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Field Expulsion and Reconfiguration in Polaritonic Photonic Crystals
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We uncover a rich set of optical phenomena stemming from the incorporation of polar materials
exhibiting transverse phonon polariton excitations into a photonic crystal structure. We identify in the
frequency spectrum two regimes in which the dielectric response of the polaritonic medium can induce
extreme localization of the electromagnetic energy. Our analysis of the effect of polarization and the
interaction between the polariton and photonic band gaps on the Bloch states leads to a pair of
mechanisms for sensitive frequency-controlled relocation and/or reconfiguration of the fields.
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The incorporation of materials which exhibit
transverse phonon polariton excitations in place of
frequency-independent dielectrics in photonic crystals
produces a novel class of optical structures with remark-
able properties that can be tied directly to interplay
between the strongly dispersive nature of these polar
media and the structural dispersion of the crystal. In
this Letter, we demonstrate theoretically that minute
variations in certain frequency ranges can induce enor-
mous changes in the fundamental character of the crystal
excitations. In particular, we find that the modes can not
only exhibit almost complete localization, but the fre-
quency shift is a mechanism by which the electromag-
netic energy can be relocated and rearranged in the
crystal in a dramatic fashion. These features can occur
near the lower boundary of the characteristic polariton
photonic band gap in two distinct manners: interband
transitions across the boundary induce flux expulsion
from the polariton material or the surrounding ambient
dielectric, and intraband transitions below the gap pro-
duce a polarization-dependent restructuring of the nodes
in the field pattern. In addition, our analysis reveals that
the existence of both of these phenomena is mediated
precisely by the overlap of the polariton gap with the
photonic band gaps of a metallodielectric crystal with the
same spatial arrangement of metallic rods as of polari-
tonic rods in the polaritonic photonic crystal (PPC). To
illustrate these effects, we provide a complete band struc-
ture calculation of a PPC.

A simple yet effective model for the polariton dielec-
tric function is [1],
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where "1 measures the optical response at high fre-
quency, and !L is related to "1 and !T through
the well-known Lyddane-Sachs-Teller relation
!T

������������������
"�0�="1

p
. The choice of photonic crystal and polari-
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constant, is crucially important to the existence of new
polariton-associated features. Previous PPC band struc-
ture calculations [2–5] have operated in frequency re-
gimes where the main feature is the presence of almost
dispersionless bands below !T . We present in this work
systems in which these flat bands exist in combination
with metallic bands above !T . Moreover, we demonstrate
that the bands below !T of TE polarization can in fact
have significant bandwidth under certain symmetry con-
ditions. These two properties are intimately related to the
position of the polariton gap in relation to the photonic
band gaps of the metallodielectric crystal obtained by
replacing the polaritonic rods with a perfect metal, and
provide the basis for a pair of optical phenomena that we
characterize shortly as flux expulsion and node switching.

In order to study the frequency range around !T both
efficiently and accurately, we employ a computational
technique based on vectorial eigenmode expansion [6].
We divide a unit cell into layers where the index profile
does not change in the propagation direction. In each of
these layers, we expand the field in the local eigenmodes
of that particular layer. The only approximation is the size
of the eigenmode basis, which we have determined to be
well converged at 40. Using mode matching, we derive
frequency-dependent reflection and transmission matri-
ces that completely describe the scattering behavior of the
unit cell:

F2 � T12 � F1 	R21 �B2; (2)

B1 � R12 � F1 	 T21 � B2: (3)

Here, F andB are column vectors containing the expan-
sion coefficients of the forward and backward propagat-
ing fields, respectively. We then impose Bloch boundary
conditions and recast Eq. (2) as a generalized eigenvalue
problem, which can be solved for each frequency:�
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where I is the unit matrix and q � e�ika. Since the
independent variable in these calculations is frequency,
it is trivial to account for any frequency-dependent di-
electric response, unlike time-domain or plane-wave
methods. These techniques were implemented in our ge-
neric photonic simulation tool CAMFR, which is freely
available from http://camfr.sourceforge.net.

In Fig. 1, we plot the band structure from � to X of a 2D
photonic crystal of square rods with side s (s=a � 0:25)
in a square lattice. The rods are taken to be LiTaO3, a
typical polaritonic material with a large polariton gap
from !T � 26:7 THz to !L � 46:9 THz, and "1 � 13:4.
We set a � 29:7 �m so that !T � 0:4�2�c=a� and !L �
0:703�2�c=a�. We overlay with dashed lines the band
structure for the metallodielectric crystal obtained by
replacing LiTaO3 with a perfect metal. In addition, we
highlight the most important sections: directly above and
below !T . The frequency range 
!T;!L� � 
0:4; 0:703��
�2�c=a� is labeled the polariton gap.

