ω; ωj,−ωk, ωl) (3.23)

where we have defined the mode-overlapping factor:

ηωjkl =

∫∫
F̃∗ω F̃j F̃∗k F̃ldxdy

∏
ν=ω,j,k,l

[∫∫ ∣∣∣F̃ν

∣∣∣
4

dxdy
] 1

4
(3.24)

and the average effective mode area as:

a = (aωajakal)
1
4 , with aν =

[∫∫ ∣∣∣F̃ν

∣∣∣
2

dxdy
]2

∫∫ ∣∣∣F̃ν

∣∣∣
4

dxdy
(3.25)

Equations (3.22) – (3.25) show once again that the effective nonlinear coefficient is
very dependent on the waveguide geometry and the overlap between the modes of the
waves that interact via the nonlinearity. If we have only one wave centered at frequency
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ω, the nonlinear parameter simplifies into the same expression that is used for fibers
(see Agrawal). This allows us first to outline the flaws in our approach that will lead to
inaccuracies. We have made two assumptions that are not true for Si photonic wires. In
reaching Eq. (3.22) we have assumed that the susceptibility χ(3) has no spacial depen-
dence, and we have also ignored the spacial dependence of the dielectric constant when
starting with the Maxwell wave equation (that is, we’ve assumed ∇ ⋅D = ε∇ ⋅ E = 0),
all of which is not accurate. Second, we have assumed that the field will have negligible
longitudinal component and have ignored the vectorial nature of F̃(x, y, ω). Though
this is generally true for the case of low contrast waveguides such as optical fibers, it
does not hold for high contrast structures such as the Si photonic wires. While still as-
suming χ(3) constant over the cross-section of the waveguide core and zero outside, we
can adjust our definition of the effective area to correct for some of the accuracy. We will
therefore adopt the definition of Koos et al [13], which is:

ae f f =
Z2

0

n2
Si

∣∣∣∣∣∣

∫∫

A∞

Re
[
ℰµ(x, y, ω)×ℋ∗µ(x, y, ω)

]
⋅ ezdxdy

∣∣∣∣∣∣

2

∫∫

A0

∣∣ℰµ(x, y, ω)
∣∣4 dxdy

(3.26)

where ℰµ(x, y, ω) and ℋµ(x, y, ω) are the vectorial electric and magnetic mode profiles
(similar to F̃) for the mode µ of the waveguide. A∞ is the cross section of the whole
structure while A0 is the cross section of the silicon core. With this definition, we will
have the effective nonlinear coefficient for a single wave at ω defined as:

γ =
3ω

4ε0c2n2
Siae f f

⋅ χ(3)(−ω; ω,−ω, ω) (3.27)

With this adjustment, the general propagation equation (3.18) is similar to that devel-
oped by Osgood et al, which can be found in [1, 7, 13].This equation is quite general
since it contains all the dispersive, nonlinear and free carrier effects. It contains also
the frequency dispersion of all the nonlinear parameters, though as we said earlier, we
would ignore it in modeling since we assume that both free carriers and third order
susceptibility doesn’t change much across the spectrum of a single pulse. The linear
scattering losses at sidewall roughness can be included in a straightforward manner
using an attenuation coefficient. Together with equation (2.25), which we rewrite as:

∂N
∂t

=
βTPA

2h̄ ωa2
e f f
∣a(z, t)∣4 − N

τc
(3.28)
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this completes the formulation of nonlinear pulse propagation in Si photonic wires. It
is however, instructive to transfer this equation to the time domain where more insight
can be actually gained as to the physical processes that affect pulse propagation.

3.2 Time domain Formalism

Throughout the present work, the wave we use to interrogate the waveguide is in a

form of a pulse train. These pulses are centered around the carrier frequency ω0 =
2πc
λ0

,

with λ0 = 1.55µm. We will therefore replace the propagation constant β(ω) by a Taylor
series around ω0, and to get the time domain equivalent of equation (3.18) , we replace

ω−ω0 with a time derivative i
∂

∂t
. We therefore obtain:

∂a
∂z

= i
m=∞

∑
m=0

imβm
∂ma
∂tm + iβ f (ω0, N)a + i

(
1 + iξ

∂

∂t

)
PNL(z, t) (3.29)

where the nonlinear polarization can be replaced by its time domain form [8, 14, 11]:

PNL(z, t) = aj(z, t)
∫ ∞

−∞
R(3)(t− τ)a∗k(z, τ)al(z, τ)dτ (3.30)

The response function as we will take it, is simply:

R(t) = γe
e f f δ(t) + γR

e f f hR(t) (3.31)

where the Raman and electronic contributions have been made very explicit. The dirac
delta symbolizes the fact that bound electronic response is almost instantaneous, while
the Raman response hR(t) is delayed. We obtain it by looking at the Raman spectrum
for silicon. We mentioned in the previous chapter that the Raman response for silicon
would be a Lorentzian shifted from the pump by

ωR

2π
= 15.6THz and with a bandwidth

∆ωR

π
≈ 105GHz. The frequency domain response is therefore:

H̃R(ω) =
ω2

R
ω2

R −ω2 − 2iω∆ωR
(3.32)

Taking the inverse Fourier transform of this expression, we end up with:

hR(t) = ω2
Rτ1 sin (t/τ1)e−t/τ2 ×U(t) (3.33)

where τ2 = 1/∆ωR ≈ 3ps is the optical phonon lifetime, τ1 = 1/(ω2
R − ∆ω2

R)
1/2 ≈

1/ωR ≈ 10 f s, and U(t) is the heaviside step function.
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The Raman nonlinear parameter appearing in equation (3.31) depends on the Ra-
man gain as:

γR
e f f (ω0) =

gR∆ωR

ae f f ωR
(3.34)

Now the Raman gain gR has been widely investigated and its value measured in either
spontaneous or stimulated Raman scattering experiments (see [15, 16]). Despite the
very high gain value (4 to 76 cm/GW), the nonlinear parameter depends on ∆ωR/ωR

and will end up contributing very little to the nonlinearities. Furthermore, the input
pulse spectrum has to be wide enough for the Raman response to be significant. The
Raman contribution can be characterized by a factor fR defined as:

fR =
γR

e f f

γe f f
(3.35)

where γ is the total nonlinear parameter. From Raman gain measurements and both
n2 and βTPA data available in literature, fR ≈ 0.043. We therefore rewrite the Response
function as:

R(t) = γe f f [(1− fR)δ(t) + fRh(t)] (3.36)

and γe f f can take the very simple form also used in fibers by combining equations (3.27)
and (2.21):

γe f f =
ωn2

cae f f
+ i

βTPA

2ae f f
(3.37)

Finally, ξ appearing in the time domain propagation equation (3.29) is responsible
for two other effects worth mentioning, namely self-steepening and shock formation.
Self-steepening refers to the distortion a pulse would undergo as a result of its group
velocity being dependent on its peak power. Conceptually, if the refractive index is to
be dependent on intensity, then for a pulse, different temporal components would feel
different indices of refraction. Therefore, the shift in the group velocity would be de-
pendent on the local pulse power. Ultimately, ξ takes root in the frequency dependence
of the nonlinear parameter. Its value is obtained from(see [8, 7]):

ξ =
∂

∂ω
ln(γ(ω))

∣∣∣∣
ω0

=
1

ω0
− 1

ae f f

∂ae f f

∂ω

∣∣∣∣
ω0

+
1

χ
(3)
e f f

∂χ
(3)
e f f

∂ω

∣∣∣∣
ω0

(3.38)
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Self-steepening has been extensively studied in optical fibers where it is custom to char-
acterize it with a shock time τs defined the same way we defined the parameter ξ here.
While for fibers the last two terms can be neglected on the grounds that both n2 and
ae f f have negligible dispersion, it is not absolutely true for Si photonic wires. Osgood
et al. [7] have shown through numerical calculations that for Si photonic wires, τs = ξ

can be as large as 25 f s with considerable imaginary part. But again, the effect is more
significant only when the input spectrum is quite broad as is the case in continuum
generation. We will however, neglect the last two terms in our numerical studies.

