

DEPARTMENT OF INFORMATION TECHNOLOGY (INTEC) – PHOTONICS RESEARCH GROUP

September 2nd, 2024

III-V Photodetectors Monolithically Integrated on Silicon for Interconnect Applications

Ph.D. Public Defense

Cenk Ibrahim Özdemir

New Trends

- Information age is evolving beyond communicating and computing the information, but also generating the information now
- Most of these happens at data centers
	- Adding more resources quantitatively to keep up with the demand
	- Yet all components operating at high speeds need to connect somehow
- Most of the connectivity ('interconnect') happens on optical domain
- Optical connectivity solutions will follow this growth trend and are needed to be cost-/power-efficient, while offering higher speeds

filli **GHEN** mec **UNIVERSITY**

Data center power consumption, by providers/enterprises,¹ gigawatts

Data center power consumption, by providers/enterprises,¹% share

¹Demand is measured by power consumption to reflect the number of servers a data center can house. Demand includes megawatts for storage, servers, and networks. McKinsey

McKinsey & Company

2022-2028 optical transceiver revenue growth forecast by segment

(Source: Optical Transceivers for Datacom and Telecom 2023, Yole Intelligence, August, 2023)

Optical communications

- Light confinement in high index materials, e.g. glass fibers
- Enabled optical transport, fiber optic networks all around the globe
- Recently optical communication is also used in free space (Starlink)

umec

Subsea and also on land!

A simple optical link

 $\boxed{\mathbb{I}}$

GHENT
UNIVERSITY

Photonic Integrated Circuits

 $\widehat{\mathbb{R}}$

GHENT
UNIVERSITY

Two main material Platforms for PICs

Silicon is basis of everything in electronics, and (almost) in photonics, but we need III-V devices for photonics.

 $\widehat{\mathbb{R}}$ **GHEN** umec **UNIVERSITY**

III-V Compounds

- III and V group columns of periodic table
	- III-V compounds are combinations of elements on these columns (binary, ternary or quaternary)
- Why III-V in photonics?

 $\frac{1}{11}$ v

С

Carbor

Si

Silicon

Ge

Sn

Tin

Pb

Lead

F

 114

N

P

As

Sb

Bi

Bismuth

Mc

115

Po

Lv

At

Ts

B

Boron

 A

Ga

Galliur

-In

 T_l

Thallium

Nh

 113

…

…

nnec

н

Be

Ma

за

Sr

Strontium

Вa

ка

GHEN⁻

UNIVERSITY

- Direct bandgap, can easily emit and detect light
- Bandgap tunable with different combinations

He

Ne

Neon

Ar

Argor

Krypton

Xe

Xenon

Rn

Radon

Oa

Can work at telecom wavelengths defined by the minimum loss wavelengths of glass fibers

InP Si

ecombination

Indirect¹

recombination

Electrons

Holes

Integrated Photonics Evolution

Started with III-V based components and PICs …

III-V on Si

Missing capabilities in Silicon Photonics can be overcome by introducing additional material systems:

• III-V materials for light modulation and detection, also generation

III-V on Si Integration Methods

Heterogenous integration

Monolithic integration

Epitaxial growth $\frac{1}{1}$ **Oxide Oxide** $\widehat{\mathbb{m}}$ Si Substrate Si Substrate **GHEN UNIVERSITY**

Monolithic integration of III-V on Si can offer the highest production throughput and lowest cost

Monolithic III-V on Si

Difficult to grow III-V on Si with high crystal quality due to mismatch in lattice constant & thermal expansion coefficient (CTE), and polarity

Lattice constant mismatch: Crystal configuration (atom spacing) is different and higher for most of III-V compounds than Si

CTE: Si and III-V compounds expand/contract differently

Polarity: Si is non-polar, while III-V is polar

Wanlass et al., 2004 $_{11}$

Objectives

The objective of this thesis was to enhance the capabilities of silicon photonics platforms by integrating active III-V devices.

- Monolithic Integration of nano-ridge waveguide devices
	- Co-design and co-integration of photodetectors (NRWPD) with GaAs NR lasers
- Assessment of the quality of the grown NRWPD material via extracting various leakage mechanisms through elevated temperature studies
- Experimenting selective area grown InGaAs on Si photonics platform to achieve modulation and photodetection capabilities directly on the same platform

… In this thesis:

Introduction

- 2. III-V on Si Nano-Ridge Photodetectors
	- 1. What is a nano-ridge? How does a nano-ridge work?
	- 2. How are nano-ridges made?
	- 3. How do they perform?
- 3. Leakage Mechanisms of Nano-Ridge Photodetectors
- 4. Wide-field grown III-V Photodetectors
- 5. Conclusions and Future

 \geq

… In this thesis:

