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We examine time-domain instabilities in short chains of coupled Kerr-nonlinear resonators. We show that a
large parameter region of self-pulsing or chaotic behavior can be realized. We give a detailed description of the
possible states in systems with two and three cavities, using phenomenological coupled-mode equations and
rigorous simulations. A particular geometry can exhibit a rich range of dynamics, dependent on input condi-
tions. A clear link with the linear transmission properties is shown. This system complements the studies of the
nonlinear Bragg reflector and electrons in a nonlinear lattice. Unlike the Bragg grating case, we observe wide
detuning ranges that exhibit self-pulsing without first going through a bistable transition.
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I. INTRODUCTION

Currently, two interesting evolutions take place with an
impact on nonlinear integrated photonics. First, experiment-
ers have fabricated complex designs that integrate multiple
consecutive resonators �1,2�. Second, novel material systems
are characterized, which exhibit a strong and pure Kerr-like
behavior, e.g., with negligible two-photon absorption. In par-
ticular, we note chalcogenide materials �3� and hybrid sys-
tems, e.g., silicon with a nonlinear organic material deposited
on top �4�. In this paper, we combine these two trends: we
examine the nonlinear behavior of connected Kerr resona-
tors, with a focus on temporal instabilities.

To initiate this research and keep the results tractable, we
focus first on short chains of resonators. We study these sys-
tems for the appearance of time-domain instabilities, as in-
deed the temporal behavior is not as well examined as the
frequency domain characteristics. In addition, the small num-
ber of resonators makes the structures more accessible for
near-term experiments. As possible implementations, we
consider nonlinear photonic crystal cavities, as they have
proven to be viable experimental systems �5–7�. However,
the model that we employ is more general, so it also applies
to ring resonators or Bragg cavities.

The study of temporal instabilities is important as it mim-
ics the behavior in experiments �8�. In contrast to Fabry-
Pérot cavities, one does not consider transverse instabilities
in the localized integrated cavities. However, there is a host
of other destabilizing mechanisms, even in a single cavity
�9�. A known phenomenon is the oscillating behavior when
competing nonlinearities with different signs and time scales
are present in the system �10–12�. Indeed, in semiconductors
such as silicon, the nonlinearity is quite complex because of
carrier dynamics. Possibilities for interesting dynamics show
up with resonant nonlinearities �13� or when different fre-
quencies interact during second-harmonic or third-harmonic
generation �14�.

In this paper, we are particularly interested in the appear-
ance of self-pulsing or chaos. In both cases, a constant input
signal leads to a time-varying output signal, which is peri-

odic or chaotic, respectively. The model equations in our
system lead to the discrete nonlinear Schrödinger equation
�DNLS�. In the transmission problem that we examine, this
means that we study the driven DNLS �15�. The appearance
of self-pulsing and chaotic dynamics is well known in these
kinds of systems. However, it was not well studied in this
particular geometry. In addition, it was not mapped what the
interesting regions would be for a small number of cavities,
which are most relevant for experiments. Indeed, the litera-
ture mostly focuses on a large number of equations, as these
models stem from the study of multilayer systems without
defects.

The study of temporal instabilities in nonlinear distributed
Bragg reflectors �16–18� has a particular correspondence to
the present study. Pulsing and chaos have theoretically been
described �19–21�: the oscillating output is explained by the
movement of a localized nonlinear excitation, or gap soliton,
from the front to the back. This temporal behavior or con-
vective process was also described in �22�.

These optical studies have complemented the study of
electrons in a nonlinear lattice �23,24�, which are modeled by
similar equations. In these papers, a nonlinear dynamical ap-
proach was used, which linked important features in the
transmission problem to periodic solutions of an iterated
map.

In contrast to previous studies �17�, we look closer into
the chaotic behavior of these systems, as such dynamics can
be very useful for integrated random bit generators �25� or
secure chaos-encoded optical communications �26�.

The paper is structured as follows. First we describe the
model equations and, in the two subsequent sections, we
examine in detail chains with two and three resonators, re-
spectively. Next we show the validity of the model and the
effects by a comparison with rigorous finite-difference time-
domain �FDTD� simulations on a two-dimensional �2D� pho-
tonic crystal structure. For these simulations, we employ
MEEP, a freely available software package with subpixel
smoothing for increased accuracy �27�.

