Experimental Demonstration of All-optical Flip-flop operation with a single Distributed Feedback Laser Diode

Koen Huybrechts, Geert Morthier, Roel Baets
Photonics Research Group, Dept. of Information Technology
Ghent university – IMEC
Sint-pietersnieuwstraat 41, B-9000 Ghent, Belgium
e-mail: Koen.Huybrechts@intec.ugent.be

Abstract: Dynamic all-optical flip-flop operation is observed for a single distributed feedback laser diode using the spatial hole burning effect. Bistabilities with extinction ratios of up to 35 dB are obtained. For the flip-flop operation, we demonstrate repetition rates up to 1.25 GHz using pulses of 0.5 pJ.

Keywords: All-optical flip-flop, Distributed feedback laser, Optical bistability

1. Introduction

Due to the increasing need for fast and agile networks, packet-switched optical networks draw more and more attention [1]. All-optical flip-flops offer one of the main functionalities in realizing these networks by acting as temporary memory elements which store the header information while the payload is routed to the output port. Flip-flops are designed as bistable elements with the ability to switch between the two states by using positive optical pulses. Several designs for optical flip-flops have been proposed so far, however they are often relatively complex and/or slow [2,3]. Here we report on the experimental demonstration of a novel design for an all-optical flip-flop based on a single Distributed FeedBack (DFB) laser diode [4].

By injecting continuous wave (CW) light – with a different wavelength than the lasing light – into a DFB laser diode, bistability can occur due to a non-uniform distribution of the carriers (i.e. spatial hole burning effect). Moreover, switching by using optical pulses is possible, resulting in all-optical flip-flop operation with repetition rates up to 1.25 GHz and for pulses with energy below 0.5 pJ.

2. Paper format

The bistability we observe when injecting CW-light into a DFB-laser arises from the strong influence of the carrier distribution on the threshold characteristics for lasing. In one of the states the laser is lasing and the injected light experiences a weak amplification due to gain clamping. In the other state the injected light is strongly amplified resulting in a non-uniform distribution of the carriers (i.e. spatial hole burning effect). Moreover, switching by using optical pulses is possible, resulting in all-optical flip-flop operation with repetition rates up to 1.25 GHz and for pulses with energy below 0.5 pJ.

3. Bistability

Using static measurements, we have observed the bistability experimentally in an anti-reflection coated, \(\lambda/4\)-shifted DFB-laser with a length of 400 \(\mu\)m provided by Alcatel-Thales III/V-labs. The laser operates at a wavelength of 1553.7 nm and we inject light with a wavelength of 1543 nm. We observe that the bistability widens with increasing current and the extinction ratio is up to 35 dB (Figure 2). For lower values of the injected current (\(\leq 100\) mA), no bistability was observed.
4. Flip-flop operation

To obtain flip-flop operation we switch between the two states of the bistability by injecting optical pulses in the device. To operate in the bistable regime, we inject CW-light of 900 μW at a wavelength of 1543 nm. The reset-pulses have an energy of 0.5 pJ and are sent at the same side as the CW-light. They will switch the laser off by disturbing the uniformity of the carrier distribution. The set-pulses on the other hand are weaker (0.2 pJ) and are sent on the other side of the device to restore the uniformity in the cavity again. We demonstrate flip-flop operation here with pulses of 100 ps length and repetition rates up to 1.25 GHz. The switch-on time of the device is 120 ps and the switch-off time 50 ps.

5. Conclusion

We demonstrated all-optical flip-flop operation in a single DFB-laser diode. Repetition rates up to 1.25 GHz can be achieved using pulses of 100 ps with less than 0.5 pJ.

Acknowledgment

The authors gratefully acknowledge Duan Guanghua from Alcatel III/V-labs for providing the DFB laser diodes. The work of Koen Huybrechts is supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) under a specialization grant.

References

<table>
<thead>
<tr>
<th>Co-chairs Message</th>
<th>Technical Program</th>
<th>Author Index</th>
<th>Sponsorship</th>
<th>Search</th>
</tr>
</thead>
</table>

International Conference on Photonics in Switching 2008
4-7 August 2008
Hokkaido University, Sapporo, Japan