Note the existence of flat bands in both polarizations in
the high-index region below !T , as observed in earlier
work [2,3]. We find that these bands correspond extremely
closely to localized resonance modes [7] in isolated rods
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FIG. 1 (color). Band structure of a 2D polaritonic photonic
air with s=a�0:25, !T �0:4�2�c=a�, !L�0:703�2�c=a�, and "1
(E out of plane) in blue in (b). Note the three different frequency
(shaded in gray), and 
0:4;1:0��2�c=a�. The primary photonic ban
(TM) bands of a metallodielectric crystal obtained by replacing LiT
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with slight dispersion about a frequency (to within less
than 1% error in most cases) given by the following
analytic expression:
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where �lm � �c�l2 	m2�1=2=s
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p
. However, there are

many other TE bands with a much larger bandwidth that
are roughly linear, except near the resonance frequencies
!̂!lm, where they rapidly flatten. Away from these reso-
nances, the TE bands show a remarkable tendency to
mimic the lowest band of the metallodielectric crystal
previously introduced.

The differences between TE and TM modes are de-
rived from the relative locations of the photonic band
gaps of the metallodielectric crystal to the polariton
gap. When the index of refraction n is much greater
than one, the reflectivity R � j�n� 1�=�n	 1�j2 ! 1
on both sides of the polariton-vacuum interface. The
states with flux situated in the ambient space are pre-
cisely the bands of the metallodielectric crystal, and it is
these bands (if they exist) to which the highly localized
resonance modes !̂!lm of the polaritonic rods can couple
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crystal with square symmetry of square LiTaO3 rods in
�13:4. The TE (H out of plane) bands are in red in (a), TM
spacings for the intervals 
0;0:31��2�c=a�, 
0:31;0:4��2�c=a�

d gap in the TM modes is indicated by purple shading. The TE
aO3 by a perfect metal are given by the red (blue) dashed lines.
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FIG. 2 (color). Node switching: (a) the TE band connecting
the (4,1) cavity mode to the (3,3) cavity mode of a 2D PPC
with square rods of LiTaO3, s=a � 0:25, with selected fre-
quencies indicated by the numbered arrows. (b) The real part of
Hz inside the rods at the frequencies indicated in (a) between
0:3871�2�c=a� and 0:38775�2�c=a�.
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in an anticrossing interaction. This produces the high
dispersion TE bands below !T which are present in
Fig. 1. Since the metallodielectric crystal has a TM
band gap from zero frequency to 0:409�2�c=a�, this
coupling is possible only for the TE modes below !T
when !T � 0:4�2�c=a�.

However, no anticrossing of this nature can occur in-
volving any of the modes near the frequencies !̂!2l;2m,
resulting in, e.g., the flat band near !̂!22 � 0:373�2�c=a�.
This is due entirely to symmetry: the real part of Hz has a
node on both Cartesian axes going through the center of
the rod. Because of this, there is no interaction with the
lowest metallodielectric state, which has a magnetic field
with even symmetry upon reflection about one of the
axes. For the same reason, one out of the two degenerate
�2l	 1; 2m� states will be noninteracting; hence, there is
a flat band near !̂!12 � 0:359�2�c=a� at the edge of the
band joining !̂!21 and !̂!31.

This anticrossing interaction has important implica-
tions for the field orientations of the Bloch states with
!<!T . The magnetic field of the TE states near the
band edges bears a close resemblance to the highly local-
ized resonance mode of the polaritonic rod to which it is
closest in frequency. Consider one of the several reso-
nance pairs �l; m�, �l0; m0� with a very small frequency
separation that are connected by a TE band through this
interaction, such as !̂!33 � !̂!41 � 0:0007�2�c=a�. Along
this band, the nodal structure of the field inside the rod,
perpendicular to the plane, is forced to continuously
mutate from one pattern to another, as shown in Fig. 2.
This node switching phenomenon provides an unprece-
dented capability to drastically alter the coupling behav-
ior of a localized state over a very small frequency range.

