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An Accurate Rate-Equation Description for
DFB Lasers and Some Interesting Solutions

Geert Morthier,Member, IEEE

Abstract—Starting from the coupled-wave equations, we have
derived an alternative set of rate equations which are valid for
most single-section distributed feedback (DFB) lasers. These rate
equations are in many respects more useful than the conventional
rate equations and have also been used to derive the influence
of spatial hole burning on characteristics such as the chirp,
the linewidth, or the harmonic distortion. Numerical results are
presented for a DFB laser with both facets cleaved, AR-coated,
and for a �=4-shifted DFB laser.

Index Terms—Distributed feedback lasers, harmonic distor-
tion, modulation.

I. INTRODUCTION

A T PRESENT, several longitudinal models for the analysis
of distributed feedback (DFB) laser diodes have been

reported in the literature [1]–[3]. Such models allow a detailed
analysis of effects such as spatial hole burning and are
therefore thought to be indispensable in the description of
DFB lasers. They are, however, all based on the numerical
solution of the static and/or time-dependent, coupled-mode,
or other field equations and are therefore for some purposes
less attractive than the conventional rate-equation model [4].
Indeed, the simplicity of the rate equations makes it possible
to combine them with thermal or electronic models or to
implement them in a circuit or system simulator and include,
for example, driver electronics or parasitic elements in the
analysis [5]. An even bigger advantage of a rate-equation
model is that fairly simple analytical expressions for almost all
laser characteristics can be derived from it. Such expressions
have been and still are very valuable in the design of laser
diodes, in the interpretation of measurements, and in the
estimation of parameters such as gain and recombination
parameters.

However, conventional rate-equation descriptions are not
entirely valid or suitable in the analysis of DFB lasers.
Conclusions about the design of DFB lasers drawn from such
a description are even doubtful. For that reason and because of
all the advantages of rate-equation models, there is a need for
an alternative, or rather improved, rate-equation description,
one which gives an accurate account of the behavior of DFB
and Fabry–Perot (FP) lasers. Work in that direction already
started a few years ago. Kinoshita [6] has reported a rate-
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equation model in which spatial hole burning is included
through one additional carrier rate equation. In his model,
a number of additional parameters are also introduced and
their value must be calculated at each bias level using a static,
longitudinal model. This model gives good agreement with
longitudinal models but does not include information about
chirp or noise. Recently, Schatz [7] reported a lumped small-
signal model that includes longitudinal spatial hole burning.
This model is also based on an additional carrier rate equation.
It makes use of linearization around a steady-state solution
that is obtained from a self-consistent longitudinal simulation.
Both models reported in [6] and [7] are put forward as
an almost arbitrary generalization of the conventional rate
equations in which an effective stimulated emission rate is
used. The modification of the photon lifetime is in both models
calculated from a static longitudinal model and is therefore a
time-independent function of the average photon density. This
implies that the time dependence of spatial hole burning is not
completely taken into account.

In this paper, we propose an alternative rate-equation model
that is derived from the longitudinal equations (in particular the
coupled-mode equations and the longitudinal carrier density
equations). This derivation leads to a natural averaging with
the longitudinal confinement factor as a weighting factor. The
final result is a rate equation for the photon density that is
exact if the axial profile of the photon density is assumed to be
time-independent and that is approximate otherwise. This rate
equation resembles [8, Eq. (21)], which has been derived in a
totally different manner and which was not further developed
into a real rate-equation model. The carrier density is just as in
[6] split up in a uniform part and a part that has the axial profile
of the photon density. Our approach has the advantage that the
extra variables, introduced to include spatial hole burning, only
show a weak dependence on the bias level and only need to be
calculated once (e.g., at threshold). Assuming these variables
constant results in a somewhat less accurate model, but has
the great advantage that the resulting model is simple and
can be fitted to experimental results. In addition, the use of
the longitudinal confinement factor ensures consistency with
established approaches such as the use of an effective linewidth
enhancement factor [9].

The paper is organized as follows. First, we derive the
new rate equations from the coupled-wave equations and the
longitudinal carrier rate equations. This derivation is done for
the general, large-signal behavior and also takes the noise into
account. In Section III, some simple yet accurate solutions
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of the new general rate equations are obtained. Analytical
expressions are presented for the linewidth, the chirp, and
the second-order harmonic distortion caused by spatial hole
burning. They are evaluated and compared with longitudinal
solutions in Section IV. To conclude, we summarize the
main advantages and properties of our new generalized rate
equations.