Introduction

- 2. III-V on Si Nano-Ridge Photodetectors
	- 1. What is a nano-ridge? How does a nano-ridge work?
	- 2. How are nano-ridges made?
	- 3. How do they perform?
- 3. Leakage Mechanisms of Nano-Ridge Photodetectors
- 4. Wide-field grown III-V Photodetectors
- 5. Conclusions and Future

InGaAs/GaAs on Si Nano-ridge Waveguide Photodetector (NRWPD)

- By applying ART and NRE methods, p-i-n InGaAs/GaAs diode is grown on a 300-mm standard Si wafer
- Three InGaAs quantum wells embedded in i-GaAs, as active material, with ~22% In composition
- Nano-ridge is capped with InGaP for passivation, with contacts plugs accessing p-GaAs

imec HAADF-STEM: High-angle annular dark-field scanning transmission electron microscope

GaAs PIN Photodiode with InGaAs Quantum Wells

How will this work?

Y. De Koninck

Y. De Koninck

19

Aspect Ratio Trapping (ART)

ART enables:

Trapping threading (TD) dislocations parallel and perpendicular to the trench axis (TD|| and TD⊥) (cases 1 & 3)

Trapping planar defects on parallel {111} plane (case 2)

Formation of planar (PD) defects on perpendicular {111} plane are reduced via seed optimization, cleaning and surface pretreatment (case 4)

Anti-phase domains are avoided by starting growth on {111} Si surface

Effective trapping depends on the aspect ratio (depth/width) and applied growth conditions

Kunert et al., 2018

Effect of Aspect Ratio in ART

- Aspect ratio (AR) (depth/width) of the trench becomes important for effective defect trapping
- For fixed depth (300nm), narrower trench widths (higher AR) trap more defects arising from the heterointerface
- 40 nm trench width has minimum number of defects propagating to the top, compared to 100 nm & 300 nm trench widths

Nano-Ridge Engineering (NRE)

- **NRE facilitates desired geometry,** device and active material crosssection by:
	- Appropriate growth conditions for different facets
		- **E** Such as growth temperature, reactor pressure, precursor partial pressure and gas phase ratio
	- **E** Introduction of dopants for diode device formation
	- **E** Introduction of In forming active InGaAs medium

Kunert et al., 2018

Nano-Ridge Engineering

- Now we will make our active device with NRE:
	- \checkmark Waveguide with a rectangular profile
		- **E** Appropriate deposition conditions for different facets forming the desired shape
	- \checkmark Consisting active volume, e.g. quantum wells
		- **· Introducing In during growth with the** controlled composition
	- \checkmark Forming p-i-n diode junction
		- **Introducing dopants at given growth steps**
	- \checkmark Passivating external boundary to suppress surface recombination
		-

NRWPD Device Processing

Completed in imec's 300-mm CMOS line

- 1. Shallow trench isolation
- 2. Anisotropic Si etching
- 3. Epitaxial growth of NRWPD
- 4. Planarization and tungsten contact plug addition
- 5. Copper damascene metal interconnect layer

Performance Metrics of Photodetectors

 $\widehat{\mathbb{R}}$

GHENT
UNIVERSITY

mec

Dark Currents of Nano-Ridge Waveguide Photodetectors

The devices exhibit extremely low dark current of:

At -1 V:

median 7.3E-15 A, maximum 0.25 pA

At -2 V:

median 5.1E-14 A, maximum 0.62 pA

Considering the 440 nm width and 500 µm length, this corresponds to a 1.98x10⁻⁸ A/cm² equivalent dark current density at -1 V

Internal responsivities

How do they operate under light?

Coupling -efficiency correction is made with fiber to chip simulation:

 $P_{coupled} = P_{incident} \times \eta_{coupling}$ $R_{corr} = I_{ph}/P_{coupled}$

Median Responsivity of 0.65 A/W (max 0.68 A/W) at -1V

Equivalent of 79% (max 83%) internal quantum efficiency

(of device with TW=100nm, length= 500um, CON35 pitch=4.8um)

 I_{nh} : photocurrent $\boldsymbol{I}_{\boldsymbol{l}}$: light current $\boldsymbol{I}_{\boldsymbol{d}}$: dark current

FDTD simulation for plug losses

Coupling corrected responsivities at -1 and -2V

w/ simulated transmissions for different plug pitches (aligned to right y-axis)

High Speed Performance

High speed performance of PIN photodiodes mainly depend on two factors:

• Carrier transit time bandwidth

T

nec

- How fast carriers can exit the intrinsic volume
- Resistance-Capacitance bandwidth
	- How fast the electrical circuit can operate

 f_{3dB} ~

1

1

 $\frac{1}{\tau_{RC}^2 + \tau_{transit}^2} =$

1

1

2

1

 $rac{1}{2}$ +

 2π

Simulated transit time bandwidth was found to be 155.4 GHz

High Speed Performance (2)

