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ABSTRACT 
Although brute-force simulations of Maxwell’s equations, such as FDTD methods, have enjoyed wide success.in 
modelling photonic-crystal systems, they are not ideally suited for the study of weak perturbations, such as surface 
roughness or gradual waveguide transitions, where a high resolution andor large computational cells are required. 
Instead, we suggest that these important problems are ideally suited for semi-analytical methods, which employ 
pemrbative corrections (typically only needing the lowest order) to the exactly understood perfect waveguide. 
However, semi-analytical methods developed for the study of conventional waveguides require modification for 
high index-contrast, strongly periodic photonic crystals, and we have developed corrected forms of coupled-wave 
theory, perturbation theory, and the volume-current method for this situation. In this paper, we survey these new 
developments and describe the most significant results for adiabatic waveguide transitions and disorder losses. We 
present design rules and scaling laws for adiabatic transitions. In the case o f  disorder, we show both analytically 
and numerically that photonic crystals can suppress radiation loss without any corresponding increase in reflection, 
compared to a conventional strip waveguide with the same modal area, group velocity, and disorder strength. 

1 INTRODUCTION 
Photonic crystals, periodic dielectric structures with a band gap that prohibits the propagation of light in a range 
of wavelengths, offer tantalizing new possibilities for controlling and designing optical phenomena [I ] .  In order 
IO employ them in practical devices, especially in potential high-density integrated optical systems, however, one 
must gain a greater understanding of scattering loss mechanisms in such crystal structures. This task that is made 
more challenging by the use of high index contrasts, tight confinement, and strong periodic modulation, which 
invalidate many semi-analytical tools that were previously employed in more conventional optical waveguides. 
One approach that has been successful in many cases to employ brute-force simulation, such as FDTD methods, 
which model the full Maxwell’s equations with approximations only in the finite resolution and in the boundary 
conditions. Brute force simulation becomes more challenging and less illuminating, however, when applied to 
problems such as disorder-induced scattering and losses from slow transitions, due to the high spatial resolution 
and weak effects that those phenomena embody, as well as the large variety of scatterers that one might like to 
consider. It is these situations that we study in this paper, and we exploit their key properly of involving small 
perlurbalions to an ideal system in order to develop efficient semi-analytical tools and even general analytical 
predictions. We are able to show, for example, that an adiabatic theorem applies to slow transitions in photonic 
crystals and periodic waveguides (and what scaling laws the losses follow as the length and group velocity of 
the waveguide are changed). For roughnessldisorder losses, we are able to prove that, compared to an equivalent 
conventional waveguide (equal mode size, group velocity, and disorder strength), radiative scattering is suppressed 
and reflections are no worse in a photonic-crystal waveguide (rather than being increased as radiation is suppressed 
as one might fear). 

For a perturbation A&(x) in the dielectric function E(.). a key quantity is the volume current J - A& . E, 
where E is an electric field of the unperturbed system (whose solution is already known). This current is central to 
the computation of low-order corrections to electromagnetic eigenstates and eigenvalues in perturbation theory, is 
used for the coupling matrix element in coupled-wave theory, and acts as an oscillating source term for a Green’s 
function formalism. As we shall discuss below, all three of these are promising approaches in the analytical 
and semi-analytical study of small perturbations and slow waveguide transitions. First, however, we address an 
important problem in high index-contrast systems, that of the proper evaluation of AE . E when AE comes @om a 
perturbed boundary between two dielectrics-in this case, the A& . E current must be modified to avoid problems 
(incorrect. or even ill-defined expressions) due to the discontinuity in the electric field at dielectric interfaces. 
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Overall. we attempt to highlight the main results o f  these techniques and their implications for the study of losses 
in photonic crystals, referring to other papers for detailed derivations and extensive numerical results. 

2 
Consider a case where the boundary between two dielectrics, c l  and c2, i s  shifted towards E? by some distance ti, 
and in particular the case where h - Ah i s  small (e.g.  from disorder) so as to serve as a perturbative expansion 
parameter. The relevant quantity that appears in perturbation theory, coupled-wave theory, and Green's functions 
i s  a volume integral o f  the form F . J where F i s  an electric field o f  the unperturbed system or a Green's function 
(tensor) and J i s  nominally - AE . E. For the case of a small boundary perturbation, this becomes the surface 
integral J F .  E .  A E ~ ~ A / I ,  where - €2. Such a surface integral, however, i s  problematic because E (or 
at least i ts perpendicular component) is discontinuous across a dielectric interface: on which side does one evaluate 
the field? 

