Photonic Reservoir Computing: first experiments
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Reservoir Computing

e Take a:
e Fixed dynamic system, e.g. random recurrent network of simple non-linear nodes

e Operating in dynamic regime at edge of stability, and excited by an input signal
e Then:

e Any time-invariant filter can be learned using linear mapping of full instantaneous state

e Possible due to mapping in higher dimensional space

e Also known as Echo State Networks (Jaeger 2001) and Liquid State Machines (Maass 2002)

e On several real-world applications already able to outperform state-of-the-art
e Supports prediction, regression, classification, generation,
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“learning” = find simplest
function that explains the data
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Many possible nodes:

disk lasers ring resonators photonic crystal
cavity
A e We opted for an SOA node:
e Closely resembles non-linearities used
in theoretical studies
SOA e Simple dynamics
> e Gain can easily be controlled electrically

recurrent
e Topological structure which can be

easily implemented on a 2D

feed-forward
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e Some recurrent connections a //
e Input fed into single node /
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e Applied on simple but representative
benchmark: signal classification

e Two waveforms with same base freq.

e Instantaneous state of all nodes is used
by memoryless linear function to
perform the classification
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Results ]
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e Error = ratio of misclassifications 02

e Recurrent better than feed-forward |

e Recurrent network has clear
optimum for a given attenuation 0.

Error rate

0.154 =~

0.05r

o
T (J‘.I T T
o

Attenuation (dB)

q -o-tanh
A

-0~ SOA - feedback

o
\\\-'?\\\

e Performance increases with
network size

e Small networks can solve

| | the problem

s 0 s w0 a5 s s 40 e Outperforms tanh reservoirs

Reservoir size

Error rate
(@]
T T -c"a T

o
N

0.1

Conclusions

e We can build a practically implementable photonic reservoir

e On a simple application it can outperform “classic” reservoirs

e Recurrency is important

e Intrinsic properties of photonic components are exploited

e Relatively small implementation footprint, very high speed and
low power

Future work

e Build prototype system and validate simulation results

e Research other photonic reservoir setups

e Build applications on the photonic reservoir computing technology

e Can result in whole new photonic computing paradigm not based
on Turing/Von Neumann architectures