S11 parameter measurements were completed for extracting device RC parameters

RC bandwidth is found 1.1-1.9 GHz NRWPDs are RC bandwidth limited

 \widehat{m}

mec

Benchmark

THE SET SET SHENT
GHENT
UNIVERSITY **imec**

Advanced performances on responsivity (IQE), and dark current densities compared to literature

… In this thesis:

- **Introduction**
- 2. III-V on Si Nano-Ridge Photodetectors
	- 1. What is a nano-ridge? How does a nano-ridge work?
	- 2. How are nano-ridges made?
	- 3. How do they perform?
- 3. Leakage Mechanisms of Nano-Ridge Photodetectors
- 4. Wide-field grown III-V Photodetectors
- 5. Conclusions and Future

Leakage Mechanisms at Elevated Temperatures of NRs

- Extremely low dark currents (leakages)
- How can we assess the source of extremely low dark currents and the quality of grown material? By heating it up!
- We increase the temperature from 25°C to 195°C to resolve underlying leakage mechanisms

Studied Models for Leakages (Carrier Recombination – Generation)

- **Radiative:** resulting carrier generation after light absorption (1), or resulting a radiation after a recombination (2)
- Auger: moving carriers to higher energy levels
- Trap-assisted (or Shockley-Read-Hall (SRH)): Existing dopants or defects creating states (or traps), facilitating lower energy recombination-generation events
- Surface: traps due to sudden discontinuation of crystal (dangling bonds) act as traps

Bulk and surface SRH recombination are not desired

 \bigcirc Hole $(+)$

– Traps

● Electron (-)

SRH: Shockley-Read-Hall

Studied Leakage Model Parameters $R_{BulkSRH,net} = \frac{np - n_{i,eff}^2}{\tau_p(n+n_1) + \tau_n(p+p_1)} R_{SurfsRH,net} = \frac{np - n_{i,eff}^2}{(n+n_1)/s_p + (p+p_1)/s_n}$

- Earlier activation energy and ideality factor extractions suggest SRH type recombination
- SRH
	- Bulk tau (τ) parameters needs to be extracted for GaAs and InGaAs (material in intrinsic volume)
	- Surface recombination velocity (S) for GaAs/oxide InGaP/oxide interface surfaces
- Auger and Radiative models were also included (but expected to be ineffective at reverse bias operation)

Extracting Bulk carrier SRH lifetimes

There are two materials in intrinsic volume (InGaAs QWs and i-GaAs) that can have different tau values

Tau parameters were extracted on a separate simulation study which emulates the PL response of the NRs

- Carrier recombination lifetime was extracted for various tau values of GaAs and InGaAs materials in the devices after an artificial radiation
- Real PL lifetime corresponding tau value pairs (along $+$ - $+$ curve, where lifetime is 1.95ns) were found

Forward / Reverse Leakage Current Comparison of Simulation $1E-8$ Space vs. Measurement **Measured Devices (N=33)**

Dark currents at -1 V and +0.25 V bias points at 165C measured and simulated were compared with the extracted tau pairs, along with literature surface SRH parameters

S_{GaAs}/*oxide* SWeep

Tau pair sweep

Effects of surface SRH was observed for +0.25 V bias

 $1E-16$

 -2.0

 -1.5

 -1.0

Bias Voltage (V)

 -0.5

 0.0

38

 0.5

Our simulations show dark currents we measured at room temperature can be more than 10x smaller than what we measured!

Percentile contributions at forward and reverse bias

InGaAs SRH (defectivity levels in QW) plays an important role

Surface SRH leakages were observed to be more prominent at forward subthreshold bias voltages

… In this thesis:

- **Introduction**
- 2. III-V on Si Nano-Ridge Photodetectors
	- 1. What's a nano-ridge? How does the nano-ridge work?
	- 2. How are nano-ridges made?
	- 3. How do they perform?
- 3. Leakage Mechanisms of Nano-Ridge Photodetectors
- 4. Wide-field grown III-V Photodetectors
- 5. Conclusions and Future

Wide-field grown III-V on Si devices

- Direct integration on Si with the Wide-field approach
- **Objectives**
	- Implementing on an existing silicon photonics platform to eliminate
		- Coupling difficulties in nano-ridges
		- **Problems arising from III-V to metal contacting**

GaAs on Si for Carrier Depletion Phase Shifters / Modulators (PSM)

■ Offering integration flexibility & wafer scalability, and fast prototyping

InGaAs on Si for Electro-Absorption Devices

Advantages of InGaAs for electro-absorption devices

InGaAs offers:

- 1. Extension of operation wavelength beyond Ge bandgap
- 2. Bandgap engineering via material composition
- 3. Sharper band-edge at operated telecom wavelengths Also:

