UV PHOTONIC INTEGRATED CIRCUITS FOR LABEL-FREE STRUCTURED ILLUMINATION MICROSCOPY AND QUANTITATIVE PHASE IMAGING

Chupao Lin

Supervisors: Prof. Nicolas Le Thomas, Prof. Roel Baets

16/03/2023

UV PHOTONIC INTEGRATED CIRCUITS FOR LABEL-FREE STRUCTURED ILLUMINATION MICROSCOPY AND QUANTITATIVE PHASE IMAGING

WHAT IS PHOTONICS?

Manufacturing

- Laser cutting
- UV lithography

Display

- LED
- TV, phones, PC

115

• Projectors

Communication

- Optical fiber
- Underwater

Sensing

- Chemical analysis
- Spectroscopy

Imaging

projectorpoint.co.uk

- Microscopy
- Telescope

Detection

- Distance measurement
- Lidar

@autofutures

WHAT IS LIGHT?

I GHENT

UNIVERSITY

ເກາຍເ

WHY UV?

GHENT

UNIVERSITY

ເກາຍc

Quantum computing

High-resolution microscopy

COMPACT SOLUTIONS FOR UV BEAM MANIPULATION?

~cm

~m

UV PHOTONIC INTEGRATED CIRCUITS FOR LABEL-FREE STRUCTURED ILLUMINATION MICROSCOPY AND QUANTITATIVE PHASE IMAGING

WHAT IS PHOTONIC INTEGRATED CIRCUITS (PICS)?

Light travels in a straight-line path

Light guided in water jet

Total internal reflection

unec

GHEN1

UNIVERSITY

Optical fiber

ADVANTAGES OF PHOTONIC INTEGRATED CIRCUITS

➤ Large scale fabrication

Compact

unec

GHEN1

UNIVERSITY

Low-cost

CHALLENGES OF UV-PIC PLATFORM

- Strong absorption
- High scattering $\propto \lambda^{-4}$

UV PHOTONIC INTEGRATED CIRCUITS FOR LABEL-FREE STRUCTURED ILLUMINATION MICROSCOPY AND QUANTITATIVE PHASE IMAGING

SEEING THING BETTER WITH OPTICAL MICROSCOPY

~3x (~0.1 mm)

~10x (~1 µm)

See better with cascaded lenses?

Magnified but blurred

WHAT DETERMINES THE RESOLUTION?

unec

UNIVERSITY

Abbe's resolution limit

$$d = \frac{\lambda}{2nsin(\theta)} = \frac{\lambda}{2NA}$$

• Wavelength (λ)

Visible (400 nm-700 nm)

- Refractive index (n)
 Air (~1), oil (~1.55)
- Maximum angle (θ)

COMPARISON OF SUPER-RESOLUTION MICROSCOPY TECHNIQUES

Single fluorophore molecule (~nm)

Imaged fluorescence (~200 nm)

- Single molecular localization microscopy (SMLM)
 - ✓ high resolution (~10 nm)
 - X Slow (~min), special fluorescent dye
- Stimulated emission depletion microscopy (STED)
 - v high resolution (~30 nm), fast (~s)

• + 🔿 = •

X High phototoxicity, complicated optical system

- Structured illumination microscopy (SIM)
 - **√** Fast (~s), compatible with conventional dyes

x Relatively low resolution (~100 nm)

WHAT IS STRUCTURED ILLUMINATION?

Speckles

ເກາຍc

GHENT

UNIVERSITY

Sinusoidal

COMPACT, LOW-COST SOLUTION FOR SIM MICROSCOPES

Present SIM microscope configuration

Our approach using UV-PIC

UV PHOTONIC INTEGRATED CIRCUITS FOR LABEL-FREE STRUCTURED ILLUMINATION MICROSCOPY AND QUANTITATIVE PHASE IMAGING

WHAT IS PHASE OF LIGHT?

UNIVERSITY

unec

By knowing the refractive index (n), we can deduce the thickness of the object (h).