We will now replace a(z, t) in equation (3.29) with a(z, t)eiβ0z and then shift the time
frame by T = t − β1z so that the pulse center always corresponds to T = 0. If we
now just consider a single pulse centered around ω0, we can resume the propagation
equations as follows:

∂a
∂z

= −α

2
a + i

m=∞

∑
m=2

imβm

m!
∂ma
∂Tm + iβ f (ω0, N)a + iγe f f

(
1 + iτs

∂

∂T

)
a(z, T)×

∞∫

−∞

R(T − τ) ∣a(z, τ)∣2 dτ (3.39)

∂N
∂t

=
βTPA

2h̄ ωa2
e f f
∣a(z, t)∣4 − N

τc
(3.40)

These are the coupled equations that we will use to numerically investigate non-
linear pulse propagation in Si photonic wires. The first one is the famous generalised
nonlinear Schrödinger equation. Again, it is quite general and we will make some sim-
plifications when trying to simulate only certain precesses.

3.3 Numerical solution to the Propagation equation

The propagation equation we just arrived to is quite complex, and it’s usually impos-
sible to solve it analytically if no significant simplifications are made. There have been
however, many numerical techniques which allow to obtain a solution. The split-step
fourier method does just that, and what we will use in our approach is more or less the
same. But first, we rewrite the propagation equation in a more suitable form, so that it
would be easier to actually implement a numerical solution.

Taking the Fourier transform of equation (3.39) and with the notation Ã(z, ω) =

ℱ [a(z, t)] we obtain:
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∂Ã(z, ω)

∂z
= −α

2
Ã(z, ω) + i

m=∞

∑
m=2

βm
(ω−ω0)

m

m!
Ã(z, ω) (3.41)

+ℱ

⎧
⎨
⎩iβ f (ω0, N)a + iγe f f

(
1 + iτs

∂

∂T

)
a(z, T)

∞∫

−∞

R(T − τ) ∣a(z, τ)∣2 dτ

⎫
⎬
⎭

Where we have explicitly separated the linear part, that is dispersion and linear loss,
and the nonlinear part. It is obvious that when required, dispersion to all orders will be
included simply by noting that:

m=∞

∑
m=2

βm
(ω−ω0)

m

m!
Ã(z, ω) = [β(ω)− β(ω0)− β1(ω0) ⋅ (ω−ω0)] Ã(z, ω) (3.42)

To move forward, we will define the linear operator as:

L̂ = i
α

2
+

m=∞

∑
m=2

βm
(ω−ω0)

m

m!
(3.43)

This leads us to rewrite the previous equation as:

∂Ã
∂z

= iL̂Ã +ℱ
⎡
⎣iβ f (ω0, N)a + iγe f f

(
1 + iτs

∂

∂T

)
a(z, t)

∞∫

−∞

R(T − τ) ∣a(z, τ)∣2 dτ

⎤
⎦

(3.44)

we will now make a change of variable as follows:

Ã = Ã(z, ω)e−iL̂z (3.45)

This allows us to get rid of the first term on the right, and the equation to solve becomes:

∂Ã
∂z

= e−iL̂z ×ℱ
⎡
⎣iβ f (ω0, N)a + iγe f f

(
1 + iτs

∂

∂T

)
a(z, t)

∞∫

−∞

R(T − τ) ∣a(z, τ)∣2 dτ

⎤
⎦

(3.46)

taking τs = 1/ω0, this leads to:

∂Ã
∂z

= e−iL̂z

⎧
⎨
⎩ℱ

[
iβ f (ω0, N)a(z, t)

]
+ iγe f f

ω

ω0
ℱ
⎡
⎣a(z, t)

∞∫

−∞

R(T − τ) ∣a(z, τ)∣2 dτ

⎤
⎦
⎫
⎬
⎭

(3.47)
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Again, we have assumed the nonlinear parameter does not change with frequency.
What we have reached here is remarkable in that this equation is an ordinary differ-
ential equation, as we have gotten rid of the stiff dispersive part. This means that we
can readily implement it using ODE tools available in MATLAB. This change of vari-
able to transform the GNLSE into an ODE were first suggested by Caradoc-Davies in
his work on Bose-Einstein condensates where an equation similar to the GNLSE has to
be solved. He went on to develop what he called a fourth order Runge-Kutta algorithm
in the interaction picture (see [17]). This method was adapted to simulate continuum
generation in fibers by Hult [18] and others. John Dudley et al. [19] generalized the
approach, exploiting MATLAB’s ODE tools, to make a wide range of simulations for
an extensive review of continuum generation. The method is more efficient in that the
number of Fourier transform steps is reduced when compared to standard split-step
algorithms, while preserving an accuracy of the order of 0(∆z4), where ∆z is the propa-
gation step.

We started our modeling work from a simulation code in the recently published
book by Dudley and Taylor [20]. Stéphane Coen kindly provided us with that code
while the book was still unpublished.

From equation (3.47), it is obvious however, that dealing with Si photonic wires will
be different from optical fibers. This is mostly because of the free carriers effects, since
TPA can be simply included as an imaginary part to the effective nonlinear coefficient.
We have to compute the carrier concentration N after each propagation step so as to
update the value of β f . This forces us to create a loop, doubling the number of Fourier
transform and the net result is a penalty in efficiency and speed.

The algorithm to implement the solution to the propagation equation can be summed
up as follows:

1. Compute the right hand side of equation (3.47)

2. Propagate through one step ∆z, by solving the equation in the Fourier domain.
We make use of MATLAB’s ode45 solver to achieve this and one ends up with
Ã(z + ∆z, ω). ode45 itself, is an algorithm based on the Runge-Kutta method.

3. Save the above result and then transform back to the time domain by performing

a(z + ∆z, T) = ℱ−1
[

eiL̂zÃ(z + ∆z, ω)

]
(3.48)

4. Compute the free carrier concentration as a function of time T from equation
(3.40). Then update the value of β f , which of course will be a function of time.



3.4 Model Validation 30

5. Go back to step 1 and start the process all over. At the end, the stored value of
Ã(z, ω) are retrieved and the spectral domain solution obtained by reversing the
change of variable made earlier.

Correct implementation of this algorithm in MATLAB has allowed us to model pulse
propagation in Si wire waveguides, and built an understanding of the processes we
discuss in the next chapter.

3.4 Model Validation

To validate our model, we run simulations based on data and parameters found in two
widely cited articles. The first is a paper from L. Yin et al [22] of the Institute of Optics,
Rochester. The authors demonstrate by numerically solving the GNLSE that continuum
generation can occur in silicon waveguides through soliton fission and dispersive wave
generation. Figure 3.1 shows their numerical results on the left, and those we obtained
from our own modeling on the right. In their work, a 50 f s pulse centered at 1550nm
and having a peak power of 25W is launched in a 0.7× 0.8µm2 Si wire. Such a wire
has a zero dispersion wavelength at 1492nm, and its parameter were chosen so that the
sech2 pulse would behave as a third order soliton. Propagation in 1.2cm long waveguide
results in the soliton breaking down in its fundamental constituents, with the emission
due to third-order dispersion of a dispersive wave at the back of the pulse.

The result in the time domain is a tremendous spectral broadening, with the output
spectrum stretching from about 1.3 to 1.7µm. To a good approximation, our results are
the same as theirs. The slight differences are due to the fact that we have not incorpo-
rated dispersion beyond the third order, and have taken a loss value of 1.2dB/cm as no
value is given in the article. This loss value is relatively low, but for large waveguides
such as the 0.7× 0.8µm2, it is reasonable. Simulations with higher values also give the
very same effects.

The second example is from a recent review by Osgood et al. [7]. We propagate a
100 f s pulse of 6.5W peak power in a 360× 220nm2 waveguide. Such a waveguide has
its second ZDW at 1550nm, but the input pulse is centered at 1500nm so that we are in
the anomalous dispersion regime. The figure below shows comparison between their
modeling results and ours for the same parameters. We have made a color plot of the
evolution of both the temporal and spectral profile along the waveguide length.

In part (a), TPA and free carriers effects are ignored, and thus we have the same dy-
namics as in fibers. Huge spectral broadening happens only over 1cm of propagation
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used for fibers2 but modified as folows to include the
effects of TPA and FCA11:

�A

�z
= i �

m=2

� im�m

m!

