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Abstract—We present high-efficiency grating couplers for cou-
pling between a single-mode fiber and nanophotonic waveguides,
fabricated both in silicon-on-insulator (SOI) and InP membranes
using BenzoCycloButene wafer bonding. The coupling efficiency
is substantially increased by adding a gold bottom mirror to the
structures. The measured coupling efficiency to fiber is 69% for
SOI grating couplers and 56% for bonded InP membrane grating
couplers.

Index Terms—BenzoCycloButene (BCB) wafer bonding, gold
mirror, grating couplers, integrated optics.

I. INTRODUCTION

COUPLING to fiber remains a serious issue in integrated
optics. The large difference in dimensions between the

fiber and the waveguides on a chip causes high insertion losses
and high packaging costs. The ongoing trend to make compo-
nents smaller, in order to integrate them on one single chip,
makes the problem even more difficult. The key features of
an effective solution are compactness, low insertion loss, large
alignment tolerance, and broadband operation.

Several approaches have been followed to tackle the prob-
lem. A very elegant solution is the inverted taper approach, for
which low loss and broadband operation were demonstrated in
[1]–[3]. These structures however still require lensed or high
numerical aperture fiber for a reduced optical mode size.

We use grating couplers for out-of-plane coupling between
a standard single-mode fiber and a waveguide. The principle is
shown in Fig. 1.

This approach has some major advantages over edge-
coupling methods. There is no need for a cleaved facet, and
light can be coupled in and out everywhere on the chip, opening
the way for wafer-scale testing. Traditional grating couplers
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Fig. 1. Coupling principle between fiber and photonic wires by means of a
grating.

have a small coupling strength and are therefore rather long
and have a small bandwidth. A coupling efficiency of 40% was
reported in [4]. By using a top mirror and coupling through the
substrate, a coupling efficiency of 57% was demonstrated in [5].
In both cases, an additional lens is needed to couple to the
fiber. We use a strong and compact grating, resulting in a rel-
atively large bandwidth. A coupling efficiency to single-mode
fiber of 33% for a 10 × 10-µm2 grating coupler in silicon-on-
insulator (SOI) was demonstrated in [6]. The coupler has a 1-dB
bandwidth of 40 nm and shows good alignment tolerances
(±2 µm for 1-dB excess loss). A 2-D-grating version can be
used for getting polarization independence through polarization
diversity [7].

For integration with active optoelectronic components, it
would be interesting to implement these couplers also in III–V
material. For telecom applications, InP/InGaAsP is the material
system of interest. However, it is impossible to easily transfer
existing designs for SOI gratings to InP. The vertical index
contrast of InP-based heterostructures is too modest for this
purpose. In [8], we modified the vertical index contrast by using
BenzoCycloButene (BCB) wafer bonding. We demonstrated
grating couplers in bonded InP membranes with a coupling
efficiency of 30%.

For both SOI and InP membrane couplers, the coupling
efficiency is limited by radiation toward the substrate. In this
paper, we solve this problem by adding a gold bottom mirror
to grating couplers in SOI and bonded InP membranes. The
measured coupling efficiencies are 69% and 56%, respectively.
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Fig. 2. Upward radiated power, downward radiated power, and coupling
efficiency of a regular SOI grating coupler.

II. GRATING COUPLERS IN SOI

A. Design

1) Starting Point: We start from an existing SOI grating
coupler (Si core layer of 220 nm and SiO2 buried oxide layer
of 1 µm). The gratings were designed for TE polarization,
using CAvity Modelling FRamework (CAMFR, an eigenmode
expansion tool) [9]. The design method is described in detail
in [10]. We use near vertical coupling (at 10◦ with respect
to the vertical axis) to avoid second-order reflection and con-
sider coupling from waveguide to fiber (coupling from fiber
to waveguide is the same, since we consider coupling between
two modes).

The thickness of the buried oxide has a major influence on the
coupling efficiency, as described in [11] and [12]. The down-
ward radiated wave partially reflects at the oxide–substrate
interface. The oxide thickness should be chosen such that
the reflected wave interferes constructively with the directly
upward radiated wave. For the used grating (period = 610 nm,
etch depth = 50 nm, duty cycle = 50%, 20 periods), the power
coupled upward (Pair), the power coupled toward the substrate
(Psubs), and the coupling efficiency to fiber are shown as a
function of the buried oxide thickness in Fig. 2 for the central
wavelength of the coupler.

