
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Complex Padé approximant operators for wide-angle beam propagation

Khai Q. Le
Department of Information Technology, Ghent University-IMEC, St-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

a r t i c l e i n f o

Article history:
Received 16 October 2008
Received in revised form 5 December 2008
Accepted 8 December 2008

a b s t r a c t

The conventional rational Hadley(m,n) approximant of wide-angle beam propagator based on real Padé
approximant operators incorrectly propagates the evanescent modes. In order to overcome this problem,
two complex Padé approximants of wide-angle beam propagator are presented in this paper. The com-
plex propagators of the first approach are obtained by using the same recurrence formula from the scalar
Helmholtz equation of the conventional approximant method with a different initial value while those of
the second method derived from Hadley(m,n) approximant of a square-root operator that has been
rotated in the complex plane. These resulting approaches allow more accurate approximations to the
Helmholtz equation than the well-known real Padé approximant. Furthermore, our proposed complex
Padé approximant operators give the evanescent modes the desired damping.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The wide-angle (WA) beam propagation method (BPM) has be-
come one of the most widely used techniques for the study of opti-
cal waveguide devices [1,2]. Different treatments of WA-BPM
based on the slowly varying envelope approximation have been
developed, including the rational approximants of the square root
operator [3], the one-way propagator [4], the exponential of the
square root operator [5], and the real Padé approximant operator
[6] (referred to as Hadley(m,n) approximant thereafter in this
work), for rectangular coordinates as well as an oblique coordinate
system [7]. The Padé-approximant-based WA-BPM is one of the
most commonly used techniques for modeling optical waveguide
structures. It is a nonlinear expression in the form of a rational
function NðmÞ

DðnÞ , a ratio of two polynomials in operator P [6], where
m and n are the highest degree of P in the polynomials N and D,
respectively. They have also been used in connection with a num-
ber of physical problems.

However, as the denominator DðnÞ of the rational function of
Hadley(m,n) approximant gradually approaches zero, its absolute
values are thus indefinite. It physically causes the fact that the real
Padé approximant or Hadley(m,n) propagators incorrectly propa-
gate the evanescent modes leading to additional errors to the final
solution. Furthermore, these waves can cause serious instability
problems when implementing WA-BPM based on real Padé
approximants. To circumvent this problem we propose two ap-
proaches resulting in complex Padé approximant operators that
give the evanescent modes the desired damping and thus allow
more accurate approximations to the Helmholtz equation than real
Padé approximants.

2. Formulation

2.1. Real Padé approximant operators

The scalar Helmholtz equation obtained by using the slowly
varying envelope approximation is given by [6]
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where P ¼ r2
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refÞ with k =
k0nref, nref being the reference refractive index, for which the refrac-
tive index of the substrate or cladding is usually used [8], k0 being
the vacuum wavevector, H(x,y,z)exp(ixt) being the field compo-
nent with angular frequency x.

We may formally rewrite Eq. (1) in the form
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Eq. (2) suggests the recurrence relation
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Hadley [6] proposed the rational approximation of WA beam
propagation using real Padé approximant operators with initial va-
lue of @

@z

��
0 ¼ 0:

This gives us the well-known Padé(m,n) approximant-based
WA beam propagation formula as follows:
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NðmÞ
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where N(m) and D(n) are polynomials in X ¼ P
k2.
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If Eq. (4) is compared with a formal solution of Eq. (1) written in
the well-known form [6]
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q
� k

� �
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ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
� 1

� �
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we obtained the approximation formula

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
� 1 � NðmÞ

DðnÞ : ð6Þ

Since the operator X has a real spectrum, it is useful to consider
the approximation of

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1 by the Padé approximant propa-
gation operator. Fig. 1 shows the absolute values of

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1 and
the first order real Padé(1,1) approximant operator or Hadley(1,1)
with respect to X.

However, as the denominator of the rational approximation of
WA beam propagation using Hadley(m,n) approximant gradually
approaches zero, its absolute value is thus indefinite as clearly seen
in Fig. 2. To circumvent this problem we propose here two ap-
proaches that lead to complex Padé approximant operators.

2.2. Complex Padé approximant operators

2.2.1. Modified Padé approximant operators
By multiplying both sides of Eq. (2) with � i

k, we obtain
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We may rewrite Eq. (7) as follows

f ðXÞ ¼ X
2þ f ðXÞ : ð8Þ

where f ðXÞ ¼ � i
k
@
@z :

Eq. (8) suggests the recurrence relation

fnþ1ðXÞ ¼
X

2þ fnðXÞ
for n ¼ 0;1;2 . . . ð9Þ

Lu [9] has proved that Eq. (9) can provide a good approximation
to

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1 with the initial value of

f0ðXÞ ¼ ib whereb > 0: ð10Þ

Subsequently, our modified Padé approximant operators are ob-
tained from the same recurrence formula (3) with a different initial
value of @

@z

��
0 ¼ �kb. The most useful low-order modified Padé

approximant operators are shown in Table 1.