II. THEORY

A description of DFB lasers that is more accurate than the
usual rate equations is given by the dynamic coupled-wave
equations, and we will therefore derive a rate equation for the
photon density from these equations [1]:

(1)
are the amplitudes of forward and backward propagating

fields, is the index coupling, and the gain coupling.
and are uncorrelated Langevin functions with the

following second-order moments:

(2)

in which is the spontaneous emission rate and the
photon energy. We now expand the field amplitudes and the
complex Bragg deviation in (1) as

(3)

The field amplitudes are the field amplitudes obtained
under static operation and is the Bragg deviation under
static operation. Substitution of the expansions (3) in (1) gives
a set of time-dependent coupled-wave equations which can be
combined with the static coupled-wave equations (for) to
yield the following “large-signal” equation for the variation of
the Bragg deviation:

(4)

We normalize the fields such that the photon density
. We also assume that the modulation does not

change the field profiles, i.e., that

(5)

with a real, -independent function of time and
the static optical power profile. Equation (4) can then be

transformed into

(6)

with the longitudinal confinement factor and given
by

(7)

The Langevin function has the following second-order
moment:

(8)

where is the longitudinal Petermann factor [10], the
average photon density, and the volume of the active
layer. In (6), we can expand as follows:

(9)

with the linewidth enhancement factor, the differ-
ential gain and the confinement factor of the active layer,
and the gain suppression coefficient. We have approximated
the variation of the real part of as a linear function of
and . An extension to a nonlinear function would not imply
extra complexity, however. Steady-state gain suppression has
also been ignored in (9). Substitution of an expression for
and in (9) and substitution of (9) in (6) results in a set of
exact rate equations, one forand one for .

To determine , we can make use of the approximation
used in [6] and decompose and in a uniform part and
a part with the axial variation of as

with (10)

Substitution of this expansion in (6) and (9) gives the rate
equation (11), shown at the bottom of the next page, for
with the differential carrier lifetime, and

and

(12)

Both quantities and will be complex and fairly indepen-
dent of the bias level. We will further only use the real parts

and and the imaginary parts and .
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and must be determined from the substitution of
(10) in the carrier rate equation:

(13)

An expression for the second-order moment of is given in
[1] but will not be used further on. From (13), one can derive
the following equations for and :

(14)

For the sake of simplicity, we have ignored the gain sup-
pression and the spatial variation of the spontaneous carrier
recombination. More general equations are given in [6]. The
Langevin functions appearing in (13) have been grouped in

in these equations. and are given by

(15)

Equations (11) and (14) form our new set of rate equations.
Equation (11) can of course be decomposed into an equation
for the frequency variation

(16)

and an equation for the variation of the average photon density:

(17)

Fig. 1. Longitudinal profile of power and carrier density at 1-mW output
power for an AR-coated DFB laser with�L = 3.

These equations are large-signal equations and are valid as
long as the optical power profile resembles that at threshold
and as long as the carrier density profile can be expressed
accurately as (10). This is the case in most lasers without lon-
gitudinal instabilities and without strongly asymmetric power
profile. A carrier density expansion which is more accurate
over a broader bias level range would be possible in terms of
bias dependent base functions, e.g., two orthogonal functions
derived from the functions and with

and

(18)

The expansion (10) has the great advantage that it is indepen-
dent of the bias level and that it finally leads to a rate-equation
system with bias-independent coefficients. The accuracy of the
expansion is illustrated for a DFB laser with and two
AR-coated facets in Figs. 1 and 2, which show the longitudinal
profiles of power and carrier density at output power levels
of 1 and 5 mW. Good agreement between power and carrier
density profiles, both being relatively independent of the bias
level, is seen.

The parameters and are displayed in Figs. 3,
4, and 5 as a function of the normalized coupling coefficient

for a perfectly AR-coated DFB laser with uniform grating,
an AR-coated -shifted DFB laser, and a laser with cleaved
facets, respectively. It can be remarked that for lasers
emitting at the Bragg wavelength, e.g., -shifted lasers.
and are the parameters needed in the calculation of the
effective linewidth enhancement factor, is the variance of

(11)
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Fig. 2. Longitudinal profile of power and carrier density at 5-mW output
power for an AR-coated DFB laser with�L = 3.

