

15th October 2024

Waveguide-Coupled Photodetectors and Light Sources Based on Colloidal Quantum Dots: From Building Blocks to Advanced Demonstrators

Candidate: Chao Pang Supervisors: Dries Van Thourhout, Pieter Geiregat, Zeger Hens

Colloidal Quantum Dots

Nanocrystals, 1 nm – 20 nm

Spectral tunability through quantum confinement effect

Colloidal Quantum Dots

Synthesized with wet chemical method Stable dispersion in solvent

Easy deposition

 \rightarrow Low-cost material

Colloidal Quantum Dots: Good Light Emitters

Excellent color purity High emission efficiency Stable

Z. Yang, Materials Today 2019.

Colloidal Quantum Dots: Potential Gain Material

400

600

ns-optical-pump integrated laser

Y. Zhu, ACS Photonics, 2017

Electrical-pump Amplified Spontaneous Emission

≈≈0

∞∞0

Optical gain

∞∞0

Colloidal Quantum Dots: Good Infrared Absorbers

PbS QDs

HgTe QDs

E. Lhuillier, Nanotechnology, 2012.

C. Dong, ACS applied materials & interfaces, 2019.

Colloidal Quantum Dots: Infrared Photodetectors

Photoconductors
Electrode
Electrode
Substrate
Photodiodes

Colloidal Quantum Dots: Cost-effective Infrared Imagers

Read-out integrated circuits

 Visible
 Infrared

 Image: Superstand Supers

Photonic Integrated Circuits

Waveguide: confine light tightly

Guide and manipulate light on chip

LioniX

Xanadu

Silicon Photonics

Use CMOS infrastructures developed for electronic integrated circuits!

Silicon Photonics: Add Active Components (III-V)

SiP-PIC pedestals for vertical alignment

Box Box Si substrate Si substrate

Monolithic growth

Colloidal Quantum Dots for Photonic Integrated Circuits

Cost-effective building blocks:

Colloidal QD Photodetectors

Colloidal QD Light sources

$1.3\ \mu m$ waveguide-coupled QDPD on SiN

Evanescent absorption

What Materials used for QDPD Stack?

What is the performance of QDPD stack?

Saturation power density: 5.2 W/cm² Be careful!

Develop a Process Flow in House

Performance of 1.3 µm WG-QDPD

Performance at wavelength of 1275 nm, bias of -1 V:

- Dark current: 2.4 nA
- EQE: 67.5% Responsivity 0.69 A/W
- Linear response up to 400 nW

Power density control important!

2.1 µm waveguide-coupled QDPD on Si

Dark current suppression >10 times

C. Pang et al., "A silicon photonics waveguide-coupled colloidal quantum dot photodiode sensitive beyond 1.6 µm," APL Photonics, 2024.

Performance of 2.1 µm WG-QDPD

Performance at bias of -3 V

- Dark Current: 106 nA
- Responsivity: 1.3 A/W (EQE 74.8%) @ 116 nW, 2.1 µm
- Bandwidth: 1.1 MHz

Demonstrations based on WG-QDPD Blocks

On-chip spectrometers

WG-QDPD unit

22

Classic On-chip Spectrometer

Dispersive optics + PD array

Compact spectrometer working around 2.1 µm

Limit of Classic On-chip Spectrometer

How about Using Multi Photodetectors?

$$\begin{bmatrix} I_{i,1} \\ I_{i,2} \end{bmatrix} = \begin{bmatrix} m_{i,11} & m_{i,12} \\ m_{i,21} & m_{i,22} \end{bmatrix} \begin{bmatrix} P_{in}(\lambda_{i,1}) \\ P_{in}(\lambda_{i,2}) \end{bmatrix}$$

$$\mathbf{I}_{i} = \mathbf{M}_{i} \qquad \mathbf{P}_{i}$$
$$m_{i,jk} = \int_{\lambda_{i,k}-\frac{\Delta}{2}}^{\lambda_{i,k}+\frac{\Delta}{2}} R_{i,j}(\lambda) d\lambda$$

For unknown input: Reconstruct : $\mathbf{P}_i = \mathbf{M}_i^{-1} \mathbf{I}_i$

Spectrometer based on multi-color cascaded WG-QDPDs

Transmission spectrum of planar concave grating

1200 nm to 1380 nm FSR 90nm = Number of channels (8) × channel spacing (11.25 nm)

Absorption spectra of QDPD

Distinct responses to different orders

Spectrometer based on multi-color cascaded WG-QDPDs

Planar concave grating Metal-covered facets for large optical bandwidth

Spectrometer based on multi-color cascaded WG-QDPDs

Stationary-wave Integrated Fourier Transform Spectrometer

SiN, wavelength 1.3 µm λ $\frac{\lambda}{2n_{eff}} \approx 380 \text{ nm}$

Nano-samplers challenging

Current approach: Nano scatters + camera

QDPD as Nano Samplers

Small diffusion length \rightarrow potential as nano detectors

E-beam lithography + Liftoff 20 nm ──── 1µm

Performance of Nano QDPDs

QDPD effective length = p contact length + 31 nm

Feasible as nano-detector

Stationary-wave Integrated Fourier Transform Spectrometer

To Be Demonstrated

Nano QDPD array

How about Light Emission on Chip?

Integrated Electrically Driven QD Light Sources

CdSe/CdS core/shell QDs, emission 640 nm

Challenges to Achieve Gain

Low confinement factor in QD layer 4% Low achievable modal gain 20cm⁻¹ (87dB/cm) Low optical loss for net gain

Challenges to Achieve Gain

Thick HTL \rightarrow Difficult hole injection

Where are we now?

Conclusion

Building blocks:

- Demonstrated 1.3 µm waveguide-coupled QDPD on SiN
- Demonstrated 2.1 µm waveguide-coupled QDPD on SOI
- Explored integration of electrically driven QD-based light sources on SiN waveguides more effort to balance hole injection and optical loss

Applications:

- Demonstrated classic spectrometer, planar concave grating + QDPD array
- Demonstrated novel spectrometer using two-color cascaded WG-QDPDs, decoupling spectral bandwidth and FSR
- Proposed integrated Fourier transform spectrometer using a QDPD array as nano-sampler effective length of nano QDPD ≈ p-contact length

PHOTONICS RESEARCH GROUP

Chao Pang PhD Candidate

Chao.Pang@Ugent.be

Thanks for your attention!