�mA

�tm + i��1 +
i

�0

�

�t	A�z,t�

	

−�

t

R�t − t���A�z,t���2dt� −
1

2
�
l + 
f�A, �2�

where 
l and 
f account for linear losses and FCA, re-
spectively. The nonlinear parameter � is complex be-
cause of the TPA effects and is defined as

� =
2�n2

�aeff
+ i

�TPA

2aeff
, �3�

where �TPA=5	10−12 m/W is the TPA parameter.8

The magnitude of FCA is obtained from 
f
=�Nc�z , t�, where Nc is the density of free carriers
and �=1.45	10−21 m2 for silicon.8 The density Nc
produced by TPA is obtained by solving

�Nc�z,t�

�t
=

�TPA

2h�0

�A�z,t��4

aeff
2 −

Nc�z,t�


, �4�

where  is the effective carrier lifetime, estimated
to be about 3 ns.4 For femtosecond pulses used
here and at relatively low repetition rates, Nc
�2�TPAP0

2T0 / �3h�0aeff
2 �, where P0 is the peak power of

a “sech” pulse of width Tp�1.76T0. The wavelength
dependence of � and � is neglected in this study; it
can be included following a standard approach.2,4

A soliton of order N is excited if A�0, t�
=�P0 sech�t /T0� initially, and the input parameters
satisfy the condition N2=Re���P0T0

2 / ��2�. We solve
Eq. (2) with the split-step Fourier method2 for a
third-order soliton �N=3� using Tp=50 fs. The peak
power P0 equals 25 W using n2=6	10−18 m2/W and
�2=−0.1701 ps2/m (estimated from Fig. 1 at �0
=1.55 �m). We estimate a maximum carrier density
of Nc�8	1021 m−3, resulting in 
f�11.6 m−1 after

all carriers have been generated. The corresponding
carrier-induced index change,14 �nc�−1	10−5, is too
small to affect soliton propagation. Numerically, we
solve the coupled set of Eqs. (2) and (4) to include all
time-dependent features of TPA and FCA.

Before proceeding, we need to specify the nonlinear
response function R�t� appearing in Eq. (2). Similar
to the case of silica fibers, we use the form R�t�= �1
− fR���t�+ fRhR�t�, where the first term governs the
nearly instantaneous electronic response and hR�t� is
the Raman response function.2 The parameter fR rep-
resents the fractional contribution of the nuclei to the
total nonlinear polarization. The functional form of
the Raman response function hR�t� is deduced from
the Raman gain spectrum, gR���, known to exhibit a
narrow Lorentzian peak of �105 GHz bandwidth, lo-
cated 15.6 THz away from the pump frequency.15 The
imaginary part of the Fourier transform HR���
of hR�t� is related to gR��� as Im�HR����
=gR��� / �2k0n2fR�, where k0=2� /�0. We use the value
gR

max=2	10−10 m/W at the Raman gain peak.8 The
real part of HR��� is then found from the Kramers–
Kronig relation. Once HR��� is known, hR�t� is ob-
tained by taking its inverse Fourier transform. The
parameter fR is found to be 0.043 from the normaliza-
tion condition of 0

�hR�t�dt=1; this value is relatively
small compared with fR=0.18 for silica fibers.2

As seen in Eq. (2), soliton evolution is affected by
dispersion to all orders �m�1�. Often, the sum is
truncated to include the dispersion terms up to m
=6 or 7.2 A better approach is to notice that the infi-
nite series can be written in the frequency domain as

F� �
m=2

�

i
im�m

m!

�mA

�tm � = ����� − ���0�

− �1��0��� − �0��Ã���, �5�

where ����=neff���� /c, �1���=�� /��, and F is the
Fourier transform operator. We include dispersion to
all orders by using Eq. (5) with neff��� from Fig. 1.

Fig. 1. (Color online) Wavelength dependence of nSi (dot-
ted curve), neff (dashed curve), and �2 (solid curve) for the
fundamental TE mode using the waveguide shown in the
inset with W=0.8 �m and H=0.7 �m.

Fig. 2. (Color online) (a) Temporal and (b) spectral profiles
at the output of 1.2-cm-long SOI waveguide when a 50 fs
pulse propagates as a third-order soliton. The dotted curves
show, for comparison, the corresponding input profiles.
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Figure 3.1: Soliton fission and supercontinuum generation in silicon photonic wires.
(a) Numerical results as taken from reference [22] (b) Numerical results from our own
implementation of equation (3.47).In both (a) and (b), the top figure represents the tem-
poral profile of both the input pulse (blue dashed curve) and output pulse (red curve).
The bottom curves show input(blue dashed curve) and output(red) spectra.

with very low peak power, and this is due to the large nonlinear coefficient of silicon
as well as the small dimensions of the waveguide. After just 1mm, the pulse splits into
two solitons which group velocity are slightly larger than that of the input pulse. In
part(b), we ignore TPA while nevertheless adding the effects of TPA-generated free car-
riers. We see that the soliton with higher peak power soliton is accelerated under the
influence of free carrier dispersion. In part (c), a full simulation including all the effects
is carried out, and we can see that the effects of free carriers are no so important any-
more. This can be understood by realizing that, with TPA included, the nonlinear loss
becomes significant and so carrier densities are reduced along the propagation distance.
Our simulation results compares well with theirs and all the the major effects that affect
pulse propagation are portrayed. There are disparities however, which are due once
again to the linear loss value we chose, but mainly to the fact that the propagation equa-
tion Osgood et al. use in their modeling is slightly different from ours. They start from
the Lorentz reciprocity theorem and rigorously compute the effective susceptibilities for
the waveguide. Nevertheless, the similarity between our results and theirs is striking.
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particular, it has been previously shown that solitons propagating under the
influence of the TOD emit radiation at a frequency that is shifted from the
soliton’s frequency by ��=3��2� /�3, namely, at the frequency at which the
wave vectors of the soliton and the dispersive wave are phase matched. Since the
soliton with larger peak power propagates at ��1470 nm, and factoring in
the corresponding shift in �2, determined by the fact that the emerging solitons
propagate at a wavelength that is different from the wavelength of the input
pulse, this relation predicts that the wavelength of the emitted radiation is �
�1750 nm, which is in good agreement with the numerical simulations.

When the effects of the free carriers are incorporated into the simulation (the
second scenario), the pulse evolution changes in several important aspects,
as shown in Fig. 8(b). Thus, in the temporal domain, the soliton with larger peak
power is accelerated, and its temporal position is shifted toward the front of
the pulse. In addition, in the spectral domain, this same soliton is shifted toward
the blue side of the spectrum. On the other hand, the dynamics of the soliton
carrying lower optical power remains essentially unchanged. These
characteristics of the pulse evolution can be explained if one considers the
nonlinear losses induced by the generation of free carriers via TPA. Thus, Eqs.
(23) and (15) show that these optical losses are proportional to �−�

t �u�z , t���4dt�,
which means that the optical loss at the front of the pulse is smaller than
the loss in its tail. Since the soliton propagates in the anomalous GVD region,
the redshifted frequency components move slower than the blueshifted
ones. Therefore, the redshifted components are absorbed more fully in
comparison with the blueshifted components, and thus the soliton is slowly
shifted toward the blue side of the spectrum. In contrast, the soliton with smaller
peak power induces a much smaller nonlinear loss, and therefore this effect
is much weaker. This soliton probes chiefly the losses induced by the carriers
generated by the larger soliton; these losses act merely as a constant loss

Figure 8

Propagation of a pulse with T0=100 fs, peak power P0=6.5 W, and pulse
wavelength �=1500 nm in a SPW with dimensions h�w=220 nm�360 nm,
for which the ZGVD wavelength �0=1550 nm, �2=−4 ps2 /m, �3