Fig. 3. �; �1; and�2 as a function of�L for a DFB laser with both facets
AR-coated (mode with� > �B ).

the longitudinal power distribution, and is the ratio of
skewness and variance of that distribution.

III. SIMPLE SMALL -SIGNAL

SOLUTIONS OF THE RATE EQUATIONS

Equations (14), (16), and (17) can now be transformed in
several ways, e.g., to derive modulation responses, harmonic
distortion or noise spectra. Very accurate analytical formulas
for these characteristics could be derived from linearization
of (14), (16), and (17). Here, we will however simplify the
equations further and derive simpler analytical expressions.
This illustrates the usefulness and application range of our
system of rate equations without requiring extensive numerical
simulations. The derived analytical expressions furthermore
also shed a light on the influence of spatial hole burning on
the chirp and the harmonic distortion.

A. The Linewidth

We will show here that, for small bias levels, our rate
equations lead to the following expression for the linewidth

Fig. 4. �; �1; and�2 as a function of�L for a�=4-shifted laser with both
facets AR-coated(�00 = 0).

Fig. 5. �; �1; and�2 as a function of�L for a DFB laser with both facets
cleaved.

of a DFB laser:

(19)

We assume and consider only slow fluctuations
(i.e., ). Linearization of (16) and (17) then results in

(20)

Linearization of the carrier density (14), in which we neglect
the Langevin functions and the gain suppression, leads to the
following solution for and :

(21)
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Substitution of these expressions in (20), taking into account
that , and elimination of gives

(22)

The second-order moment of and hence the linewidth can
be readily derived from (22). The second-order moments of

and follow from (8) and are equal to one
half of the second-order moment of .

B. The Chirp

To derive a formula for the chirp, we again linearize (16)
and (17) and ignore the Langevin functions. We concentrate
on the influence of spatial hole burning and hence neglect
the gain suppression again. After Fourier transformation, the
small-signal approximations of (16) and (17) then reduce to

(23)

After Fourier transformation, the solutions for and
are found as

(24)

Substitution of these expressions in the first equation of (23)
gives an expression for the FM modulation, while substitution
in the last equation of (23) gives an expression for the intensity
modulation. If we also neglect the dependence of on
and eliminate from the two equations of (23), we find the
following expression for the chirp:

(25)

in which can be considered as the optical modulation depth.
Neglecting the dependence of on is equivalent with
assuming that the variation of the average stimulated emission
rate is mainly caused by the variation of the photon density
and not by the variation of the carrier density. This is always
the case above threshold.

The first term in this expression is the dynamic chirp and
the second term the chirp caused by spatial hole burning.
Equation (25) already implies that for the calculation of the

dynamic chirp the material’s -factor, not the effective -
factor, must be used. This result is in contradiction with
previously published analytical formulas [11]. However, we
believe that, under the assumption of fixed longitudinal field
profiles, our derivation is exact. In fact, also, an expression
derived from an exact solution of (24) confirms this.

It is readily seen that the chirp caused by spatial hole
burning has a cut-off frequency equal to the inverse carrier
lifetime. It also strongly depends on the threshold gain and
on .

C. The Harmonic Distortion Caused by Spatial
Hole Burning at Low Bias Levels

We again assume that is much smaller than one. We
also ignore gain suppression and time dependencies. Equation
(17) then reduces to

(26)

To take into account the nonlinearity of the carrier lifetime
, we express the carrier recombination ) as

(27)

The solution of (26) and of the static carrier rate equations up
to second order gives the following result:

(28)

with the distortion in the average photon density. The
distortion in the total output power (from both facets)
can be derived from that number by rewriting the equation
for , taking into account that

. The second-order part of that equation

(29)

leads to the following expression for the second-order distor-
tion in :

(30)

with the internal loss and the total facet loss. We
emphasize once more that this expression is only valid at low
bias levels. It can be assumed though that this value gives
an indication of the spatial hole burning induced distortion at
higher power levels also. The last term in the expression is
obviously caused by the change in carrier lifetime as a result
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of the change in average gain due to spatial hole burning.
It always has a phase and is zero only if there is no
variation of the average carrier density or, mathematically, if

. The first term in the expression can have
both a phase zero and a phase, depending on the signs of

and and on the relative magnitude of internal
and facet loss. However, it also has a strong dependence on
the differential gain and on the differential carrier lifetime.

For a Fabry–Perot laser, and (30) reduces to

(31)

This is exactly the formula which has been derived in [12].