Some care should be taken when discussing the efficiency
values. In grating literature, coupling efficiency is often defined
as the fraction of the power that is coupled in or out by the
grating [13]. Here, we calculate the coupling efficiency to fiber
by multiplying Pair by the overlap integral of the outcoupled
field profile and the fiber mode. For the used SOI structure,
the oxide layer thickness is fixed to 1 µm, while the optimal
thickness is 900 nm. The grating coupler has a theoretical cou-
pling efficiency to fiber of 30%. An important part of the power
(45%) is radiated into the substrate, since the oxide–substrate
interface is not a perfect reflector. A field plot of the structure is
shown in Fig. 3.

2) Extension With a Gold Bottom Mirror: The coupling ef-
ficiency can be increased substantially by using a nearly perfect
reflector as a bottom mirror. We have extended the SOI grating
coupler with a gold bottom mirror. Before applying the gold

Fig. 3. Field plot of the SOI grating coupler. Forty-five percent of the power
is radiated toward the substrate.

Fig. 4. Determination of the optimal BCB buffer thickness for the SOI coupler
with a gold bottom mirror.

Fig. 5. Field plot of the optimized SOI structure with a gold bottom mirror.

mirror, a low-index buffer layer has to cover the grating. We
chose BCB—a low-index (n = 1.54 at λ = 1.55 µm) polymer
with good planarization properties—as the buffer layer. Its
thickness is optimized in order to get the constructive inter-
ference between the directly upward radiated wave and the
reflected wave at the bottom mirror. The optimal simulated
BCB buffer thickness is 840 nm, as shown in Fig. 4.

The SOI structure, with buffer layer and gold mirror, is
bonded onto a host substrate (pyrex in our case) with another
BCB layer (of which the thickness is irrelevant for device
efficiency), and the Si substrate is removed. The 1-µm buried
oxide layer remains as the top layer. The theoretical coupling
efficiency to fiber is 72%. A field plot of this structure is shown
in Fig. 5. No power is radiated toward the substrate anymore.
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Fig. 6. Simulation results for the different types of SOI grating couplers.

Fig. 7. (Left) Top view of the fabricated SOI structure with a bottom mirror.
(Right) SEM picture of an FIB cross section.

The simulations are summarized in Fig. 6. The coupling curves
of an SOI grating coupler (1-µm buried-oxide-layer thickness),
a bonded SOI grating coupler (without a bottom mirror), and a
bonded SOI grating coupler with a bottom mirror are shown.

B. Fabrication

The SOI structures were defined using 248 nm deep ultra-
violet (DUV) lithography and were etched to a depth of 50 nm
with reactive ion etching (RIE). More details can be found in
[14]. After cleaning the samples, a BCB layer of 840 nm was
spin coated onto the SOI die and cured for 40 min at 210 ◦C.
Afterwards, only the grating area was covered with a 50 nm
evaporated gold layer using lift-off (Fig. 7). The die was then
bonded under vacuum onto a pyrex substrate using an approxi-
mately 3-µm thick BCB layer. After curing the BCB for 1 h at
250 ◦C, the silicon substrate was removed using lapping, SF6

plasma etching, and wet etching in KOH using the SOI buried
oxide layer as an etch-stop layer. A picture of the fabricated
structure is shown in Fig. 7 (left), together with an SEM picture
of a focused ion beam (FIB) cross section (right).

C. Measurements

The structures consist of an input grating coupler and an
output coupler connected by a waveguide (10-µm wide tapered
to a width of 3 µm). Only the input coupler has a gold bottom
mirror. On the sample, we also have bonded reference structures

Fig. 8. Measurement results for bonded SOI couplers with and without a gold
bottom mirror.

without a bottom mirror, allowing us to evaluate the perfor-
mance of the mirror. The coupling efficiency is determined
from a fiber-to-fiber transmission measurement for the TE
polarization. A fiber connected to a tunable laser is positioned
at 10◦ with respect to the vertical axis above the input grating.
Another fiber is positioned above the output grating (also at
10◦) and connected to a power detector. The position of the
fibers is optimized for maximum transmission. By neglecting
the waveguide losses (since the waveguides are 3–10-µm wide)
and by measuring the transmission efficiency of our setup, we
are able to calculate the coupling efficiency.