=−0.0915 ps3 /m, and �=446.5 W−1 m−1. (a) Influences of the TPA and free
carriers are neglected; (b) influence of TPA is ignored while free carriers effects
are included; (c) both TPA and free carriers are fully accounted for.
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(A)
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Figure 3.2: Propagation of a pulse with T0 = 100 f s, peak power P0 = 6.5W, and
pulse wavelength λ = 1500nm in a SPW with dimensions w× h = 360× 220nm2, for
which the ZGVD wavelength λ0 = 1550nm, β2 = −4ps2/m,β3 = −0.0915ps3/m, and
γ = 446.5W−1m−1. Top subfigure (A) is from the article [7] and bottom one (B) is from
our own work. In both cases: (a) Influences of the TPA and free carriers are neglected;
(b) influence of TPA is ignored while free carriers effects are included; (c) both TPA and
free carriers are fully accounted for.
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3.5 Summary

We have provided a theoretical background and developed a description of pulse prop-
agation in SPWs starting from Maxwell’s equation. We have then introduced a numeri-
cal model to solve the nonlinear propagation equation, and it compares very well with
what can be found in literature. As the present work is more experimental than theo-
retical, our intent and interest in numerical modeling is to get a guideline as to what to
expect as outcome of experiments. Modeling also offers great insight as to how to inter-
pret the outcome of experiments. We devote the next chapter to a number of simulations
with both waveguide and pulse parameters available for us in the lab.
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Chapter 4

Dynamics of continuum generation in
Si photonic wires

Continuum generation, arguably one of the most spectacular achievements of nonlin-
ear optics, results from a cascade of nonlinear processes that occur as a strong pulse of
light propagates in a nonlinear medium. The physics behind it can be very different de-
pending on pulse parameters such as initial peak power, pulsewidth and pulse shape as
well as waveguide parameters such as effective nonlinearities, dispersion and waveg-
uide length. Because of that, there is no unified theory that can equally well explain the
outcome of all supercontinuum generation experiments, be it in fibers or as in our case,
in Si photonic wires. In this chapter, we aim to provide a description of some of the
major effects in Si photonic wires that lead to spectral broadening, illustrating each case
with simulations results from our modeling. The parameters are selected from those
available to us in the lab after simple calculations based on the theory we developed in
the previous chapter.

4.1 Relative Importance of nonlinear and dispersive ef-
fects in Si photonic wires.

We have made clear in the previous chapter that pulse propagation in Si photonic wires
will be governed by an interplay between dispersive and nonlinear effects. To character-
ize the importance of one or the other, characteristic lengths are often adopted. The dis-

persion length (GVD length) is defined as LD =
T2

0
∣β2∣

, the third order dispersion length
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as L
′
D =

T3
0
∣β3∣

, with T0 being the pulsewidth. The nonlinear length is LNL =
1

γe f f P0
. If

we consider a w× h = 450× 220nm2, the characteristics lengths are shown in the table
below for 1.2ps and 212 f s pulses.

We can readily see that for picosecond pulses with P0 = 1W or larger, LNL/LD ≪ 1
and LNL/L

′
D ≪ 1. The dispersive effects can therefore be ignored. We stress out here

once again that, due to the method we used to obtain third-order dispersion coeffi-
cients,i.e, by successive derivatives of the propagation constant, there is a considerable
uncertainty in the results we obtain. For example, while our results in table 4.1 agree
well with the data from Osgood et al. [7] for GVD length, there are some disparities
for TOD lengths. Nevertheless, the conclusion we are able to reach based on this data is
rather accurate.

For femtosecond pulses however, these lengths become comparable and also ap-
proach the typical propagation length of 1cm. Dispersion then has to be fully accounted

for. It is custom to define the parameter N called the soliton number, N =

(
LD

LNL

)2

,

which describes the strength of solitonic effects. This is relevant only when we are in
the anomalous GVD regime.

4.2 Self-phase modulation in SPWs

Self-phase modulation is the most fundamental mechanism that leads to the spectral
broadening of a short pulse. It is intuitively understood by considering the kerr effect.
If the refractive index changes with the local intensity, then as a pulse propagate, it will
undergo a time dependent phase change that is related to the temporal profile of the
pulse. Such a time dependent phase change is indeed equivalent to frequency shift.

In SPWs, as opposed to fibres for example, TPA-generated free carriers will signifi-
cantly impact SPM. To see this we run simulations with and without TPA and FCA as

Table 4.1: Characteristic lengths for a 450× 220nm2 waveguide

Characteristic Length T0 = 1.2ps T0 = 212 f s
LD 26.5cm 1.1cm
L
′
D 107.6m 0.96m

LNL for P0 = 1W 2.3mm 2.3mm
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well as FCD. Our basic assumption is that the repetition rate is low enough (≤ 500MHz)
for carriers generated by one pulse to completely recombine before the next pulse comes
in, the so called single pulse approximation. Under this approximation, the propagation
equation reduces to:

∂a(z, T)
∂z

= −α

2
a− i

β2

2
∂2a
∂T2 +

β3

6
∂3a
∂T3 + iβ f (ω0, N)a + iγe f f ∣a∣2 a (4.1)

Figure 4.1 shows self-phase modulation of a picosecond pulse as it propagates in a
SPW. We have included dispersion and it can be seen on the density plot that, second
order dispersion leads indeed to temporal pulse compression. The effects of TPA and
free carrier effects can be readily seen. TPA severely reduces the extent of broadening,
and this is intuitive in that, as nonlinear loss due to TPA is introduced, the pulse peak
power decreases and so does the phase change associated with SPM. The SPM spec-
trum is also symmetric with respect to the reference wavelength, however, this ceases
to be the case when free carrier effects are introduced. FCA causes the little decrease in
amplitude, while FCD cause a slight shift towards shorter wavelengths, thus creating
the asymmetry. Whereas the kerr effect creates blue-shifted frequencies on the trailing
edge of the pulse and red-shifted ones on the leading edge, FCD induces a blue shift at
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Figure 4.1: Self-phase modulation in a 450× 220nm2, 1cm long silicon photonic wire.
We propagate a pulse with T0 = 1.2 ps, P0 = 1.3W in the SPW. In (A), we show the
output spectrum when no TPA, nor free carrier effects are considered, then TPA only is
considered and finally all the effects are incorporated. In (B), we show the temporal and
spectral evolution along the waveguide length when all the effects are included.



4.2 Self-phase modulation in SPWs 37

both edges. FCD thus counteract the kerr effect on the leading edge, while both add up
on the lagging edge and thus the asymmetry. This is in agreement with experimental
results from Dulkeith et al [24], and also numerical results from Yin et al. [23].
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Figure 4.2: Self-phase Modulation in a 450× 220nm2, 5mm long silicon photonic wire.
We propagate a pulse with T0 = 200 f s, with the shown peak powers in the SPW. In
(A), output spectra are recorded when third order dispersion is totally ignored. In (B),
we include TOD and the asymmetry of the SPM spectra is obvious. Carrier effects and
TPA are fully incorporated in both cases. Third order dispersion data is taken from [25].

In the case of femtosecond pulses however, SPM is strongly affected not by free
carrier effects, but by third-order dispersion, as has been shown by Hsieh et al. [25].
Figure 4.2 illustrates this point. Using β3 = −0.73ps3/m from their work, we show here
that third order dispersion indeed distorts the SPM spectrum. TOD distorted spectra are
in perfect agreement with their experimental results.

The power levels and propagation lengths required to observe SPM in Si photonic
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wires are orders of magnitude less those for fibers. In reference [25], the authors
claim that spectra similar to the above figure are obtained with input peak powers from
50 to 250mW. Both our numerical and experimental results suggest otherwise. In SPWs
with 450× 220nm2 cross section, these figures should be increased by at least one order
of magnitude.

In supercontinuum generation, self-phase modulation almost always initialize the
broadening process. Cross-phase modulation, which implies that a pulse will feel the
nonlinear index of another one when co-propagating, can be also important. This is
the case for example in fibres where XPM can be important in flattening the continuum
(see Dudley et al., [19]). XPM switching has been observed in Si waveguides with larger
dimensions(see [27]), around 2µm, and can be numerically studied using coupled-mode
theory. That is, using our development in the previous chapter for the case where two
pulses at different wavelengths are present. We do not concern ourselves with such a
study in this work.