IV. V ALIDITY OF THE RATE EQUATIONS

AND THE ANALYTICAL SOLUTIONS

We have compared numerical results obtained using the
analytical expressions (25) and (30) with results obtained using
the longitudinal laser model CLADISS [1]. This gives an
indication of both the accuracy of the rate-equation model
and the accuracy of the simple analytical expressions. The last
are perhaps of more use in the design of laser diodes as they
readily show dependencies on all laser and drive parameters
and can be easily evaluated.

We first concentrate on the chirp caused by spatial hole
burning. At low frequencies, (25) reduces to

(32)

The contribution from spatial hole burning is proportional with
, but also increases with the square of, with threshold

gain, differential carrier lifetime, and differential gain. For
constant optical modulation depth , the chirp
first increases with bias power, then reaches a maximum

at and
then decreases as . There is obviously no spatial hole
burning contribution to the chirp in lasers emitting at the Bragg
wavelength since for such lasers.

The accuracy of (32) has been investigated more in detail
for an AR-coated DFB laser with and . To
this end, the results obtained with (32) have been compared
with results obtained with CLADISS. The chirp as a function
of bias output power for obtained with the analytical
and the numerical model is shown in Fig. 6 for and in
Fig. 7 for . As can be seen, a very good agreement is
obtained up to bias powers of1 mW. Above that power level,
there is a larger deviation, although the analytical expression
(32) still predicts the bias dependence. Fig. 7 shows a better
agreement between the analytical formula and the longitudinal
calculations than Fig. 6. This indicates that the approximations
used in deriving the formula also remain valid for high
values.

The accuracy of (30) for the spatial hole burning induced
second-order harmonic distortion has been investigated for
AR-coated -shifted lasers with different values. Since
(30) is valid only at low bias levels, we have calculated the
second-order distortion at a bias power of 0.1 mW using both

Fig. 6. Low-frequency FM response of an AR-coated (nonphase-shifted)
DFB laser with�L = 2, calculated using (32) and using the longitudinal
model CLADISS as a function of the bias output power and for a modulation
depth of 20%. Gain suppression has been neglected in the calculations.

Fig. 7. Low-frequency FM response of an AR-coated (nonphase-shifted)
DFB laser with�L = 3, calculated using (32) and using the longitudinal
model CLADISS as a function of the bias output power and for a modulation
depth of 20%. Gain suppression has been neglected in the calculations.

CLADISS and the analytical expression. B and C have been
assumed zero in the calculations. Fig. 8 shows the result as
a function of the value. Again, a rather good agreement
between the analytical and the numerical model has been
obtained.

V. CONCLUSION

We have presented an alternative set of rate equations for the
description of single-section laser diodes. Our rate equations
have been derived from the coupled-wave equations and are
therefore more useful than the conventional rate equations, in
particular in the prediction of spatial hole burning effects. In
the derivation, we assumed: 1) that the longitudinal profile of
the photon density is independent of the bias level and 2) that
the nonuniform part of the electron density is proportional with
the nonuniform part of the photon density. Our rate equations
are therefore less valid at very high bias levels and for lasers
with an unstable power profile.
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Fig. 8. Second-order harmonic distortion caused by spatial hole burning for
AR-coated�=4-shifted DFB lasers at a bias power of 0.1 mW and for an
optical modulation depth of 20%.

These rate equations have been used to derive simple analyt-
ical expressions for the linewidth, the chirp, and the harmonic
distortion caused by spatial hole burning. Our approach leads
naturally to the use of the effective linewidth enhancement
factor and the longitudinal Petermann factor in the
linewidth formula. The fomula for the chirp includes con-
tributions from spatial hole burning and dynamic effects but
is easily extented with a contribution from gain suppression.
Important conclusions that follow directly from the formula
are the dependence of the dynamic chirp onand not on
and the dependence of the spatial hole burning induced chirp
on threshold gain, differential gain, differential carrier lifetime,
and . The formula derived for the second-order harmonic
distortion caused by spatial hole burning finally is valid only at
low bias levels, but gives an indication also of the distortion at
high bias levels. It readily shows how this distortion depends
on the differential gain, the carrier lifetime, the internal and
facet loss, and the structural parameters and .

The parameters and introduced in our theory can
obviously be considered as additional fingerprints of a DFB
laser. Together with the conventional rate-equation parameters
and the factor, they allow one to describe the small-
signal behavior of a DFB laser, i.e., noise and modulation,
completely.
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