In [2]. we showed that in fact this nai've surface integral leads to incorrect results i n  perturbation-theory, re- 
gardless o f  which side the electric field i s  evaluated on. A similar result holds for coupled-wave t h e o j  (which is 
closely related to perturbation theory). as well as for Green's functions: intuitively, the basic requirement in order 
to obtain mathematically well-defined expressions turns out to be that J J . E, thepower scattered by the pettur- 
bation, have the same magnitude no matter which side o f  the interface one considers. In order to obtain the correct 
expression. one can consider the discontinous structure as the l imit ofsmoorhed structures where E ( X )  changes 
continuously. A well-defined (and thus unique) l imit i s  found by performing this smoothing anisotropically as 
suggested by erective-medium theory, and the result to lowest order in Ah is that [2]: 

CORRECT TREATMENT OF BOUNDARY PERTURBATIONS 

c 

J.- AE , E + 6(x1 - Zsurf) [ A ~ t z E l l  - EA(E;~)D~] Ah, (1) 

where the Dirac delta function S(. . .) is to obtain a surface integral, A(€;:) I E; '  - E ; ' ,  Ell i s  the component of 
E parallel to the interface, and D, is  the component o f  D = E E  perpendicular to the interface. I n  this way, J . E 
only has terms proportional to IE11(* and (D,(*, both of which are continuous across the interface. 

3 
Conventional dielectric and metallic waveguides are uniform along the propagation direction ( z ) ,  but that i s  not re- 
ally a requirement: thanks to the Bloch-Floquet theorem, light can propagate without scattering down a waveguide 
as long as i t  is periodic with some period @itch) A. This fact has been exploited to design intrinsically lossless 
waveguides by, for example, linear defects introduced in photonic crystals with complete band gaps [I] as well 
as in hybrid systems (photonic-crystal slabs) that combine bandgap-guiding with index-guiding [3]. However, the 
strong periodic modulation (often 3:l or greater index contrast) o f  even the perfect photonic crystal waveguide 
requires substantial revision o f  past semi-analytical methods that were used to study waveguide imperfections. In 
particular, we present a new generalization o f  classical coupled-wave theory that i s  adapted for periodic systems. 

Coupled-wave (or coupled-]node) theory treats a z-varyinglimperfect waveguide by expressing the fields I$) 
at each z as an expansion in the eigenmodes In) o f  a perfect (uniform) waveguide with some expansion co- 
efficients C , , ( L )  [4-61. (Here. we employ the Dirac notation o f  an abstract Hilbert space o f  states l$) with 
inner products (@I$) and linear operators 0.) One then finds the coupled-wave equations for c,,, o f  the form 

dc,,lrlz = E,,, M.,.,,c,,,e' .fAodZ' for some coupling matrix M and phase mismatches AO,,,,,. Theeigenmodes 
o f  unifonn waveguides, however. form a poor basis for strongly-periodic structures, because they yield rapidly 
varying c,,'s even for the case o f  a perfect (periodic) waveguide where one knows analytically that there is no 
scattering. Instead, we have for the first time developed exact, continuous coupled-wave equations as a function 
of i (in contrast to previous work as a function o f  time [7]) by expanding in the Bloch eigenmodes ofthe periodic 
system [8.9]. 

I n  order to derive coupled-wave equations from the overall algebraic structure ofelectromagnetisin without the 
usual inuddle orcurls and cross products. we also developed a quantum-mechanics-like abstract operator formalism 
A I Q )  = -iB$ I$) for the z-evolution o f  the state I$) (cxprcrscd via the four transvcrsc ficld components) in 
lerins of I-lennlllan l inear operators A and 6 encapsulating the exact Maxwel l 's  equations at a cOnStJnl w [ 10, I I]. 
I n  this way. the Dloch etgenmodrs ,&' 111) (where In) i s  periodic) satisfy a generalized Hennitian eigenproblem 
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for the Bloch wavenumber 0 (as distinct from the more-typical eigenproblem with wz eigenvalues [I]); properties 
such as orthogonality then follow automatically from the usual theorems of linear algebra. 

