Reducing optical losses in Focused-ion-beam etched silicon by annealing

ePIXnet JRA Focused Ion Beam for Photonics

Jonathan Schrauwen, Edwin Klein, Feridun Ay, Wico Hopman, Rene De Ridder, Dries Van Thourhout, Roel Baets
ePIXnet annual meeting 2007
What is Focused ion beam?

Introduction
Why exploit FIB in silicon?

Introduction

ePIXnet JRA: FIB for Photonics
How to reduce the GIGANTIC losses?

High optical losses in FIB etched silicon due to:

- Gallium implantation
- Crystal damage

What we propose to do:

- Preventive:
 - I$_2$ enhanced etching
- Regenerative:
 - Recrystallization and out-diffusion by annealing
 - Dry etching of a thin damaged layer
Outlook

1. Introduction
2. The experiment
3. The results:
 - I₂ etching
 - Annealing
 - Dry etching
Etching broad and narrow waveguides

2. The experiment

Dose: 5 x 10^{15} \quad 1 x 10^{16} and 1 x 10^{17} Ga/cm^2
Etch depth: 0 nm \quad 0 nm \quad 80 nm

ePIXnet JRA: FIB for Photonics
Measurement setup

2. The experiment

S-LED
Pol control
Spectrum analyser

ePIXnet JRA: FIB for Photonics
Iodine reduces losses

Dose $5 \times 10^{15} I_2$ enhanced etch

Losses (dB)

Implanted length (μm)

iodine etch: 1700 dB/cm

direct etch: 3500 dB/cm

3.1 I_2 etching
BUT iodine sticks and must be baked out

- Iodine desorbs by baking 2 hours in N₂ at 300°C
- Energy Dispersive X-ray spectroscopy (EDX) supports this

Confirmed by X-ray Photo-electron Spectroscopy (XPS)!!

3.1 I₂ etching
Iodine desorption reduces the losses

3.1 I_2 etching

ePIXnet JRA: FIB for Photonics
Annealing: what do we expect?

FROM SEMICONDUCTOR WORLD:

2h @ 500-600°C:
- Recrystallization of the amorphized region (Solid Phase Epitaxy)
 - Might reduce losses
- Electrical activation of gallium
 - Increases losses

2h @ 800-1000°C:
- Diffusion of Ga in Si over > 100 nm
- Diffusion of Ga in SiO₂ over > 1000 nm
BUT: Semiconductor world??

5 \times 10^{15} \text{ Ga/cm}^2 \sim \text{peak concentration of } 3.5 \text{ at}\% \text{ Ga in Si}

1 \times 10^{17} \text{ Ga/cm}^2 \sim \text{peak concentration of } > 20 \text{ at}\%

= \text{Very High} !!
Annealing reduces the losses

1 \times 10^{17} \text{ on wire}
1 \times 10^{16} \text{ on wire}
5 \times 10^{15} \text{ on slab}
5 \times 10^{15} \text{ on slab with I}_2
Reactive ion etch removes damaged layer

- Ga is implanted shallowly into Si (<70 nm)
- This shallow layer is removed by dry etching in CHF$_3$/O$_2$ plasma

3.3 Dry etching
JRA FIB for Photonics:
Loss reduction of FIB etched silicon by annealing

- The experiment

- The results:
 - I_2 etching: $200 \text{ dB/cm} @ 300^\circ\text{C}$
 - Annealing: $75 \text{ dB/cm} @ 1000^\circ\text{C}$
 - Dry etching: 1000 dB/cm
3.1 I_2 etching

Confirmed by SIMS

ePIXnet JRA: FIB for Photonics