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A semianalytic approach based on previously derived closed-form expressions for the transmission
and reflection matrices between a dielectric waveguide and a semi-infinite photonic crystal (PhC)
waveguide is proposed for analyzing coupling issues in PhC structures. The proposed approach is
based on an eigenmode expansion technique and introduces several advantages with respect to other
conventional numerical methods such as a shorter computation time and the possibility to calculate
parameters, such as the reflection into PhC structures, difficult to obtain with others methods. Two
different examples are analyzed and results compared to finite-difference time-domain simulations
to prove the usefulness of the proposed approach: (i) An especially designed two-defects
configuration placed within a PhC taper to improve the coupling efficiency and (ii) a coupled-cavity
waveguide coupled to a single-line defect PhC waveguide. © 2005 American Institute of Physics.

[DOL: 10.1063/1.2130528]

Photonic crystals (PhCs), periodic structures with a pe-
riod of the order of the wavelength of light, have been the
subject of an increasing research effort due to their ability for
controlling the flow of light.1 An efficient coupling into PhC
structures is a crucial issue to ensure their optimum perfor-
mance. In recent years, a large variety of different coupling
techniques have been proposed and evaluated by means of
simulation. However, the modeling of the interface between
PhC structures and external media with efficient and accurate
approaches may significantly reduce the computation time,
which is usually very long in conventional numerical meth-
ods such as the finite-difference time-domain (FDTD)
method.” Different kinds of approaches have been proposed
in the last years based on the scattering matrix,’ the expan-
sion of the electromagnetic field into Wannier functions,4
Fourier-modal methods,” the concept of impedance derived
from the transmission line theory,6 or Bloch mode expansion
based methods.” " In this letter, previously derived closed-
form expressions based on an eigenmode expansion tech-
nique are proposed for analyzing coupling issues in more
complex PhC structures by means of a semianalytic
approach.

Let us consider the structure shown in Fig. 1. A dielectric
waveguide is coupled to a semi-infinite PhC waveguide by
using an especially designed two-defects configuration
placed within a PhC taper. The proposed semianalytic ap-
proach is based on using the same transmission and reflec-
tion matrices derived in Refs. 11 and 12 and defined as

T=F:1(I—R213+F;1)_1T12’ (1)

Rin=Riy+T15B,T, (2)
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Rour=—(B_ =Ry F)"' (B, = Ry\F,), (3)

where F, (F_) and B, (B_) are the forward and backward
components of the forward (backward) Bloch modes that
propagate in the PhC, medium II in Fig. 1, while T1,, 75,
Ry5, and R, are the transmission and reflection matrices for
the structure placed between the dielectric and PhC
waveguides, medium I-II in Fig. 1. For the structure shown
in Fig. 1, the transmission, 7, and reflection, Ry, matrices
describe the coupling for light propagating from the dielec-
tric waveguide (medium I) into the PhC waveguide (medium
II) while the reflection matrix, Royr, describes the coupling
for light propagating from the PhC waveguide into the di-
electric waveguide. The novelty with respect to our previous
works reported in Refs. 11 and 12 is that Ty,, T5;, R;,, and
R, must be calculated by using a numerical tool thus giving
the semianalytic character to the proposed approach. In this
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FIG. 1. Schematic of the proposed semianalytic approach for analyzing a
structure formed by a dielectric waveguide coupled to a semi-infinite pho-
tonic crystal (PhC) waveguide by using an especially designed two-defects
configuration placed within a PhC taper. T,, R,;, T>;, and R, are the trans-
mission and reflection matrixes calculated in mediums I-II while F, (F_)
and B, (B_) are the forward and backward components of the forward (back-
ward) propagating Bloch modes calculated at the interface layer between
mediums I-II and medium II, which corresponds to a fixed cut position
within the lattice period, a, of the PhC. The z axis indicates the propagation
direction.

© 2005 American Institute of Physics

Downloaded 10 Nov 2005 to 158.42.159.63. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp


http://dx.doi.org/10.1063/1.2130528
http://dx.doi.org/10.1063/1.2130528
http://dx.doi.org/10.1063/1.2130528

203107-2 Sanchis et al.

case, a frequency-domain model based on a vectorial eigen-
mode expansion technique, known as CAMFR, has been
used."® The forward and backward components of the Bloch
modes are calculated at the interface layer between mediums
I-II and medium II, which corresponds to a fixed cut position
within the lattice period of the PhC, as depicted in Fig. 1.
The forward propagating Bloch modes are distinguished
from the backward propagating Bloch modes by looking at
the power flux for the guided modes and at the imaginary
part of the wave vector for the evanescent modes.