Higher mobilities and absorption coefficients

*3 – Sharper band-edge

Wide-field Grown InGaAs

- M 35W Via $\textcolor{blue}{\uparrow}$ SOI (215 nm) **InGaAs WW** $P + Si$ $N + Si$ **N1** $P₁$ i-Si Pbody Si **Nbody Si** IW BOX (2000 nm) **BIW** Si Substrate
- On an existing SiPh platform with new III-V window + doping maskset
- **Devices with waveguide width 0.7um**
	- With 4 different III-V lengths of devices
	- 4 different In% targets of InGaAs grown on different wafers

Insertion loss at 0 V

Loss spectra show no indication of sharp band edge of InGaAs in this spectral window for any In% case

- In composition nonuniformity
- Brings difficulty to distinguish losses due to defectivities or InGaAs absorption

Dark currents at -1 V

Dark currents at -1 V bias are at around 2 μA levels

No In% dependence observed

Bias effects on Insertion Loss

For modulation

Extinction ratios (ER) between different bias points are calculated as:

 $ER(dB)[xV] = IL_{xV}(dB) - IL_{0V}(dB)$

Best ER are observed for narrow waveguides of 0.7um

- Typically <1dB
- Mostly governed by the high reverse currents carrier effects

Photocurrent Generation

For photodetection

Devices of narrow waveguide width of 0.7um exhibit some photocurrent generation

- Responsivities below <0.1 A/W for -1 V bias
- High dark current limited

/oltage (V

Conclusions on wide-field grown InGaAs devices on Si

- 1. First iteration of InGaAs on Si with wide-field approach
- 2. Material composition inhomogeneities and defects were major limiting factors
	- Band-edge distribution across the spectra
	- High dark currents and insertion losses
- 3. Limited device performances observed

… In this thesis:

- **Introduction**
- 2. III-V on Si Nano-Ridge Photodetectors
	- 1. What's a nano-ridge? How does the nano-ridge work?
	- 2. How are nano-ridges made?
	- 3. How do they perform?
- 3. Leakage Mechanisms of Nano-Ridge Photodetectors
- 4. Wide-field grown III-V Photodetectors
- 5. Conclusions and Future

Conclusions

- 1. Successfully demonstrated InGaAs/GaAs MQW NRWPDs operating at 1020 nm
	- 1. Achieved very high responsivity of **0.65 A/W** at -1 V with extremely low **1.98** \times **10⁻⁸ A/cm² dark** current density
	- 2. Measured RC bandwidth of 1.9 GHz (1.1 GHz for sparsely contacted devices)
- 2. Analyzed leakage mechanisms through high-temperature measurements
	- 1. Developed a comprehensive device model
	- 2. Bulk SRH type leakage mechanisms were found to be major leakage contributors
	- 3. Surface leakage plays an effect in the forward subthreshold bias regime
- 3. Explored selective-area growth of wide-field grown InGaAs on Si for EAM and PDs:
	- 1. Devices were found ineffective due to defects and composition inhomogeneity, requiring further efforts

Future

 $\widehat{1}$

For Nano-Ridge Photodetectors (NRPDs):

- Extend the operation wavelength to telecom bands (O-band or C-band)
- Enhance overall optoelectronic (OE) bandwidth
- Achieve efficient coupling between nano-ridges and Si waveguides
- Co-integrate with other active nano-ridge devices (e.g., lasers, modulators)
- Improve design and material quality to enhance field performance and reliability
- Explore different application fields such as sensing

For Wide-Field Grown InGaAs on Si:

- Improve epitaxial growth uniformity and effectively reduce defects
- Explore new defect-reducing techniques including seed layer optimizations
- Maintain compatibility with existing silicon photonics platforms for quick integration umec

Take Home Messages

- 1. It is very hard to bring III-V devices with silicon photonics platforms, but we made it for photodetectors!
- 2. High material quality matters a lot for the best device performance.

Cenk Ibrahim Özdemir

CenkIbrahim.Ozdemir@ugent.be

Thank you!

Acknowledgements:

- Promoters: Prof. D. Van Thourhout, Dr. J. Van Campenhout
- Jury: Prof. L. Dupre, Prof. G. Roelkens, Prof. X. Yin, Dr. B. Kunert, and Dr. L. Bogaert
- Optical IO: Dr. M. Pantouvaki, Dr. Y. De Koninck, Prof. Y. Kim, Dr. N. Kuznetsova, Dr. D. Yudistira, Dr. S. K. Patra, Dr. S. Lardenois, Prof. S. Kim, and all other members
- EPI: Dr. B. Kunert, Dr. M. Baryshnikova, Dr. R. Alcotte
- amsimec and imec colleagues
- Friends and loved ones