The crystal excitations in the frequency domain ! >
!T are strikingly unlike the rod-localized states below
!T . As ! approaches !T from above, " becomes ex-
tremely negative, and so the polaritonic material be-
haves as a metal. Hence, when !T overlaps with one of
the metallodielectric crystal bands, a PPC band of the
same polarization exists inside the polariton gap which
converges to the metallodielectric band as ! ! !T . In
our calculation with !T � 0:4�2�c=a�, !T is outside the
TE metallodielectric band gap from 
0:458; 0:517� �
�2�c=a� and inside the TM band gap 
0; 0:409��2�c=a�.
Correspondingly, we see in Fig. 1 that there is a TE PPC
band that intersects !T , at k � 0:432�=a, but no TM PPC
band directly above !T ; the lowest frequency TM-
polarized state above !T is at k � �, ! � 0:415�2�c=a�.

It is clear from our discussion of how flux can be
isolated to either of the two opposite physical regions of
the crystal that small changes in ! can induce enormous
variations in the field profiles due to the rapid change in ".
In Fig. 3(a), we explore an interband transition at fixed
wave vector from below !T to a frequency inside the
polariton gap. The light is transferred almost completely
from inside the rod at ! � 0:3916�2�c=a� [Fig. 3(b)] to
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the ambient region at ! � 0:403�2�c=a� [Fig. 3(c)]. With
a wide range of options in terms of crystal geometries and
ambient materials, the utility of this flux expulsion is
manifest. For example, using a nonlinear material as
the surrounding medium, this phenomenon could be uti-
lized as a switch to shift light in and out of different
physical regions of the crystal.

In order to incorporate losses in the polaritonic mate-
rial, a more accurate model for the dielectric function is

��!� � "1

�
1	

!2
L �!2

T

!2
T �!2 � i!�

�
; (5)

where � represents the width of the absorption peak in
Im
"�!��. Sigalas et al. implemented Eq. (5) in trans-
mission calculations to determine the photonic band gaps
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FIG. 3 (color). Flux expulsion: (a) the band directly above
!T and a flat band just below !T in a 2D PPC of LiTaO3 rods
with s=a � 0:25 with the frequencies ! � 0:3916�2�c=a�
and ! � 0:403�2�c=a� marked by black dots. The wave vec-
tor at both of these frequencies is 0:43�2�=a�. (b) The field
pattern of the real part of Hz at ! � 0:3916�2�c=a�, where
" � 649. (c) The field pattern of the real part of Hz at ! �
0:403�2�c=a�, where " � �1773. Note the extreme contrast
between the localization of the field inside the rod in (b) and
the complete flux expulsion in (c).
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in a PPC [8]. Along the ordinary axis of the LiTaO3

crystal, � � 0:94 THz � 0:013�2�c=a�. Although we
have focused in this Letter on instances of optical phe-
nomena very close to !T , these effects will also occur
well away from !T . The second TE band in the PPC
exhibits a transition from the !̂!11 to the !̂!21 localized rod
state, ending at the frequency 0:36�2�c=a�. Moreover, the
TE band ending at !T inside the polariton gap extends to
above 0:44�2�c=a�. Therefore, the node switching and
flux expulsion phenomena can be realized with states
removed from !T by at least 3�. Hence, the perturbations
to these states due to losses are negligible, allowing for
their experimental observation in a physical crystal. Key
to this argument are the large value of "0 � 41:4 and the
small ratio �=!T � 0:032. Indeed, we have verified these
conclusions by explicity including losses in select calcu-
lations for this PPC system.

Our research has provided compelling support for
inclusion of the vectorial eigenmode expansion method
in the toolkit of techniques such as the layer-Korringa-
Kohn-Rostoker method [9] and the multiple multipole
196402-4
method [10], applicable not only for PPCs but any system
of materials with a frequency-dependent optical re-
sponse. For our needs, it provides the means to tackle
more complicated problems involving polaritonic pho-
tonic crystals, including dissipative systems and more
complicated crystal structures. We have as yet not studied
either the band structure between � and K or nonsquare
geometries due to the increased computation that would
be necessary using this technique, but we believe that all
of our ideas should apply conceptually without any major
modifications.

In conclusion, we have discovered two novel optical
phenomena resulting from the localization capabilities of
the polaritonic material in the adjacent frequency re-
gimes above and below !T . A complete change in the
symmetry of the field pattern can be effected across a
single band in the high-index regime, and light can be
completely relocated into and out of the polariton mate-
rial by varying the frequency across the " discontinuity.
The ability to vary the size of the rods and the transla-
tional symmetry group of the crystal should provide an
additional measure of tuneability to make it easier to
isolate the effects described in this work.
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