II. MODEL

The particular system under study is a chain of cavities,
which are coupled by waveguide sections. As shown in Fig.*bjorn.maes@ugent.be
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1�a�, the resonators block the waveguide �28�. To model this
geometry, we employ the coupled-mode theory �CMT� as
developed by Haus and co-workers �29�. Because we use this
generic model, the observed phenomena are quite general.

For each section, we have the following equations
�30,31�:

daj

dt
= �i��0 + �� j� −

1

�
�aj + df j + dbj+1, �1�

bj = exp�i��f j + daj , �2�

f j+1 = exp�i��bj+1 + daj , �3�

for j=1, . . . ,N; with N as the number of cavities. Here d
= i exp�i� /2� /��, where � is the lifetime of the cavity and �
represents the phase that depends on the waveguide length
and the resonator mirror reflection properties. The nonlinear
frequency shift is �� j =−�aj�2 / �P0�2�, with P0 the “character-
istic nonlinear power” of the cavity �28�. In these equations,
�aj�2 is the energy in the cavity mode. �f j�2 �respectively, �bj�2�
represents the power flowing in the �single-mode� waveguide
in the forward �respectively, backward� direction. Thus,
�f1�2	 Pin is the input power, and �fN+1�2	 Ptrans is the trans-
mitted power. We assume no input from the right, bN+1=0. In
this paper, we will mainly limit ourselves to N�3.

The previous system is equivalent to a driven DNLS. To
show this structure, we eliminate the internal waveguide am-
plitudes from Eqs. �1�–�3� and obtain for N=3,

da1

dt
= 
i�1 −

1

2�
�i cot��� + 1��a1 + df1 + �a2, �4�

da2

dt
= �i�2 −

i cot���
�

�a2 + �a1 + �a3, �5�

da3

dt
= 
i�3 −

1

2�
�i cot��� + 1��a3 + �a2, �6�

with � j =�0+�� j, for j=1,2 ,3. Here �=−i / �2� sin ��. Note
how the coupling to the input and output external
waveguides is given by the 1 / �2�� loss term in Eqs. �4� and
�6�. For N�3, we simply have more equations like the
middle one �Eq. �5��. In this way, we immediately link our
study to the extensive knowledge of the DNLS �15�.

Although we discuss short finite structures, it is important
to review the Bloch modes of the infinite linear system,
which allows us to divide the parameter space into transmis-
sive and blocking bands �31�. The results are shown in Fig.
1�b�. In this paper, we define the dimensionless detuning as
�=���−�0�. We see that the band edges strongly depend on
the phase �, and this parameter will also have a strong in-
fluence on the dynamics, as discussed later.

We employ the conventional method to solve Eqs. �1�–�3�
for nonlinear steady-state �daj /dt=0� solutions: one starts
from a chosen Ptrans at the end and propagates toward the
beginning. To assess the stability and its nature, we employ
linear stability analysis, so we examine the eigenvalues of
the Jacobian. If all eigenvalues have negative real part, the
solution is stable. If there is an eigenvalue with positive real
part, this solution will evolve toward other states. If the un-
stable eigenvalue is real, we expect a steady evolution to-
ward another state. There is also the possibility of an un-
stable complex-conjugate pair. This leads to oscillatory
behavior and can result in a stable limit cycle or periodic
solution: the system exhibits self-pulsing. Apart from self-
pulsing, there is also the possibility of chaos. To examine in
more detail which state the system will evolve into, we cal-
culate the time-dependent equations by using an ordinary
differential equation solver �32�.

The case of a single cavity with input from one side and
pure Kerr nonlinearity is well known. At sufficient detuning,
the output versus input power has the typical bistable S
shape �28�. The unstable part is the negative slope section
between the twofolding points. These states will evolve into
the upper or lower stable branches, so we do not examine
these transient dynamics here.