3.1 

One classical expansion basis is that of the eigenmodes of a conceptual “instantaneous” uniform waveguide match- 
ing the cross section at z .  In  this basis, the scattering dc,,/dz depends only on the rote ofchonge of the waveguide 
cross-section, and one obtains an adiabatic theorem that there is no scattering in the limit of a gradual enough 
change [ 121. Thus, such a basis is well suited for the study of slow taper transitions, e.g. for inputloutput couplers. 
A similar basis can be employed for slowly-changing periodic waveguides, by choosing a conceptual periodic 
waveguide E * ( z ,  y, i + A) = E,(z, y, 2 )  extending infinitely in a conceptual i space that matches the waveguide 
cross-section at z:  E,(z, y, z )  = E(Z ,  y, 2). Such a conceptual waveguide, being constrained only on a single cross 
section but defined by a periodic unit  cell, is not unique, and corresponds to a choice of basis, allowing one to 
select a convenient slowly-varying family of periodic waveguides [SI. 

Although the derivation involves a number of algebraic hicks, especially for the case where the period A is 
slowly varying (which we do not consider here, for simplicity), the end result is simple. One expands the state I$) 
as a sum E, C , ~ ( Z )  In), e i ~ P n d z ‘  in the instantaneous Bloch eigenstates In), off., and obtains standard-looking’ 

coupled-wave equations dc,,/dz = E, M,,,he is  A.4dz’, with coupling coefficients M,,, given by [PI: 

Coupled-wave equations in instantaneous eigenstates 

in terms o f  the electric fields of the instantaneous Bloch modes at z and the rate of change of the conceptual 
dielectric function, where the integral is over the unit cell of the (conceptual) periodicity. If the changing dielectric 
function involves a shifting dielectric boundary, it is critical to use the corrected current J from Eq. ( I )  for the &E 
(where the approximation of small Ah is now exact because dz is infinitessimal). 

3.1.1 Consequences for adiabatic transitions 

The knowledge of these rigorous coupled-wave equations has several important consequences for the study of slow 
waveguide transitions. First of all, because the coupled-wave equations have the standard form, one immediately 
obtains an ndiabotic theorem: as a waveguide changes more and more slowly, scattering disappears and the co- 
efficients c,, go to constants. This theorem, however, imposes a condition: the input state($ must be propagating 
(not in a gap) and guided (not leaky) for all intermediate “instantaneous” waveguides. This requires some care, 
especially when operating near a band edge where one can easily shift into a band gap, but is an easy constraint to 
satisfy once one is aware of it, and leads to simple design rules as discussed in Ref. [SI. 

Second, by integrating the coupled mode equations analytically to first-order in the coupling rate, e.g. in the 
approximation the coupling coefficients are nearly constant, one can obtain analytical scaling laws that closely 
describe exact numerical calculations [SI: ( i )  as one increases the taper length L of a gradual transition, the loss 
(mainly reflection) falls like 1/L2; (ii) as one approaches a band edge of the dispersion relation, where the group 
velocity U,, goes to zero, the reflection loss increases as l / ~ ~ ’ ~ .  Thus, coupling to slow-light states is especially 
challenging. (In both cases, the overall scaling is multiplied by a sinusoidal envelope due to Fabry-Perot effects.) 

Third, the coupled-wave equations provide an efficient semi-analytical method to compute coupling losses in 
slow transitions, which are otherwise challenging to model because of the spatial resolution requirements they 
impose on a brute-force method. Here, one simply: (i) computes the eigenmodes and coupling coefficients at a 
set of intermediate conceptual waveguides, a small calculation involving only a single A unit cell and a modest 
resolution unrelated to the taper rate; and (ii) integrate the coupled-wave equations using interpolated coupling 
coefficients and 0’s. This is rendered even more efficient by the fact that in the limit of slow transitions one need 
only integrate the equations to first-order in the rate of change, involving only a single integral; furthermore, for 
photonic crystals the losses are typically dominated by reflections (due to phase matching and low ug near band 
edges), so only two modes need be considered. This method has been demonstrated to yield results accurate within 

~~ ~~ 

‘One modification 1s that the eigenvalucs 4, are periodic in ’2xfA. and the coefficients for these equivalent eigenvalues must be summed 
at the end to yield the physical ~olution. 
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Figure I :  (a) Waveguide geometries and corresponding mode profiles f o r w  = 0.31(2~c/a). Mode profiles show 
the electric field component perpendicular to the paper; red and blue indicate negative and positive values respec- 
tively. (b) Band diagram for modes o f  the two waveguides shown in (a). Shaded regions indicate extended TM 
states o f  the bulk 2D photonic crystal. 