ISBN 978-4-88552-228-4 C3055
Author Index

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abril Domingo, Evanjito J.</td>
<td>Efficient Design of Wavelength-Routed Optical Networks with Failure Protection Using Genetic Algorithms</td>
</tr>
<tr>
<td>Aguiar Manzano, Juan Carlos</td>
<td>Efficient Design of Wavelength-Routed Optical Networks with Failure Protection Using Genetic Algorithms</td>
</tr>
<tr>
<td>Al Amin, Abdullah</td>
<td>Experimental Demonstration of Optical Burst Switch Prototype Equipped with Pre-Emptive Scheduler for Absolute QoS Guarantees</td>
</tr>
<tr>
<td>Albores-Mejia, A.</td>
<td>Scalable Quantum Dot Optical Switch Matrix in the 1.55μm Wavelength Range</td>
</tr>
<tr>
<td>Almeida Jr., Raúl C.</td>
<td>An Optical Packet Switch Employing Shared Tunable Parametric Wavelength Converters</td>
</tr>
<tr>
<td>Aliparsian, Onur</td>
<td>Mode Ramping for Optical Packet Switching</td>
</tr>
<tr>
<td>Amemiya, Yoshiteru</td>
<td>Electric-Field Driven Optical Modulator Using Si Ring Resonator</td>
</tr>
<tr>
<td>Ananthanarayanan, A.</td>
<td>Scalable Quantum Dot Optical Switch Matrix in the 1.55μm Wavelength Range</td>
</tr>
<tr>
<td>Andrade, Nicoline</td>
<td>Bi-directional Lightpath Provisioning in GMPLS-Controlled Optical Networks</td>
</tr>
<tr>
<td>Andrade, Nicole</td>
<td>Reserved Ave Provisioning Heuristics for Mitigating the Impact of Traffic Flows on Multi-Layer Optical Networks</td>
</tr>
<tr>
<td>Andrade, Nicole</td>
<td>7+1 Path-Routing Schemes in GMPLS-Controlled Transliterate Networks</td>
</tr>
<tr>
<td>Aoyagi, Toshitaka</td>
<td>Using Mode-Analysis of Self-Pulsating DFB Laser Diodes for All-Optical Wavelength Conversion in All-Optical Cross-Connectors</td>
</tr>
<tr>
<td>Aoyama, T。(note)</td>
<td>Next Generation Network Beyond Internet</td>
</tr>
<tr>
<td>Arakawa, Shintaro</td>
<td>Tuning Tunable Fabry-Perot Optical Switching</td>
</tr>
</tbody>
</table>

Note: The title 'P. H. H. J. Dynamic Transport Network Based on PLZT High-Speed Optical...' is not included in the table as it is not visible in the image.
Arakawa, Yutaka S-02-1 Slot Switching (OSS)
Arakawa, Yutaka S-02-3 Fast Fault Recovery Method with Pre-Established Recovery Table for Wide Area Ethernet
Arakawa, Yutaka S-02-5 10 GE Optical Layer Protection Evaluation Using PL2T Optical Switches
Araki, Soichi S-06-4 Multi-Domain ASON/GMPLS Network Operations
Asakawa, Kyoshi D-04-3 Design and Fabrication of Nano-Photonics-Based All-Optical Flip-Flop Switch
Azaria, Joe D-03-3 Ultrasil Pulse Processing and Shaping Based on Long Period Fiber Gratings for Optical Coding and Switching Applications

B
Baek, Yongsoon P-8 10 Channel Polymer Variable Optical Attenuator Array for Power Monitoring and Equalization in Integrated PLC ROADM Module
Baets, R. D-02-3 Heterogeneous III-V/Silicon-on-Insulator Photonic Integrated Circuits
Baets, Roel D-04-6 Experimental Demonstration of All-Optical Flip-Flop Operation with a Single Distributed Feedback Laser Diode
Barman, Abhirup Das S-06-2 Single RSOA Based ONU for RZ Symmetrical WDM PONs at 2.5 Gb/s
Barth, Dominique P-25 Two Cycles Routing and End to End Delay Bound in an All Optical Network
Barton, Jonathan S. D-01-4 Recent Progress on LASOR Optical Router and Related Integrated Technologies
Bayart, Dominique S-05-2 Packet Power Dynamic Range Management in Optical Packet Ring Networks
Bergman, Keren S-03-3 Nanophotonic Interconnection Networks for Multicore Embedded Computing Systems
Berrettini, Gianluca D-05-5 All-Optical Digital Processing through Semiconductor Optical Amplifiers: State of the Art and Perspectives
Berrettini, Gianluca S-06-2 Single RSOA Based ONU for RZ Symmetrical WDM PONs at 2.5 Gb/s
Blow, Keith J. D-04-5 Experimental Demonstration of SOA-Based Non-Inverting Optical Memory
Blumenthal, Daniel J. D-01-4 Recent Progress on LASOR Optical Router and Related Integrated Technologies
Blumenthal, Daniel J. D-02-2 Hybrid Silicon Photonic Integrated Circuits for Optical Networking
Bogoni, Antonella D-04-4 Single-SOA Optical Memory Based on Coupled Fiber Ring Lasers
Bogoni, Antonella D-05-5 All-Optical Digital Processing through Semiconductor Optical Amplifiers: State of the Art and Perspectives
Bogoni, Antonella D-07-3 All-Optical Multiple Wavelength Conversion Using ASE Light and a Passive Vertical-Cavity Semiconductor Gate
Bogoni, Antonella P-16 The Mickey NOLM: Nonlinear All-Optical Processing Based on PM-NOLM Structures
Bogoni, Antonella S-06-2 Single RSOA Based ONU for RZ Symmetrical WDM PONs at 2.5 Gb/s
Borne, Sophie S-05-2 Packet Power Dynamic Range Management in Optical Packet Ring Networks
Boscolo, Sona D-03-1 Novel Apparatus in Nonlinear Optical Fiber-Based Signal Processing
Bowers, John E. D-07-4 Recent Progress on LASOR Optical Router and Related Integrated Technologies
Bowers, John E. D-02-2 Hybrid Silicon Photonic Integrated Circuits for Optical Networking