Height monitoring during etching

INTERFEROMETRIC BASED QUANTITATIVE PHASE IMAGING

Phase noise

- Vibration
- Thermal drift

ROBUST INTENSITY-BASED QUANTITATIVE PHASE IMAGING

Kramers-Kronig relations (Hilbert transform)

 $\widehat{\blacksquare}$

unec

$$Z_{i} = -\frac{1}{\pi} PV \int_{-\infty}^{+\infty} \frac{Z_{r}(X)}{(X-x)} dX$$
$$Z_{r} = \frac{1}{\pi} PV \int_{-\infty}^{+\infty} \frac{Z_{i}(X)}{(X-x)} dX$$

Conditions:

1: Causality: 2: Analyticity:

Complex field: $E(x) = A \cdot e^{i(kx+\varphi)}$

Intermediate function $\chi(x) = \ln(E(x)) = \ln(A) + i(kx + \varphi)$

Imaginary: $\chi_i = kx + \varphi \longrightarrow$ Phase Real: $\chi_r = \ln(A) \longrightarrow$ Amplitude

COMPACT, LOW-COST SOLUTION FOR KK-BASED QPI

Low-loss single-mode integrated waveguides for a UV-PIC platform

Strategies to process AlO_X waveguide

Deposition

ALD-AlO_x @150 °C

High purity

 $\widehat{\blacksquare}$

IINIVFRSITY

unec

Etching

٠

- Etching rate Fluorine based → Chlorine based (3~4 nm/min → ~50 nm/min)
- Etching selectivity Photoresist mask $\rightarrow SiN_x$ mask (~0.1 \rightarrow ~1.5)
- Etching quality Gas mixture $BCl_3 \rightarrow BCl_3/Cl_2/Ar$ (loss)

Nonvolatile AIF_3 volatile $AICI_3$

 BO_x

BCIO,

$C \mathsf{LEAR}$ IMPROVEMENT OF WAVEGUIDE FABRICATION

UV light propagation in spiral waveguides with a total length of 2.7 cm

After optimization

3 DB/CM at a wavelength of 360 NM

Relationship between the waveguide width and waveguide loss

UV-PIC-based label-free super-resolved structured illumination microscopy

NA 0.95

5.=

UNVEILING PRINCIPLE OF SIM WITH A UV PIC

Diagram of UV-PIC for 1D structured illumination

UV BEAM WITH A LARGE FIELD OF VIEW

Beam profile at near field (left) and far field (right), θ =11.7°

HIGH VISIBILITY OF FRINGE PATTERN

UV two beam interference fringe pattern, θ =29°

High Visibility up to 0.93

DEMONSTRATION OF CHIP-SIM ON 1D OBJECT

Grating pitch G=300 nm < optical resolution 585 nm

Real space

Structured illumination

Fluorescent object

Fourier space

RESOLUTION ENHANCEMENT CHECKED BY SEM

SIM image of dye filled groove

SEM image of metal lines

Super-resolution SIM using photonic chip is demonstrated on 1D object

CIRCUITS DESIGN FOR STRUCTURED ILLUMINATION

Optical images of the profiles of the generated structured illumination

Optical image of the fabricated UV-PIC

GHEN1

UNIVERSITY

unec

C. Lin, et al., Nature communication, 13(1), p.1-9,2022 32

QUANTIFYING THE PERFORMANCE OF PIC-BASED SIM

SEM image of metallic spoke target

GHEN1

UNIVERSITY

unec

Schematic of fluorescent spoke target

C. Lin, et al., Nature communication, 13(1), p.1-9,2022

X1.8 TIMES BETTER WITH UV-PIC SIM

WF and SIM image of the spoke target

Intensity profile along the circle at r=1.9 μm

34

SUPER-RESOLVED AUTOFLUORESCENCE IMAGES OF YEAST CELLS

WF and SIM image of yeast cells

Enhancement factor: x1.6

C. Lin, et al., Nature communication, 13(1), p.1-9,2022

CONFIGURATION TO IMPLEMENT KK-RELATIONS

Conditions: 1: Causality: 2: Analyticity:

- 1. Vanish one of the half planes in k-space, $NA_{ex} \ge NA_{co}$
- 2. Work in bright field condition, $NA_{ex} \leq NA_{co}$

$$NA_{ex} = NA_{co}$$

HIGH ACCURACY ON BEAM MANIPULATION VIA UV-PICS

Schematic of grating out-coupler

Relationship between numerical aperture NA_{ex} and grating pitch at filling factor of 0.8 and 0.6, respectively.

$\widehat{\underline{M}} \qquad \Delta NA_{ex} = 0.005$

UV-PIC FOR QUANTITATIVE PHASE IMAGING

PROSPECTIVES

ເກາຍc

- Low spatial noise QPI using on-chip switching approach
- Large-field-of-view SIM (0.2 mm \rightarrow 0.5 mm)
- UV-PICs for multi-modal advanced microscopy (SIM and QPI)
- AIO_x/SiN_x hybrid platform operating for UV/Vis wavelengths

PHOTONICS RESEARCH GROUP

Chupao Lin

PhD candidate

Т

E Chupao.Lin@UGent.be

@PhotonicsUGent
 @Chupao Lin
 Chupao Lin

www.photonics.intec.ugent.be

