
DEPARTMENT OF INFORMATION TECHNOLOGY (INTEC) – PHOTONICS RESEARCH GROUP

Waveguide-Coupled Photodetectors and Light Sources 
Based on Colloidal Quantum Dots: From Building Blocks to 
Advanced Demonstrators
Candidate: Chao Pang
Supervisors: Dries Van Thourhout, Pieter Geiregat, Zeger Hens

15th October 2024



2

Colloidal Quantum Dots

Nanocrystals, 1 nm – 20 nm
Spectral tunability through 
quantum confinement effect

-

+
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Colloidal Quantum Dots

Synthesized with wet chemical method
Stable dispersion in solvent

Deposition

Spin coatingSpray coating

QD solid film

Easy deposition

→ Low-cost material
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Colloidal Quantum Dots: Good Light Emitters

Z. Yang, Materials Today 2019.

Excellent color purity
High emission efficiency
Stable
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Colloidal Quantum Dots: Potential Gain Material

VB

CB

Absorption Transparency Optical gain

Y. Zhu, ACS Photonics, 2017

ns-optical-pump integrated laser

N. Ahn, Nature, 2023.

Electrical-pump Amplified Spontaneous Emission
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Colloidal Quantum Dots: Good Infrared Absorbers
PbS QDs HgTe QDs

C. Dong, ACS applied materials & interfaces, 2019. E. Lhuillier, Nanotechnology, 2012.
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Colloidal Quantum Dots: Infrared Photodetectors

Substrate

Electrode Electrode

Photoconductors

Glass

Electron transport layer

Hole transport layer
Top electrode

ITO

Photodiodes

ETL

Absorption
HTL-

+

-

+

Trapped
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Colloidal Quantum Dots: Cost-effective Infrared Imagers

Read-out integrated circuits

Visible Infrared
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Photonic Integrated Circuits

LioniX

Waveguide: confine light tightly

n=2

n=1.45

Xanadu

Guide and manipulate light on chip
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Silicon Photonics 
Use CMOS infrastructures developed for electronic integrated circuits! 

1.6 µm

Detector

8 µm

1.1 µm 3.7 µm
Dense integration
Modulation

0.4 µm 3.7 µm

Visible transparency
Low Loss, high power, …

Light emission

Photodetection 
beyond 1.6 µm 

Photodetection
Modulation

Intrinsic incapability
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Silicon Photonics: Add Active Components (III-V)
Flip Chip

Manufacturing 
Throughput

Transfer printing

Complexity

Bonding

Cost

Monolithic growth

Challenging
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Colloidal Quantum Dots for Photonic Integrated Circuits

Cost-effective building blocks:

Colloidal QD Photodetectors

Colloidal QD Light sources
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1.3 μm waveguide-coupled QDPD on SiN

Evanescent absorption
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What Materials used for QDPD Stack?
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What is the performance of QDPD stack?

Saturation power density: 5.2 W/cm2

Be careful!
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Design

1 μm

0.3 μmSiN

Cross-section < 1 μm2

1 μW ~ 100 W/cm2 

t = 350 nm
w = 30 μm

Saturation power ~ 6.9 μW

5.2 W/cm2 Not high!
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Develop a Process Flow in House

--
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Performance of 1.3 μm WG-QDPD
Performance at wavelength 
of 1275 nm, bias of -1 V:

• Dark current: 2.4 nA
• EQE: 67.5% 
     Responsivity 0.69 A/W
• Linear response up to 

400 nW

Power density control 
important!
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2.1 μm waveguide-coupled QDPD on Si

Dark current suppression >10 times

C. Pang et al., "A silicon photonics waveguide-coupled colloidal quantum 
dot photodiode sensitive beyond 1.6 μm," APL Photonics, 2024.
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2nd Generation Process Flow
Electron transport

Good heterojunction
Suppress dark current
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Performance of 2.1 μm WG-QDPD

Performance at bias of -3 V

• Dark Current: 106 nA

• Responsivity: 1.3 A/W 
(EQE 74.8%) @ 116 nW, 
2.1 µm

• Bandwidth: 1.1 MHz
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Demonstrations based on WG-QDPD Blocks

WG-QDPD unit

On-chip spectrometers

Useful?
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Classic On-chip Spectrometer

Dispersive optics + PD array

Planar Concave Grating
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Compact spectrometer working around 2.1 μm
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Limit of Classic On-chip Spectrometer 

PD

PD

PD

Input

Many diffraction orders:

FSR

Op
ti
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l 
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si
on

Wavelength

Sensing bandwidth 
limit to a single FSR



26

How about Using Multi Photodetectors?