numerical uncenainty compared to a brute-force transfer-matrix technique [8]. Moreover because the coupling 
coefficients need only be computed once; independent o f  the taper rate (which acts as an overall scale factor), one 
can then quickly explore the effect o f  different taper rates, and even numerically search for an optimal non-uni/orm 
taper rate. which might otherwise require thousands o f  separate transmission calculations. In a couple o f  hours 
computation on a personal computer. we have thus been able to find a non-uniform taper rate (tapering more slowly 
as a band edge i s  approached) in 2d and 3d example systems that reduces reflections by two orders o f  magnitude, 
compared to a linear taper, over a wide bandwidth within a couple percent o f  the band edge 

3.2 

An  instantaneous-eigenstate basis i s  not as well suited lo model small, but nor slow, perturbations h e  (e.g. rough- 
nessldisorder) distributed along an otherwise perfectly-periodic waveguide. In this case, i t  i s  more convenient to 
employ the basis o f  thefixed eigenmodes o f  the perfect waveguide. Again, the standard coupled-wave theory (in 
the eigeninodes o f  uniform waveguides) i s  not ideal for strongly periodic waveguides, and we have derived a new 
generalization in terms of the Bloch eigenmodes In). Using similar algebraic tricks as for the previous section, one 
obtains the standard form of coupled-wave equations, with coupling matrix elements M,,,, given by [pk 

Coupled-wave equations i n  f ixed eigenrtates 

Afe,vt(z) - C d'x' [k(x;,z)E;, , ,(x') .  EL,.,,(x') - AE-'(x;, i)D:,,,(x')D.,,.(x')] , (3) "/  
i n  terms of the electric and displacement fields o f  the In) and 1ni) eigenstates. where t denotes the transverse (zy) 
components . The integration i s  over the A unit cell, but note that the perturbation i s  only evaluated at i to yield 
the scattering at i. (Again. this equation must be modified in a manner simi lar  to Eq. ( I )  for surface penurbations.) 
Likc lor ihc inslanianeous coupled-wave equations, this potcntially enables an efficient calculation of reflection and 
other scattering due to surface roughness, without requiring high resolution or long computational cells. Perhaps 
more iinporvant, however, i s  what i t  can tel l  us analytically about the losses in photonic-crystal waveguides. 

3.2.1 Photonic-crystal vs. conventional waveguide disorder IDSS 
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Figure 2: Closeup of central waveguide region, showing how identical surface roughness was added to both the 
photonic-crystal and index-guided waveguides. 

For a photonic crystal waveguide based on a complete band gap, radiative scattering from disorder is impossibl- 
there are no radiating states to scatter into at the operating frequency in the gap. One might wonder, however, 
whether this might have an unfortunate side-effect: perhaps some of the disorder-scattered light that would have 
otherwise radiated is instead reflected? Or, put in another way, a photonic-crystal waveguide is effectively a one- 
dimensional system (light can only propagate forward or backwards), and it  is a known theorem of Anderson 
localization that any amount of disorder in one dimension causes all states to be localizes-this might seem to 
imply that disorder-induced reflections are worse in one-dimensional systems. If reflection is indeed intrinsically 
worse in a photonic crystal, this would be a serious problem for optical devices (which are more sensitive to 
reflection than to loss, because the former produces noise). 

Fortunately, Eq. (3) implies that such pessimism is ill-founded. The coupling to a given mode, the reflected 
mode, only depends upon the (normalized) field amplitude in the disorder, the strength AE of the disorder, and the 
phase mismatch AD. If these quantities are the same, the reflection will be the same to lowest order (i.e. weak 
disorder), regardless ofwhat happens to radiative scattering. (Put another way, radiation is suppressed by removing 
those states entirely, not by redirecting them.) 

To illustrate this, we have constructed [9] a simple pair of 2d example systems that compares a conventional 
strip waveguide (E = 12, width 0.3a) to a photonic crystal waveguide with almost exactly the same field pattern, 
group velocity, and phase velocity. The latter waveguide is formed by simply embedding the conventional waveg- 
uide in a line-defect of a photonic crystal consisting of a 2d a m y  of dielectric rods in air (periodicity a ,  radius 
0.2~) .  The structures, field patterns, and dispersion relations are shown in Fig. 1.The transmission and reflection 
of these structures was then simulated by an FDTD calculation with resolution of I O  pixelsla, through a disordered 
region of length 10a created by randomly addinghemoving pixels along the edges of the waveguide, as shown in 
Fig. 2, with probability p = 0.05. When the resulting transmission/reflections were compared over a 10% band- 
width, the reflections in the two cases were found to be identical (to within I%), with average losses of about 0.07 
dB/a in the strip waveguide and about 0.04 dBla in the photonic crystal-over 40% better, due to the suppressed 
radiative scattering. 

