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! Biological model of human 
cochlea
! Models nonlinear and 
adaptive properties of 
haircells and basilar 
membrane
! 86 channel filter bank
! Signals are downsampled 
by factor 128 : 16 kHz => 
125 Hz

! Reservoir = recurrent neural network 
consisting of sigmoid or spiking neurons.
! Constructed randomly at beginning and 
left untrained.
! Input signals excite reservoir dynamics.
! Reservoir does a complex dynamic 
nonlinear premapping of input signals.
! Functions as a temporal kernel, projecting 
input into higher-dimensional space.
! In software : both analog and spiking 
reservoirs possible.
! In hardware: only spiking reservoirs 
implemented, but analog reservoirs 
possible. Once a good reservoir is found, it 
can be exported directly to VHDL.
! Reservoir Computing Matlab Toolbox : 
http://www.elis.ugent.be/snn/RCT
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Conclusions Future work
! We have built a working speech recognition system with a novel machine-
learning technique and very good performance – without extensive parameter 
tuning.
! The Reservoir Computing Toolbox allows us to carry out the design flow from 
concept to hardware implementation.
! Performance on self-made dataset : around 10% error on unseen digits.
! Performance on TI46 dataset: perfect recognition.

! Implement analog reservoirs on FPGA
! Investigate noise-robustness of system (white noise, car, factory, babble, ...)
! Extension to connected digits 
! Extension to phoneme-based connected speech
! Other acoustic pattern recognition problems: bat-based echo-classification 
and -location, musical instrument classification, ....

! Platfrom: Xilinx ML-402 Development Board
! Clock-frequencies of :

! Lyon Ear Model: 12MHz / SNN : 50 MHz and 
100 MHz / Microblaze 100 MHz
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Conclusions

• Take a:
• Fixed dynamic system, e.g. random recurrent network of simple non-linear nodes
• Operating in dynamic regime at edge of stability, and excited by an input signal

• Then:
• Any time-invariant filter can be learned using linear mapping of full instantaneous state
• Possible due to mapping in higher dimensional space

• Also known as Echo State Networks (Jaeger 2001) and Liquid State Machines (Maass 2002)
• On several real-world applications already able to outperform state-of-the-art
• Supports prediction, regression, classification, generation, ... of time-series or sequence data

• We can build a practically implementable photonic reservoir
• On a simple application it can outperform “classic” reservoirs
• Recurrency is important
• Intrinsic properties of photonic components are exploited
• Relatively small implementation footprint, very high speed and 

low power

Future work
• Build prototype system and validate simulation results
• Research other photonic reservoir setups
• Build applications on the photonic reservoir computing technology
• Can result in whole new photonic computing paradigm not based 

on Turing/Von Neumann architectures

too stable

just right

too chaotic

Many possible nodes:

SOA disk lasers ring resonators photonic crystal
cavity

Idea: build excitable 

dynamic system using 

intrinsic properties of 

photonic components

linear 
regression or 
classification

idea is that a randomly constructed reservoir offers a complex nonlinear dy-
namic transformation of the input signals which allows the readout to extract
the desired output using a simple linear mapping.

Evidently, the temporal nonlinear mapping done by the reservoir is of key
importance for its performance. One of the appealing properties of this type of
networks is the fact that they are governed by only a few global parameters.
Generally, when solving a task using RC, the search for optimal reservoir dy-
namics is done by adjusting global scaling parameters such as the input scaling
or spectral radius1. However, as we will show, optimizing the temporal proper-
ties of the entire system can also be very influential to the performance and the
computational complexity. Since a reservoir is a dynamic system that operates
at a certain time-scale, the precise adjustment of the internal temporal behavior
of the reservoir to both the input signal and the desired output signal is im-
portant. In this contribution, we present an overview of the different ways in
which the dynamic behavior of reservoirs has been described in literature, and
we investigate the interplay between different temporal parameters for each of
these models when applied to signal classification tasks.

2 Reservoir Computing and time-scales

Although there exist some variations on the global description of an RC system,
we use this setup:

x [t + 1] = f
(
W res

res x [t] + W res
inpu [t]

)

ŷ [t + 1] = W out
res x [t + 1] + W out

inp u [t] + W out
bias,

with u [t] denoting the input, x [t + 1] the reservoir state, y [t + 1] the expected
output, and ŷ [t + 1] the actual output2. All weights matrices to the reservoir
(W res

!
) are initialized at random, while all connections to the output (W out

!
) are

trained. The non-linearity f is a hyperbolic tangent.
In this system we can define three different time-scales: the time-scale of the

input, the internal state, and the output. Traditionally these are all the same,
but in this paper we will show that performance can be improved and that
computational demands can be decreased by setting these time-scales correctly.

2.1 Input time-scale and integrator nodes

In [6], the notion of input time-scales and the link to node integration was
introduced. In this contribution we will look at three ways to add an integrator
to a node: after the non-linearity (as used in [6]), before the non-linearity (as
used in continuous time RNN), and over the non-linearity (which we introduce).
We will first discuss the integrator after the non-linearity.

1 The largest absolute eigenvalue of the connection matrix.
2 We denote discrete time with [t] and continuous time with (t).

random trained
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“learning” = find simplest 
function that explains the dataanalogy 

SOAtanh

• Topological structure which can be 
easily implemented on a 2D 
substrate:
• Feed-forward
• Some recurrent connections

• Input fed into single node
• Realistic splitting and attenuation

• Applied on simple but representative 
benchmark: signal classification

• Two waveforms with same base freq.
• Instantaneous state of all nodes is used 

by memoryless linear function to 
perform the classification
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• We opted for an SOA node:
• Closely resembles non-linearities used 

in theoretical studies
• Simple dynamics
• Gain can easily be controlled electrically

• Error = ratio of misclassifications
• Recurrent better than feed-forward
• Recurrent network has clear 

optimum for a given attenuation

• Performance increases with 
network size

• Small networks can solve 
the problem

• Outperforms tanh reservoirs

http://photonics.intec.UGent.be
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