2.2.2. Rotated Padé approximant operators
Several years ago, Milinazzo [3] proposed the rotation of the

square-root operator in the complex plane to address the evanes-
cent waves as follows:
ffiffiffiffiffiffiffiffiffiffiffiffi
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p
� 1 ¼
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where Z = (1 + X)e�jh � 1. In addition, from Eq. (6) we obtain the
Hadley(m,n) approximant of the square-root operator with respect
to X
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Therefore, by employing the Hadley(m,n) approximant of
the square-root operator with respect to Z and inserting it
into Eq. (11), we obtain rotated Padé approximant operators as
follows:
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� 1: ð13ÞFig. 1. The absolute values of FðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1 (solid line), the first-order real
(solid line with circles), complex modified (solid line with triangular) and rotated
(solid line with stars) Padé(1,1) approximant of

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1.

Fig. 2. The absolute values of FðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1 (solid line), the first-order real
(solid line with circles), complex modified (solid line with down triangles) and
rotated (solid line with stars) Padé(1,1) approximant of

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1.

Table 1
Most useful low-order Padé approximants of

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1 in terms of the operator X.

Order Expression
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64
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3. Numerical results

In this section, we compare two complex Padé approximants to
the exact square-root operator

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1. The complex Padé
approximants to the propagator are obtained using the first meth-
od based on the modified Padé approximant with b = 2 [9] while
those of the second method based on the rotated Padé approxi-
mant propagator are obtained using a rotation angle of h ¼ p

4 [3].
Fig. 1 also shows the absolute values of the first order complex
Padé approximant operators using these methods with respect to
X. It is obvious that these complex Padé approximant operators
can provide better approximations to the exact square-root opera-
tor

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1 than those of the real Padé approximant. Further-
more, the real rational Padé approximant-based propagators
incorrectly propagates the evanescent modes as their denominator
gradually approaches zero while the complex Padé approximants

give the evanescent mode the desired damping as clearly seen in
Fig. 2.

In Fig. 3 we show that for low-order cases, the modified Padé
approximants allow more accurate resolution of the propagating
modes than those of the rotated Padé approximants. However,
for high-order cases, the rotated Padé approximants can provide
better description of the evanescent waves as clearly seen in
Fig. 4 and, in particular, allow more accurate approximations to
the Helmholtz equation in the propagating mode regime than
those of the modified Padé approximants. Further, the optimal pro-
cedure for constructing modified Padé approximants to the rotated
square-root operator mentioned here as modified rotated Padé
approximants can offer improved accuracy in the evanescent re-
gion of the spectrum. However, this optimal approach is somewhat
less accurate than the two previous approaches in the propagating
mode regime as also shown in Fig. 4. Consequently, the choice of an
optimal procedure is highly problem-dependent.

For an implementation of WA-BPM based on higher-order
Padé(m,n) approximants, various treatments have been developed
to relax the computational efforts including the multistep method
[10], the splitting method of the wave equation [11] or the shifting
technique of the simulation window to reduce the dimension of
the numerical equation [12]. . . In general, these methods are usu-
ally developed based on the traditional direct matrix inversion or
the iterative method whereby the propagation equation can be cast
in terms of a Helmholtz equation with source term [13]. However,
for certain problems, iterative methods can be instable for dealing
with WA-BPM based on real Padé(m,n) approximants whereas
those of complex Padé(m,n) approximants-based method can re-
duce the instability problems since evanescent waves are always
damped during propagation.

4. Conclusion

The complex Padé approximants of WA beam propagation oper-
ator have been presented. The resulting approaches allow more
accurate resolutions of the propagating modes than those of the
real Padé approximant-based approach. Furthermore, these ap-
proaches ensure the evanescent waves always decay during prop-
agation. Therefore, these complex approximants allow more
accurate approximations to the Helmholtz equation than those of
the well-known real Padé approximants.
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Fig. 4. The absolute values of FðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1 (solid line), the fifth-order real
(solid line with circles) Padé(3,3) approximant and complex modified (solid line
with down triangles), rotated (solid line with stars) and modified rotated (red doted
lines) Padé(3,3) approximants of

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1.

Fig. 3. The absolute values of FðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X
p

� 1; the most useful low-order real
Padé approximant and complex modified and rotated Padé approximants offfiffiffiffiffiffiffiffiffiffiffiffi

1þ X
p

� 1.
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