I1 I2

Wavelength

P
o

w
e

r 
d
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it

y

For unknown input:

Reconstruct : 𝐏𝒊= 𝐌𝒊
−1 𝐈𝒊 

𝐼𝑖,1

𝐼𝑖,2
=

𝑚𝑖,11 𝑚𝑖,12

𝑚𝑖,21 𝑚𝑖,22

𝑃𝑖𝑛 𝜆𝑖,1

𝑃𝑖𝑛 𝜆𝑖,2

𝑚𝑖,𝑗𝑘 = න
𝜆𝑖,𝑘−

𝛥
2

𝜆𝑖,𝑘+
𝛥
2

𝑅𝑖,𝑗 𝜆 𝑑𝜆

𝐈𝒊  =  𝐌𝒊 𝐏𝒊

Sensing bandwidth
Beyond single FSR!
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Spectrometer based on multi-color cascaded WG-QDPDs
Transmission spectrum of planar concave grating

Absorption spectra of QDPD

Distinct responses to different orders

1200 nm to 1380 nm
FSR 90nm = 
Number of channels (8) × 
channel spacing (11.25 nm)



28

Spectrometer based on multi-color cascaded WG-QDPDs
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Spectrometer based on multi-color cascaded WG-QDPDs

Sensing bandwidth
beyond single FSR
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Stationary-wave Integrated Fourier Transform Spectrometer

L. Zhang, et al. Laser & Photonics Reviews, 2021.

Standing waveNano samplers

Input
SiN, wavelength 1.3 μm

𝜆

2𝑛𝑒𝑓𝑓
≈ 380 nm

Nano-samplers challenging

Current approach:
Nano scatters + cameraFourier transform

Wavelength

In
te

ns
it

y
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QDPD as Nano Samplers

Small diffusion length 
→ potential as nano detectors

20 nm 1 μm 
E-beam lithography + Liftoff
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Performance of Nano QDPDs

QDPD effective length 
= p contact length + 31 nm

Feasible as nano-detector
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Stationary-wave Integrated Fourier Transform Spectrometer

Optical input
common
N-contact

ITO+ZnO

QDs

P-
co

nt
ac

t a
rr

ay

Heater

d=1μm
l=100nm

Nano QDPD array: 100 QDPDs

SiN waveguide

Heater ON
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To Be Demonstrated

Input

Pads

Pads

Heater

10 μm

Nano QDPD array
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How about Light Emission on Chip?
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Integrated Electrically Driven QD Light Sources

+

-

CdSe/CdS core/shell QDs, emission 640 nm
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Challenges to Achieve Gain

Low confinement factor in QD layer 4%
Low achievable modal gain 20cm-1 (87dB/cm) 
Low optical loss for net gain

Thick HTL to reduce 
p-contact absorption
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Challenges to Achieve Gain

Thick HTL → Difficult hole injection
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Where are we now?

Pulsed electrical pump

Reported mobility 

>103 better than NPB

High state emission
No optical gain or ASE
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Conclusion

Building blocks:

▪ Demonstrated 1.3 μm waveguide-coupled QDPD on SiN

▪ Demonstrated 2.1 μm waveguide-coupled QDPD on SOI

▪ Explored integration of electrically driven QD-based light sources on SiN waveguides

    more effort to balance hole injection and optical loss

Applications:

▪ Demonstrated classic spectrometer, planar concave grating + QDPD array

▪ Demonstrated novel spectrometer using two-color cascaded WG-QDPDs, decoupling spectral 
bandwidth and FSR

▪ Proposed integrated Fourier transform spectrometer using a QDPD array as nano-sampler

    effective length of nano QDPD ≈ p-contact length
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