When treating SPM, it is custom to ignore dispersion. As we showed in Figures
4.1 and 4.2 however, the interplay between the two leads to interesting effects. In the
normal GVD regime, we will have simultaneous temporal and spectral broadening.
In the anomalous GVD regime however, this can lead to the creation of solitons. For
optimum spectral broadening, pumping should be done in this regime. To show why,
we run a simulation with a 1.2ps pulse, but this time with its peak power increased to
P0 = 10W. The results are shown in Figure 4.3. In one case, we include all the effects
and use the proper sign for the GVD coefficient, which for the 450× 220nm2 is in the
anomalous regime. After propagation over 1cm, the pulse in the time domain is very
much distorted, and breaks down into shorter pulses. The output spectrum is many
times broader than at the input. When we reverse the sign of β2 but keep everything
unchanged, we witness a simple temporal broadening of the pulse, along with a spectral
response that shows the spectral modulation which is signature of SPM.

Pumping SPWs in the anomalous GVD regime thus allows for soliton-like features
to appear, and thus optimizing the broadening. We next focus on the description of such
features.

4.3 Soliton dynamics in SPW

In the anomalous GVD regime, the nonlinear chirp that results from SPM and the linear
chirp from β2 can combine in such a way that they cancel each other and yield a stable
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(B) β2’s sign is reversed

Figure 4.3: Strong pulse propagation in a 450× 220nm2, 1cm long silicon photonic wire.
All the effects are included. We propagate a pulse with T0 = 1.2 f s, P0 = 10W. In (A),
we use the correct value of GVB β2 = −3.99ps2/m. Green is the output temporal profile
and spectrum, while dash-blue shows the input. In (B), we reverse the sign of the GVD
parameter and keep everything the same. Red is used for the new output.

propagation with no change in time or spectral profile. GVD and SPM can also combine
to yield a periodic evolution of the input pulse along the propagation direction. In the
first case, we refer to the pulse as a a fundamental soliton while the latter is a higher-
order soliton.

While solitons have been extensively investigated in optical fibres, the very nature
of Si photonic wires makes it difficult for them to support solitons, at least not on very
long distances. This is simply because TPA and linear losses are always acting to reduce
the available peak power, and free carriers effects further complicate the picture. Never-
theless, pulses with solitonic behavior have been experimentally observed in some 5mm
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of SPW, in the TM mode(see [26]).
The present work does not investigate solitons, but rather is interested in how such

features lead to greater spectral broadening. In microstructured fibers, higher-order
soliton fission, accompanied with dispersive wave generation has been identified as the
lead cause of broadening and continuum formation. The numerical results of Figure 3.1
suggest that the same dynamics could lead to continuum generation in SPWs, though
the extent of the broadening would be severely reduced by two-photon absorption.

We illustrate the effect by choosing our own 500× 220nm2, it has a GVD coefficient
of β2 = 2.95719ps2/m and an effective nonlinear coefficient roughly ∼ 434.71W−1.m−1.
Therefore, for a 200 f s pulse with P0 = 7.5W, we obtain the soliton number N = 3.72,
meaning that such a pulse corresponds to a third-order soliton. We increase the input
peak power to 8.8W to compensate for the losses that occur in the first millimeters of
propagation.

The results are shown in Figure 4.4. After initial SPM and pulse compression in
the time domain, the original pulse breaks down into three fundamental solitons at
z ∼ 1.5mm. This corresponds to the point where the input pulse has reached its max-
imum bandwidth, in agreement with what is observed in fibers [20]. This distance is
approximated by: z ∼ LD

N , which is roughly 1.2mm, in agreement with what is readily
seen on the plot. These fundamental solitons have different group velocities and would
normally keep their shape and spectrum, but as can be seen on the density plots, further
propagation is affected by linear and nonlinear losses as well as free carrier effects, and
the result is the solitons losing amplitude and see their spectrum shrink along the way.
We stress out once again that the TOD coefficient used here is not accurate. For larger
values of TOD, the soliton fission process plays out quite differently.

What is of interest is something we briefly referred to in the previous chapter. If the
input pulse is close enough to the ZDW, it would be able to transfer some of its energy
in the normal regime to generate what is referred to as dispersive wave or “Cherenkov
radiation.” In the time domain, it manifest itself as ultrafast oscillations at the back (or
front) of the output pulse. This can be seen in Figure 3.1. We use our own parameters
to show this effect is possible, with what we have readily available in our lab in terms
of equipment. We propagate 100 f s pulses with peak power P0 = 3.7W in 1cm length of
the 750× 220nm2 waveguide. This waveguide has its ZDW very close to the pump, and
thus a very small β2 = −0.1568ps2/m at 1.55µm, which makes it our best choice for this
simulation. With these parameters, the results can be seen on the figure below, showing
how the dispersive wave generation significantly enhances the broadening and leads to
a very broad continuum.
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Figure 4.4: Soliton fission in a silicon photonic wire. Wire dimensions are 500× 220nm2,
propagation length 1cm and the input pulse parameters P0 = 8.8W, T0 = 200 f s.
(A)Time domain input(blue) and output(red). (B) Input(blue) and output(red) spectra.
(C) Time domain and spectral density evolution along the waveguide length.

The frequency of the dispersive wave can be found from [28]:

ωd
2π

= −3
β2

β3
+

Re(γ)Psβ3

3β2
2

(4.2)

where Ps is the power of the soliton that is perturbed. taking Ps = P0 = 3.7W, we find
that the dispersive wave frequency corresponds to a wavelength of λd ≃ 1.36µm, which
agrees well with our simulation results of Figure 4.5.

Soliton dynamics have been used to explain continuum as broad as 350nm in SPW
(see Hsieh et al. [29]), and indeed, the results of those experiments have a good quali-
tative agreement with our plots of Figure 4.5.

We close this section by remarking that, though we have discussed soliton dynamics
using only femtosecond pulses, such effects can be seen also when longer pulses are
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Figure 4.5: Soliton fission and dispersive wave generation in a 750× 220nm2, propaga-
tion length 1cm and the input pulse parameters P0 = 3.7W, T0 = 100 f s. (a)shows our
results in the time domain, the blue line being the input. (b)plots the input and output
spectra (c) Density plots on the linear scale.

used. As evidence, when we increased the peak power of a picosecond pulse to 10W,
the pulse broke down into a train of much shorter pulses(Figure 4.3). Each of those
pulses can behave as a soliton and thus undergo all the dynamics described in this
section and undergo dispersive wave generation, at least in theory. Continua attributed
to soliton dynamics have been generated in fibers with nanosecond probing pulses, by
careful design of fibre parameters.
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4.4 Four-wave mixing and Modulation Instability

Another class of processes that will influence spectral broadening and continuum gener-
ation are parametric processes. We will limit ourselves to four-wave mixing (FWM) and
give only a brief description of it. As the name indicates, FWM refers to the frequency
mixing that occur when photons of different frequencies are present in the waveguide.
The figure below shows a simple illustration of the process. ω1 and ω3 are two pump
waves, ωs is the signal wave and ω2 is referred to as an idler. The interesting case is
when the two pump waves have the same frequency. What then occurs is the conver-
sion of the pump into two side bands that are downshifted and upshifted. The efficiency
however depends on phase-matching conditions, that is why it is a parametric process.
In supercontinuum generation, FWM can play a role provided that the pump is close
enough to the GVD so that phase matching can be achieved. It is usually predominant
in the case of picosecond or longer pulses (see Dudley et al . [19]).

ω1

ω2

ωs

ω3

Figure 4.6: Photon picture of Four-wave mixing

Modulation Instability corresponds to the unstable evolution of a continuous wave
beam that is copropagating in the medium with either a pulse train or another CW
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beam. For the degenerate case, it will be the growth from noise of two sidebands that
are symmetric with respect to the pump frequency. It is therefore obvious that MI and
four-wave mixing are two different descriptions of the same fundamental process, one
in the time domain (MI) and the other in the frequency domain (FWM).

Both phenomena have been demonstrated in Si photonic wires [30, 31] and can be
properly modeled by using coupled propagation equations and the correct nonlinear
polarizations. As we did not consider this in detail, we include the phenomenon here
for completeness.

4.5 Limiting nature of continuum generation in Si pho-
tonic wires

We have now outlined the most important mechanisms that would lead to spectral
broadening in SPWs. The logical question to ask then is, how broad can we make such
a continuum? Are there some features of it we can engineer?

