Compact Photonic Spot-Size Converters

B. Luyssaert, P. Vandersteegen, R. Baets
Ghent University - IMEC, Department of Information Technology
Sint-Pietersnieuwstraat 41, 9000 Gent, BELGIUM

Optical chips
- state-of-the-art photonic chip
- bends make up most of the surface
- 7 x 7 mm
- 64 channel selector (NTT)

Adiabatic tapers
- adiabatic tapers are normally used to connect waveguides with \(\neq \) cross-sections
- adiabatic: change slowly enough and your modes will follow (without loss)
- BUT adiabatic \(\Rightarrow \) very long

Hybrid Waveguiding
- compact waveguides (photonic wires or photonic crystal waveguides) allow very short bends
- BUT are rather lossy
- hybrid waveguiding can be a solution (compact waveguides for bends and splitters, broader waveguides for straight sections)

Interference taper
- new concept: interference coupler
- a sequence of waveguides sections with different widths and lengths are placed between in- and output waveguide
- optimization algorithms are needed to maximize the transmission

Genetic Search
- \(N \) sections \(\rightarrow \) 2N-dimensional space to search
- find points \([W_1, \ldots, W_N, L_1, \ldots, L_N]\) with a good transmission
 - population of 100 individuals
 - initial population = random
 - selection = Roulette Wheel
 - cross-over = uniform, 50% chance
 - mutation = Gaussian curve around initial value
 - 100 best individuals survive

Steepest Descent
- starting point = discretized parabolic taper with decent transmission
- optimize \(W_i \) of each section (separately) using steepest descent, don’t alter \(L_i \)
- repeat \(n \) times
 - \(L_{new} = L_i \cdot (1 - \alpha) \)
 - optimize \(W_i \) of each section (separately) using steepest descent
- iterate until a certain break condition

Measurements

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Transmission (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>0.000</td>
</tr>
<tr>
<td>1520</td>
<td>0.002</td>
</tr>
<tr>
<td>1540</td>
<td>0.004</td>
</tr>
<tr>
<td>1560</td>
<td>0.006</td>
</tr>
<tr>
<td>1580</td>
<td>0.008</td>
</tr>
<tr>
<td>1600</td>
<td>0.010</td>
</tr>
<tr>
<td>1620</td>
<td>0.012</td>
</tr>
<tr>
<td>1640</td>
<td>0.014</td>
</tr>
<tr>
<td>1660</td>
<td>0.016</td>
</tr>
<tr>
<td>1680</td>
<td>0.018</td>
</tr>
<tr>
<td>1700</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Linear Taper
- \(5 \mu m \)
- \(10 \mu m \)
- \(15 \mu m \)
- \(20 \mu m \)
- \(25 \mu m \)
- \(30 \mu m \)
- \(35 \mu m \)
- \(40 \mu m \)
- \(45 \mu m \)
- \(50 \mu m \)
- \(55 \mu m \)
- \(60 \mu m \)
- \(65 \mu m \)
- \(70 \mu m \)
- \(75 \mu m \)
- \(80 \mu m \)
- \(85 \mu m \)
- \(90 \mu m \)
- \(95 \mu m \)
- \(100 \mu m \)

Conclusions
- shorter than adiabatic spot-size converters are necessary within optical chips
- an interference coupler optimized using different optimization algorithms can lead to decent results
- first measurements confirm simulated behavior and are very promising