First, the coupling efficiency of a bonded grating coupler
without a bottom mirror is determined by measuring the trans-
mission of the reference structures (no mirrors). By assuming
that input and output couplers are the same, the coupling
efficiency is calculated to be 26%. This value can be used to
determine the coupling efficiency of a grating coupler with a
bottom mirror. We have measured 69% coupling efficiency for a
grating coupler with a bottom mirror. The measurement results
are shown in Fig. 8. The coupling efficiency is deduced from
the best fit Gaussian function.

III. GRATING COUPLERS IN INP MEMBRANE

A. Rationale

SOI is very well suited for performing passive functionality,
but it is very difficult to make active components in SOI.
Heterogeneous integration of III–V material (active functions)
and SOI (passive functions) could be a viable solution [15].

Another possibility is to perform both active and passive
functions in InP/InGaAsP. However, the vertical index con-
trast of a classical InP/InGaAsP heterostructure is too low
for making waveguides with a strong vertical confinement, as
is the case in SOI. By applying wafer bonding, the vertical
index contrast can be modified, resulting in an InP membrane
with high vertical index contrast. These membrane compo-
nents can then be integrated with classical InP heterostructure
components.
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Fig. 9. Determination of the optimal BCB thickness for an InP membrane
coupler with a gold bottom mirror.

Fig. 10. Field plot of the optimal InP membrane structure.

B. Design

The design method is similar to the method for SOI grating
couplers. Again, a gold bottom mirror is added to the structure
to avoid radiation toward the substrate. The InP membrane has
a thickness of 300 nm. The period of the optimized grating is
660 nm, the etch depth is 70 nm, and the duty cycle is 50%. We
bond onto a gold-coated substrate, meaning that the bonding
layer serves also as the buffer layer. The thickness of this
BCB layer is again optimized in order to get a constructive
interference between the reflected wave at the gold mirror and
the directly upward radiated wave. The maximum coupling
efficiency as a function of BCB thickness (for the central
wavelength of the coupler) is shown in Fig. 9. The optimal
thickness is 1.23 µm, and the maximum coupling efficiency is
78%. A field plot of the optimal structure is shown in Fig. 10.

C. Fabrication

The layer structure used for the devices consists of an InP
substrate, an InGaAsP etch-stop layer, and a 300-nm InP layer,
serving as the membrane layer. In the first step, gratings and
waveguides are defined by e-beam lithography using poly-
methyl methacrylate. The waveguides are 12-µm wide and
bounded by 3-µm wide trenches. The pattern is then transferred
into plasma-enhanced chemical vapor deposition (PECVD)-
deposited SiO2 hard mask by RIE using CHF3. Finally,

Fig. 11. Measured and simulated coupling efficiency of bonded InP mem-
brane grating couplers with a gold bottom mirror.

the structures are etched into the epistructure by inductively
coupled plasma (ICP) using CH4/H2, and the hard mask layer
is removed with HF. The InP samples are much smaller than
the SOI samples described above. It is very difficult to spin a
uniform BCB buffer layer on such small samples. Therefore,
we bond the samples onto a gold-coated Si substrate by means
of BCB, with the grating at the bottom side. The BCB thickness
is targeted at 1.23 µm. After curing the BCB for 1 h at 250 ◦C in
a nitrogen environment, the InP substrate is removed by lapping
and wet etching in HCl. Finally, the etch-stop layer is removed
by wet etching in H2O:H2SO4:H2O2.

D. Measurements

The coupling efficiency is determined from a fiber-to-fiber
transmission measurement. In this case, both input and output
couplers have bottom mirrors. By assuming that input and
output couplers are the same, we calculate the coupling effi-
ciency of a single coupler from the transmission efficiency. The
measurement result is shown in Fig. 11, together with the sim-
ulated curve. The measured coupling efficiency is 56%, and the
1-dB bandwidth is around 45 nm. The deviation between theory
and experiment is caused by a deviation between theoretical
and fabricated structure (etch depth, filling factor, and BCB
thickness).

IV. CONCLUSION

We have designed and fabricated highly efficient grating
couplers for coupling between a single-mode fiber and nano-
photonic waveguides in SOI and bonded InP membranes. The
addition of a gold bottom mirror results in high coupling
efficiency values. We have measured 69% coupling efficiency
for SOI grating couplers and 56% for grating couplers in an
InP membrane. As these couplers are very compact and have
low insertion losses and relatively broadband operation, they
meet the requirements for application in future telecommuni-
cation networks. Further improvements include the apodiza-
tion of the grating (varying groove widths and etch depths),
which would increase the theoretical coupling efficiency to
over 90%.
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