One would normally expect that when pumping with short pulses with the same
width, spectral broadening would increase with peak power. However, this does not
always hold for SPWs. We have already seen the impact of two-photon absorption in
reducing the spectral broadening in SPM for example, and this is rather intuitive. We
also showed how free carrier dispersion interacts with the kerr effect to produce a net
blue shift in ps pulses SPM spectra. The cumulation of these processes, but mainly TPA,
impose a limit on how broad a continuum generated in Si wires can be.

To see this, we model the propagation inside a centimeter long 750× 220nm2 wire of
212 f s pulses with different peak powers. The recorded spectra are shown in the water-
fall plot of Figure 4.7. From the bandwidth versus peak power plot, we see that after
almost linear growth, the bandwidth comes to some sort of “saturation” and thereafter,
it increases only modestly.

We calculated the bandwidth plot by subtracting the shorter wavelength for which
the amplitude is −30dB from the longer one. While this does not tell us about the spec-
tral features of the generated continua, it tells us enough about the nature of the limit in
broadening. This limiting effect has been observed both numericall and in experiments
by a number of researchers in the field(see [8, 29, 7]). Thus, for a given pulsewidth,
shape and waveguide parameters, there is a limit in how broad the generated contin-
uum will be. As can be seen from the figure, the spectral content of the continua actually
change very little, and this implies that we will see the same limiting effect in terms of
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Figure 4.7: Limiting nature of continuum generation in SPW. 212 f s pulses are prop-
agated in a centimeter long, 750× 220nm2 waveguide. The simulated spectra show a
“saturation” in bandwidth. This limiting phenomenon is inherent to the Nature of Si
photonic wires and is largely due to TPA.
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power transmission of the waveguide when peak power is enough to induce broaden-
ing. This has been termed “optical limiting”. What we mean by that is, a plot of average
output power versus input peak power for this femtosecond pumping, would show the
same saturation effect. Though we only showed our results here using femtosecond
pulses, the same limiting behavior occurs for picosecond or longer pulses.

On a side note, it is instructing to look at the plots of Figure 4.7. For peak powers
from 3 to 10W, the output spectrum shows the very same features. We see a distinct
peak start to appear near 1400nm and remains at that wavelength for several input peak
powers, this is evidence to soliton formation inside the waveguide. The energy carried
by this soliton increases with input peak power and when high enough, this soliton
itself is perturbed by propagation. This explain the changes in spectral features for very
high input peak powers(20 to 30W). It is by tracking this soliton formation process in
experiments that Hsieh et al. [25] extracted the correct value for the TOD coefficient.

4.6 Summary

We have covered here the nonlinear processes that stem from the interaction between
dispersive effects and third-order nonlinearities, as well as free carriers effects in SPWs.
We have shown the possibility of continuum generation, and also saw that such con-
tinua will be inherently limited by two-photon absorption. As all the modeling were
done with parameters available to us in the lab, we now turn into the experimental
investigation of nonlinear effects in SPWs.
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Chapter 5

Experimental investigation of nonlinear
processes in Si photonic Wires

In this chapter, we present our own experimental investigations of the nonlinear phe-
nomena we have described so far. We describe the problems that were encountered in
so doing, and our attempts to solve them. We draw whenever possible, a comparison
between numerical and experimental results. We stress out once again that, our aim
was to investigate the possibility of continuum generation in Si wires, and the discus-
sion herein is limited to the output spectra recorded in our experiments.

5.1 Picosecond pulse propagation in Si photonic wires

5.1.1 Experimental setup

The first part of our work consists of experiments with a picosecond laser source. The
laser source uses an electro-optic modulator to achieve modelocking and delivers pulses
from 1.5 to 11ps. The setup for the experiments is shown below.

The electro-modulator is operated by a radio-frequency signal at∼ 10GHz, and thus
the laser’s output has this repetition rate. The problem with such a high repetition rate
is twofold. First of all the peak power available to each pulse is substantially lower,
even when amplified. Most importantly, however, the pulse separation in time is only
∼ 100ps. This is far shorter than the average carrier lifetime in Si wires, which despite
the fact that carriers can quickly diffuse to the surfaces and recombine, is still of the
order of 1ns. The result is that it would be impossible for us to observe any nonlinear
effects over a broad range of input powers, and we attribute that to the fact that free
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Figure 5.1: Setup for experiments with picosecond pulses. Yellow connectors represent
optical fibres used to transport the light signal, and the blue ones are RF connections.
The OSA is connected to the PC with a GPIB cable and data is captured using LabView.

carriers would be able to accumulate from pulse to pulse and thus enhance the FCA,
significantly reducing the power available to excite nonlinearities (see [23]).

The way around was to use a pulse pattern generator and a modulator in a config-
uration that would act as a pulse picker. There are imperfections in this setup as the
modulation process loses us some 10 to 15dB of average power, and the pulses on ei-
ther side of the one that is selected cannot be entirely suppressed. This then creates the
need to put an amplifier after the modulator and then a filter to get rid of the ASE noise.
Finally, a polarization controlling wheel is inserted so that we optimize the coupling of
the TE mode through the grating we described in Chapter 1. At the output, we measure
the average power and record the spectrum.
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5.1.2 Self-phase modulation using picosecond pulses

We investigated SPM in the different wire waveguides available to us. With modulation
settings carefully adjusted, we were able to record spectra that showed the trademark
of self-phase modulation.

SPM in the 5mm, 450× 220nm2 waveguide

It took some time to reach the proper configuration and choose the settings that would
allow us to see some of the nonlinear effects we expect with picosecond pulses. One
we already referred to is the high repetition rate of the source. Though our “pulse
picker” can be adjusted at will at allow us to pick only one pulse in a few thousands, it
is important to keep in mind that the pulses are amplified afterward. If the modulation
rate is too high, the pulse train emerging from the modulator has very low average
power and the amplification process will not be ideal (EDFA has optimum performance
when input power is 0dBm, at the modulator output, average power is usually−20 to −
10dBm).

Figure 5.2 shows the SPM spectra we recorded for a 5mm long waveguide. We
chose both 48 and 96 bits modulation sequence, in each case, the estimated peak power
is roughly P0 ∼ 1.6W. The figure also shows the recorded output spectrum when no
modulation is applied on the signal and it keeps its original repetition rate. The esti-
mated peak power for that case is P0 ∼ 1.2W and as we can see, no broadening whatso-
ever does occur.

The figure also shows our simulation with the parameters we estimated, and as can
be seen, there is quite a good qualitative agreement. Experimental spectra are more
shifted to the left than it actually should, and the peak-like feature in the simulation
seems to be absent. Nevertheless, the agreement between the two is quite good.

SPM in the 10mm, 650× 220nm2 waveguide

We used a waveguide twice as long as previous one and slightly wider, and recorded
similar spectra, the broadening of which we once gain attribute to SPM. Figure 5.3 be-
low shows the recorded spectra and corresponding simulations. There is once again a
very good qualtative agreement between simulation and experiment here. However,
the experimental spectra are more shifted to the blue and for P0 = 6.3W (green curves),
the phase change in experiments does not correspond to what we have from simula-
tions. Two things could be possibly responsible for the discrepancies, a chirp applied
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Figure 5.2: Self-phase modulation of 1.8ps pulses propagating inside a 450× 220nm2,
5mm long Si photonic wire. (a) 96 bits of modulation, and thus Repetition rate of
103.68MHz, input average power is 5mW at the EDFA and estimated peak power at
the input of waveguide is 1.5W. (b) Repetition rate is doubled and so is the average
power to keep up with roughly the same peak power. (c) No modulation applied on the
pulses. (d) Corresponding simulation. In all cases, blue line is input spectrum and red
is the output

on the input pulse at the input grating, or perhaps thermal effects. In fact as the chip
heats up, the net result is a small change in the silicon refractive index. Both could
actually result in the asymmetry and different phase change.