The structure shown in Fig. 1 have been first analyzed
by considering a 3 um-wide dielectric waveguide of silica
(n=1.45) surrounded by an air cladding and a PhC formed
by a two-dimensional triangular lattice of dielectric rods of
silicon (n=3.45) embedded in silica. The radius of the rods is
R=0.2a where a is the lattice constant. This structure was
previously analyzed by means of FDTD simulations in Ref.
14. It was shown that the transmission may significantly im-
prove by properly setting a number of localized defects
within the PhC taper. A two-defects configuration was de-
signed following a heuristic approach based on firstly decid-
ing the number and relative positions in the z axis of the
defects placed within the PhC taper and then optimizing the
radius of each defect. However, the proposed semianalytic
approach allows a more accurate design by calculating all the
possible solutions in terms of the radius and relative position
of the defects. Figure 2(a) shows the transmission efficiency
at the normalized frequency of 0.3(a/\) as a function of the
defect radius normalized to the rod radius, 74/ R, and of the
relative position in the z axis normalized to the lattice con-
stant, z4.¢/a. It can be seen that there is a dominant maximum
of 79% for a radius of r4;=1.03R and at a position of zy.s
=0.63a. This gives the true optimum position for a single
defect. However, the transmission can be further improved
by introducing an additional defect. The parameters of the
defect are also designed by calculating the transmission map,
which is shown in Fig. 2(b), but considering that the previ-
ous defect is located within the PhC taper. The transmission
efficiency is improved up to 87% when the additional defect
of a radius of ry;=0.34R is placed at z4;=1.63a. This effi-
ciency is slightly higher than the one obtained in Ref. 14 as
the parameters of the two-defects configuration are also
somewhat different.

The previous analysis has been made possible because
the computation time needed to calculate the maps shown in
Fig. 2 is rather short by using the semianalytic method with
respect to FDTD simulations. Notice that the total number of
possible solutions is N=(2a/Az).(2R/Ar), where Az and Ar
are the steps related to the position and radius of the defect,
respectively. Thus, for steps values of Az=0.la and Ar
=0.1R, the total number of solutions is 400. Figure 3 shows
the transmission spectra for the PhC taper with and without
the optimized two-defects configuration. Semianalytic results
are compared with FDTD simulations showing a very good
agreement. Furthermore, it can be seen that the transmission
is significantly improved when the two-defects configuration
is placed within the PhC taper.

The proposed approach can also be used to analyze the
transmission and reflection properties of more complex
structures such as a coupled-cavity waveguide (CCW)
coupled to a conventional single line defect PhC waveguide.
The PhC parameters are the same as those previously used
for the structure shown in Fig. 1. In this case, we are inter-
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FIG. 2. (Color online) (a) Transmission efficiency as a function of the defect
radius normalized to the rod radius of the photonic crystal, rg/R, and of the
relative position in the z axis within the PhC taper normalized to the lattice
constant, zg/a. (b) Transmission efficiency map of an additional single
defect considering that a defect of radius r=1.03R is placed at z=0.63a
within the PhC taper.

ested in calculating the reflection into the CCW when light
propagates from the CCW into the PhC waveguide. In prin-
ciple, both the CCW and the single line defect PhC wave-
guide are periodic so the proposed semianalytic approach
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FIG. 3. Transmission efficiency as a function of the normalized frequency
for the structure shown in Fig. 1 and considering the PhC taper with and
without the optimized two-defects configuration. Semianalytic results are
compared with FDTD simulations.
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FIG. 4. (a) Coupled-cavity waveguide (CCW) coupled to a conventional
single line defect PhC waveguide. The PhC waveguide is butt coupled to a
0.5 um wide dielectric waveguide by conveniently choosing the cut position
to achieve negligible reflection back to the CCW. (b) Reflected power into
the CCW as a function of the normalized frequency.

cannot be used. However, a simple trick can avoid this situ-
ation. Figure 4(a) shows the analyzed structure. The dashed
square corresponds to mediums I-II in which R,; have to be
numerically calculated by means of Eq. (3). The PhC wave-
guide has been butt coupled to a 0.5 um wide dielectric
waveguide by conveniently choosing the cut position to
achieve negligible reflection in the whole bandwidth of
CCW."? This is possible because the bandwidth of the PhC
waveguide is much broader than that of the CCW. Therefore,
the reflection into the CCW, shown in Fig. 4(b), will only be
the one that is originated due to inefficient coupling between
the CCW and the single line defect PhC waveguide.

Reflection results can be used for efficiently modeling
structures of finite length by means of the well-known Fabry-
Perot formula. The propagation of ultra short pulses in
CCWs of finite length was analyzed following this method."
The transmission response in amplitude of the Fabry-Perot
(FP) formula can be written as

) ( 2m )
—t-exp|—j—kL
a

1-r?ex (— '—4 kL)
p\—J
a

tep(f) = , (4)

where f, is the normalized frequency, k is the normalized
wave vector, L is the cavity length, and ¢ and r are the trans-
mission and reﬂecti(gl coefficients. The reflection coefficient
is calculated as r=VR, where R is the reflected power shown
in Fig. 4(b) and calculated by using the proposed semiana-
lytic approach. On the Lher hand, the transmission coeffi-
cient is obtained as r=v1—-R when single mode transmission
and no radiation modes exist in the whole system.

Figure 5 shows the transmission spectrum calculated
with (4) (dashed line) and by using the FDTD method (solid
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FIG. 5. Transmission spectrum of a CCW of finite length calculated by
using the Fabry-Perot formula (dashed line) and by using the FDTD method
(solid line).

line) for a seven cavity long CCW (L=16a) coupled to the
single line defect PhC waveguide. A very good agreement
can be seen between the Fabry-Perot model and FDTD re-
sults. The amplitude of the resonance peaks, principally at
the band edges, is lower in the FDTD simulation because a
higher frequency resolution requires a very short time step,
which would significantly increase the simulation time.

In summary, an efficient semianalytic approach has been
proposed for analyzing coupling issues in PhC structures.
The proposed approach is valid for any kind of complex
structure as long as the input medium has an index profile
invariant along the propagation direction and the output me-
dium is semi-infinitely periodic along the propagation direc-
tion or vice versa.
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