Of course, if one designs a slow-light waveguide with a photonic crystal, losses are worse. Because of the 
normalization of the states, the coupling matrix elements M are proportional to l/m, where us and vi are 
the group velocities of the incident (m) and scattered (n) modes, respectively. Thus, since weak disorder causes 
a scattered amplitude c, proportional to M ,  the scattered power IcJz is proportional to l/(ugvb). So, while 
scattering into most modes is proportional to l /ug,  reflected power is proportional to l / v i .  Matters are improved 
somewhat if one recalls that for many waveguide devices the length can be reduced proportional to ug, in which 
case the overall reflections are proportional to l / ug .  In a few cases, e.g. for enhancing nonlinear effects [13], the 
length can be reduced proportional to U,’, which cancels the loss increase. Still, this is indicative of the challenges 
in store for the implementation of slow-light devices. 

4 GREEN’S FUNCTION TECHNIQUES 
Finally, let us briefly consider a third semi-analytical technique for studying disorder losses in  photonic crystals, 
one based upon a Green’s function formalism. Given a Green’s function tensor G,(x,x’) of an perfect system 
(e.g. a perfectly periodic photonic-crystal waveguide), the scattered field E, due to a perturbation A& from an 
incident (unperturbed) field Eo at a frequency w can be written as: 

E,(x) = /~3x’d,(x,x’)A~(x’)Eo(xf) + 0( [  J AEE~]’), (4) 
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where we drop the sccond t e r m  for small perturbations. making the first Born approximation. This i s  also called 
the volume-currcnt nictliod 161. where thc lowest-ordcr scattered field i s  sccn to bc the radiation from a localized 
current source J - &EU. Such a radiation pattern can be computed. for example. by the FDTD method, and 
the key point i s  that i t  docs not rcquirc a high spatial resolution or an ability to distinguish a small scattered field 
from the transmitted ficld. However. in studying a high-index contrast system like a photonic crystal, i t  is crucial 
to use the corrected fonn of the volume current from Eq. ( I )  for interface perturbations (e.g. roughness). and thus 
we believe that accurate calculations for photonic crystals with this technique should be possible now for the first 
time. 

Further simplifications are possible. For the common case o f  completely uncorrelated disorder (surface rough- 
ness i s  only correlated on a few nanometer scale), the radiated power from each pixel o f  roughness adds incoher- 
ently on average, so in this case one can simply compute the radiation from a few individual pixels i n  a unit cell 
o f  the waveguide to obtain the losses. Correlated disorder can also be treated by appropriate Fourier transforms o f  
the radiated fields, and this i s  a subject that we wi l l  treat explicitly i n  a future publication. 

5 CONCLUSION 
We have surveyed three semi-analytical approaches that we believe promise to answer fundamental questions 
o f  losses in photonic crystal waveguides due to small deviations from perfect periodicity. We believe that such 
techniques offer a compelling alternative to brute force methods such as FDTD for the study o f  weak imperfections. 
In all o f  these approaches, a key component i s  our development o f a  corrected effective volume current expression 
for surface perturbations in high-contrast systems. 

Two of these approaches are based on coupled-wave theory, where we have generalized the standard approach 
to now cover strongly periodic structures. First. in a basis o f  instantaneous waveguide modes, this yields an 
efficient description of slow waveguide transitions. where we obtain an adiabatic guarantee o f  100% transmission 
for sufficiently slow tapers. Moreover, the conditions on the adiabatic theorem provide simple design rules for 
couplers, and general scaling laws for the strength of the reflection can be derived. We have also shown how such a 
coupled-wave approach allows efficient computation and optimization o f  slow tapers that are challenging to model 
with e.g. FDTD, and have proved accurate in.sample-system..comparisons. Second, using a basis o f  the fixed 
eigenmodes o f  a perfect system, disorder can be studied, and one has a framework for the direct comparison of 
photonic-clystal and conventional strip waveguides. There, we have shown that for equivalent modal area, group 
velocity, and disorder strength. photonic-crystal waveguides can suppress radiation without worsening reflection 
losses. 

Finally, we considered a potential future direction based on the volume-current method, or Green’s functions, 
for computing the scattering losses in photonic crystals. This approach, previously widely used i n  low index 
contrast uniform-waveguide systems, has a significant advantage over coupled-wave theory for computing radiative 
scattering, in that the continuum o f  radiation eigenmodes need not be solved for explicitly. 
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