The fact that the pulses from the original pulse train cannot be totally suppressed at
the modulator might also play a role, because once amplified, they might have sig-
nificant power and thus feel the effects of the free carriers generated by the much
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(B) Simulations

Figure 5.3: Self-phase modulation of 1.8ps pulses propagating inside a 650× 220nm2,
1cm long Si photonic wire. (a) Recorded spectra with a 48bits modulation pattern. (b)
Corresponding simulations. Dashed curve is the input spectrum recorded after the fil-
ter, while blue, red and green are spectra with estimated peak powers 1.6, 3.2 and 6.3W
respectively.

stronger pulse. For such high peak powers though, the nonlinear loss is significant.

With I =
P0

Ae f f
∼ 6GW/cm2 and the TPA coefficient βTPA = 5× 10−12m/W, the non-

linear loss coefficient is αNL = 3cm−1 = 13dB/cm. This is why the peak power greatly
decreases in the first few millimeters of propagation.

5.1.3 Further broadening with picosecond pulses

In the previous chapter, we explained how a strong picosecond pulse could undergo
severe distortion, yield a train of far shorter pulses while also producing significant
broadening. Here we attempted to verify those concepts experimentally and pumped
our waveguide with 1.8ps pulses of increasing peak powers. Our results are shown in
the waterfall plot below.

It is obvious that, after 1cm of propagation, the original spectrum is very much dis-
torted, and its shape as well as bandwidh depend very much on the input peak power
when it is kept low enough. As the peak power increases, the nonlinear loss becomes
more and more important, and there is little change in the resulting spectra. The dis-
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Figure 5.4: Picosecond pulse broadening in 450× 220nm2, 1cm long Si photonic wire as
a function of increasing peak powers.

parity between the experimental results and our simulations are however, more pro-
nounced. To see this, we have sampled out the example of P0 = 25.6W and plot it
below along with our numerical results. For this value of peak power, the nonlinear
loss increases to αNL = 54.2dB/cm, and the pulse is very much attenuated in the first
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millimeters of propagation. The net result is the limiting process we referred to earlier.
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Figure 5.5: Broadening of a 1.8ps pulse with P0 = 22.4W in a 450× 220nm2, 1cm long Si
photonic wire. (a) Experimental measurement, (b) Modeling

Though some comparison can be drawn between our experimental results and what
we obtained from modeling, the resemblance is very little. We believe a number of fac-
tors might be responsible for the discrepancies. Our input pulses are not exactly sech2

pulses, and the fact that they are modulated, amplified and filtered make the correct
estimate of pulse shape and power rather difficult. Second, for these experiments, we
used gratings to couple both in and out of the waveguide, gratings have a limited band-
width of roughly 30nm over which they are efficient, and it is possible that they impinge
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an additional chirp, albeit very small, on the pulses.
Nevertheless, qualitative features can still be discussed as regarding Figures 5.4 and

5.5. For peak powers from 16 to 25.6W, there is a distinct feature next to the central
peak, around 1560 ∼ 1570nm. This peak also appears in simulations, although broader,
and we attribute it to a soliton that starts to form as the peak power is increased.

5.1.4 Optical Limiting with picosecond pulses

As discussed at the end of the previous chapter, and also evident from Figure 5.4, spec-
tral broadening in Si wires will experience some sort of “saturation”. The consequence
of this is that there will be a similar limiting effect in terms of power transmission of the
wire.
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Figure 5.6: Optical limiting in a 5mm -long, 450× 220nm2 Si photonic wire. The input
is a train of 1.8ps pulses with 207.36MHz repetition rate. Plotted on the figure is the
reciprocal transmission 1

T = Pin
Pout

of the waveguide as a function of input average power.

Figure 5.6 shows a plot of experimental transmission data for a 5mm long, 450×
220nm2 wire. Instead of a flat horizontal line as would be the case for a perfectly linear
device, the curve of 1

T is instead a straight line with a positive slope. This is a clear
indication, that the loss experienced by a propagating pulse will increase with its peak
power. Such a pulse will then suffers significant loss in the first few mm of propagation,
before further propagation results in broadening. TPA is therefore responsible for the
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limiting effect we observe and also justifies the limit that can be attained in spectral
broadening.

5.2 Femtosecond pulse propagation in Si photonic wires

We next present our investigation of nonlinear spectral broadening in Si photonic wires.
The setup for the experiments is very similar to that of Figure 5.1, and is shown below.
except the picosecond laser source is replaced by another laser that uses a saturable
absorber to achieve modelocking. It delivers pulses from 350 to 86 f s, at a repetition rate
of 20MHz and with peak powers from 400 to 9.8kW. Such high peak powers represent
the problem we battled with for a long time, in that the pulse would at best undergo
strong self phase modulation in the delivering fibers before reaching the waveguide, or
worse, would behave as a higher-order fiber soliton. In the latter case, it appears that
choosing the length of the connecting patchcord such that the higher-order soliton is
just recombining as it enters the waveguide would be a good solution. This assumes
however, that no other nonlinear effects in the fiber such as high-order dispersion or
even Raman Scattering would disturb the soliton. To rule out fiber influence, we placed
an attenuator right at the output of the source, attenuating the pulses such that they
would undergo no distortion inside the fibers. In so doing however, it appeared in
experiments that the peak powers were much reduced and we did not get to see some
of the effects predicted in modeling. Even in this case it has been nearly impossible to
give an interpretation of the data obtained, and more difficult to compare it to modeling
results.

5.2.1 Source characterization

We characterize the source by measuring its spectrum, as no equipment is available to
view the pulses in the time domain. As we said in the previous section, such a spectrum
will once again depend on the length of the fiber between source and spectrum analyzer,
and that is exactly what we observed. For the measurements in which we connected the
source directly to the waveguide, we used a fiber as short as possible. We present here
the recorded spectra when the connecting fiber is 30cm and 2m long.

It is clear that even with the shortest possible length of fiber, the source does not
deliver sech2 pulses. The spectrum depends much on the fiber length. We suppress this
dependence by inserting a 15dB attenuator right at the output of the laser source, but of
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Figure 5.7: Setup for experiments with femtosecond pulses.

course, it takes away some of the peak power available to us.

5.2.2 Results with non-attenuated pulses

Before we acquired an attenuating device to reduce the pulse peak power and rule out
fiber influence, we conducted some experiments in which the pulses were delivered to
the waveguide with the shortest possible length of fiber. Though we cannot compare
the results of such experiments to our numerical modeling, the effect of the Si wire
waveguides on the pulses can be extracted when comparing to the input.

a) The 350× 220nm2 waveguide, vertical in and out-coupling

Figure 5.9 shows the recorded spectra with the estimated values of pulsewidth and
peak powers. These two cannot be separately adjusted for our source, unfortunately.
The values with question marks are estimated from manufacturer data, and the peak
powers are computed with the coupling loss values obtained from our measurements.
On very short reference waveguides and with very low input power, the fiber-to-fiber
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Figure 5.8: Impact of patchcord length on the spectrum of the femtosecond source when
no attenuator is inserted at the output of our laser source.

loss value is 14.6dB, half of which we attribute to the input grating and thus obtain
the peak powers above. Comparing with Figure 5.10(A), we see that the spectrum is
altered and broadened in the Si photonic wire and part of the energy is transferred into
the anomalous GVD regime. However, for such high peak powers, the broadening we
expect from such a wire is very different.

b) The 450× 220nm2 waveguide

We carried out the same measurements with this centimeter-long 450× 220nm2 waveg-
uide and the results are shown in Figure 5.10. In part (A), we use the same setup as
previously and the connector length is quite short, around 50cm. Light is coupled in and
out vertically using the gratings. In (B), the connector length is much longer, about 2m,
and light is out-coupled horizontally as we have removed the output coupler. The sharp
differences between the two figures stress out the effect of the connecting patchcords
and make it very difficult for us to interpret the data and find out which mechanisms
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Figure 5.9: Recorded spectra with the femtosecond source as input. Pulses are propa-
gated in a centimeter-long 350× 220nm2 wire.

leading to broadening are actually going on in the Si wire.

Simulations with such short pulsewidths and high peak power show the soliton
dynamics we discussed in the previous chapter. In our experiments however, we fail to
observe any such effects. We suspect that the pulses entering the Si wire are distorted
and very different from what we might assume they are, since simulations with sech2

pulses or second order solitons yield very different results.

c) The 750× 220nm2 waveguide

Similar spectra are recorded for this much wider waveguide, as shown in the plots of
Figure 5.11 below. The distortion impinged upon the pulses is evident from the plots
showing the 20dB bandwidth of the output spectra, which is as broad as 100nm for the
90 f s pulses. Still, it is very difficult to speculate on the nature of the broadening, though
we suspect SPM plays a role. The effects of GVD can also be indirectly deduced by com-
paring the spectra obtained for different waveguides. For the 350× 220nm waveguide
for example, the pulses are propagating in the normal GVD regime, and mostly SPM



5.2 Femtosecond pulse propagation in Si photonic wires 59

1 4 0 0 1 5 0 0 1 6 0 0 1 7 0 0

- 9 0

- 6 0

- 3 0

 ~ 1 p s
 3 5 0  f s
 2 1 2  f s
 1 7 0  f s
  1 2 8  f s
 1 0 9  f s
 9 0  f s
 8 6  f s

 

P
ow

er
 / 

dB
 s

ca
le

W a v e l e n g t h  /  n m

(A) Vertical in and out-coupling, with a connector length
of roughly 50cm between source and waveguide
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Figure 5.10: Recorded spectra for pulses propagating inside a centimeter long 350×
220nm2 Si wire.
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Figure 5.11: Pulses are propagated in a centimeter-long 750× 220nm2 wire and out-
put coupling is done horizontally with a lensed-fibre. (A)Recorded spectra, (B) 20dB
bandwidth of the spectra, for clarity, we add a 10dB offset for each plot.

affects their propagation with some transfer of energy in the anomalous regime. For
this wider waveguide, while we are close to the ZDW, we are pumping in the anoma-
lous regime and most of the broadening does occur there, though some energy also is
transferred in the blue.

5.2.3 Measurements with attenuated pulses

We acquired attenuating devices which would take down the pulse peak powers so
that no nonlinear effect in the delivering fiber would influence their shape. In so doing,
the attenuating device was to overcome the disadvantage of the tunable attenuators
available, in that no fiber would be inserted between the source and itself. This was
done under the assumption that the resulting peak powers would still be enough to
allow us to observe the nonlinear effects in Si wires.

To make sure the attenuator actually reduces the power to the extent the delivering
fibers don’t affect it, we recorded the spectra using 0.75 and 2m long fibers. As can be
seen from Figure 5.12, the length of the fiber no longer influences the recorded spec-
trum.

It can still be seen however, that the shape of the spectrum is not the typical sech2 or
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Figure 5.12: Recorded spectra of our femtosecond source when a 15dB attenuator is
attached at its output. (a) A 75cm patchcord guides the pulses to the optical spectrum
analyzer. (b) A much longer fiber, 2m, is used.

gaussian shape we typically use in modeling. Rather, we also see the peaks that develop
as the amplifying current for the laser source is increased and the pulse shortened. The
spectra however are in conformity with the data from the manufacturer.

Next, we carried out measurements using the attenuated pulses. Surprisingly, the
waveguides we measured on, that is 450, 550, 650 and × 220nm2 showed a somewhat
similar response, making a full comprehension of the phenomena even more difficult.
Below, on Figure 5.13 are for example the recorded spectra after 1cm of propagation
inside the w = 750nm and w = 550nm. The distortion resulting from the propagation
inside the wires is clear, but as they do not correspond to any of the effects that can
be tracked in modeling, it is difficult to attribute it to any particular nonlinear process,
especially since the response from the two waveguides is similar. For the pulse parame-
ters 350 f s and P0 = 2.53W, assuming a sech pulse, the 550× 220nm2 waveguide would
affect the pulse by breaking it into three solitons, though not resulting in huge broad-
ening. As for the 750× 220nm2, the pulses would only undergo self-phase modulation
according to our modeling, which are shown on Figure 5.14. Experiments however,
show the original spectrum partitioned into somewhat symmetric halves around the
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Figure 5.13: Spectra recorded at the output of the wire waveguides with the original
pulses attenuated by 15dB, and the input spectra shown in Figure 5.12. The peak pow-
ers are calculated by assuming a loss of 7dB at the input grating, which is moderate
as the new gratings have higher efficiencies. Light is coupled out horizontally from a
cleaved facet. (a) w = 550nm and (b) w = 750nm.

center wavelength 1550nm, independent of the waveguide. The reason for this behav-
ior is not clear, and it did not appear in the same measurements when no attenuator was
used.

Furthermore, from the estimated peak powers of the attenuated pulses shown on
Figure 5.13, the idea was to then place a tunable attenuator that would allow us to
choose any other value for the peak power between 0W and the values on the Figure.
We did so with the intent of studying the same limiting phenomenon that was observed
for picosecond pulses and that is clearly predicted for the parameters here. We failed
however to observe any significant spectral distortion when a second attenuator was
placed after the first one, and no significant limiting was observed either.
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Figure 5.14: Modeling results for the 350 f s, 2.53W pulses propagating in the Si wires.

5.3 Summary

In this chapter, we have reported the experimental results obtained in this work. The
results with picosecond pulses tend to correlate very well with the theory we developed
in previous chapters. Our results with much shorter pulses have proven rather difficult
to interpret as resulting from any of the effects we described earlier. This, we believe,
results from the fact that our laser source cannot be characterized properly. Still, the
obtained results confirm the strong nonlinear interaction between the pulses and our Si
wires.
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Chapter 6

Conclusion and Outlook

Though silicon cannot efficiently emit light, it can guide it an interact with it through
its strong nonlinearities. We set out to investigate these nonlinear interactions in Si wire
waveguides, with the aim of determining conditions under which they would lead to
efficient continuum generation.

We have in the current work, journeyed through how silicon can be used for engi-
neering the spectrum of incident short pulses through nonlinear optical interactions. We
have presented a thorough description of the physical phenomena that affect nonlinear
light propagation in Si photonic wires. We have implemented a model (from a simi-
lar one used for fibres) in an attempt to understand and predict the result of ultrashort
pulse propagation in Si wires experiments.

Most importantly however, we have carried out a great number of experiments with
the intent to not only further understand the physics of nonlinear light propagation in
wire waveguides, but also to be able to engineer the features of the output spectra in
such experiments. Part of the results we obtained agree quite well with what can be
deduced from our modeling results, and part of them do not. We do believe the inputs
have not been optimized to reach the objectives we were set out for. In a time frame as
short as a few months, acquiring a femtosecond source , correctly characterizing it and
going through all the troubleshooting with the aim to optimize it for our experiments
have proven to be a difficult task, albeit not an impossible one.

Further work on this exciting topic in our group would first focus on a full and
thorough characterization of the experimental equipment available in the lab. With
the foundations laid in the present work, experimental demonstration of continuum
generation in Si wires would simply require that the pumping source be chosen prop-
erly, and that the coupling of light to the waveguide be cleared of unknowns such as
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possible chirp from the gratings, though such unknowns could eventually prove to be
useful. Further work can be also carried out first by implementing a full description
of the coupled-mode theory involving simultaneous propagation of pulses at different
wavelengths, and then find conditions under which they would lead to broadband light
generation or other useful effects.
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Appendix A

Dispersion coefficients for the wire
waveguides used in this work

Here are the dispersion coefficients at 1550nm for the waveguides studied in this work.
Dispersion plots obtained from Fimmwave simulations can be seen on Figures 2.5 and
2.6.

Waveguide width β2(ps2/m) β3(ps3/m) ZDW(nm)
350 nm 1.439 −0.2506 1542
400 nm −5.037 −8.198× 10−3 1661.5
450 nm −3.999 9.942× 10−3 1781
500 nm −2.957 1.071× 10−2 1886
550 nm −2.068 9.025× 10−3 1191 and 1997
600 nm −1.392 7.358× 10−3 1259
650 nm −0.869 5.775× 10−3 1330
700 nm −0.469 4.594× 10−3 1408
750 nm −0.157 3.653× 10−3 1495
800 nm 9.234× 10−2 2.886 ×10−3 1591
850 nm 0.294 2.279× 10−3 1702
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