III. TWO CAVITIES

We now examine the two-cavity case. From the previous
section, we notice that the steady-state solutions of our
model equations can be determined by three parameters: the
transmitted power Ptrans, the phase �, and the detuning �.
Therefore, to get an overview of the possible states of the
system we plot the transmission T= Ptrans / Pin in a graph of
Ptrans versus �, at a constant �. In addition, we divide the
regions into the possible dynamics. �i� Stable: all eigenvalues
of the linear stability analysis have negative real part; �ii�
bistable: there is an unstable eigenvalue which is positive
and real; �iii� self-pulsing: a complex-conjugate pair exists
with positive real part; and �iv� chaos. The “bistable” regions
correspond to the aforementioned instability in single cavi-
ties: the negative slope parts that evolve to the stable upper
or lower branches.

a1 a2

f1 f2 f3

b1 b2 b3

�

(b)

(a)

FIG. 1. �a� A schematic representation of two cavities. �b� Bloch
modes of the infinite structure; transmissive bands are shaded.
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The chaotic solutions are inside the self-pulsing regions.
To distinguish between periodic and chaotic solutions, we
determine the maximal Lyapunov exponent numerically. We
employed MATLAB code built on an implementation by Go-
vorukhin, which uses an established algorithm �33�. For a
stable periodic solution, the maximal Lyapunov exponent is
zero, for a chaotic solution this exponent is larger than zero.
Numerically, we employed a threshold of 1.5	10−4 to dis-
tinguish the two types of behavior.

An example of results for two cavities and �=0.5
 is
shown in Fig. 2. For this particular phase �, we do not ob-
serve self-pulsing and chaos. In effect, this graph looks very
similar to the single cavity case, with a large bistable win-
dow opening up at sufficient detuning and transmitted power.
However, there is a difference at the narrow bistable region
for small Ptrans��0.1P0�. This is a first indication of gap
solitonlike effects: states, or resonant trajectories, which
move into the linear gap �34�. Here the transmission quickly
drops, so the effect is not fully evolved. This suggests that
the structure does not accommodate solitons well.

For two cavities, more interesting results show up at other
� values �see Fig. 3 for �=0.2
�. A substantial self-pulsing
region shows up. There is also the possibility of chaos, as

visible by the small region in Fig. 3 around Ptrans / P0=1.45
and �=−2.15. So in this structure and parameter region, the
chaos is limited.

It is interesting to note that in many systems, the nonlin-
ear effects are most effective when the phase corresponds to
� /4 or 
 /2 �35�. For example, this often leads to switching
with the lowest power �36�. On the other hand, in this par-
ticular case with two cavities, the dynamics are limited at
�=0.5
. This becomes clearer when we examine the linear
transmission �see Fig. 4�: for �=0.5
, the transmission
peaks coalesce into one broader peak, rendering it similar to
the one-cavity case. For �=0.2
, the two transmission peaks
are separate.

The previous linear transmission discussion also provides
more insight into the nonlinear behavior. The main feature in
Fig. 3 for the transmission is the shift of the two transmission
peaks to more negative detunings, as Ptrans increases. These
two peaks explain the two bistable regions starting at Ptrans
�0.85P0, similar to the single cavity �and thus single peak�
case. Similar to �=0.5
, there is a bistable region at smaller
Ptrans related to gap solitons moving into the gap. The most
interesting region here is the self-pulsing area. Unlike the
case of the Bragg grating �17�, there is a wide range of de-
tunings ��=−2.4 to −1.6�, where self-pulsing is reachable
without first going through a bistable jump.

The previous regimes are reflected in the nonlinear char-
acteristics of Ptrans versus Pin shown in Fig. 5. For �=−3,
we observe two bistable regions. For �=−1.2, we have a
single bistable region, and this characteristic also shows the
strong limiting behavior possible in these structures �23�.
This limiting stems from the shifting of the transmission
peaks past the operating detuning. Both �=−2 and −3 show
unstable regions with positive slope. More specifically, in
these regions there is a complex-conjugate pair of unstable
eigenvalues. This leads to self-pulsing, which is proven by
the time-domain results.

Some time-domain examples are illustrated in Fig. 6,
where we assume that the input switches on at t=0 as a step
function. The self-pulsing is clear for �=−2 and Pin / P0
=1.0 �dash-dotted blue line�. The solution in solid red in Fig.
6, corresponding with �=−3 and Pin / P0=2.0, illustrates an
important aspect of the time-domain calculations. We do not
know a priori which behavior a certain input power will
result in, when there are multiple solutions possible in the
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FIG. 2. �Color online� Transmission and classification of the
two-cavity device for �=0.5
: �S� stable; �BI� bistable.
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FIG. 3. �Color online� Transmission and classification of the
two-cavity device for �=0.2
: �S� stable, �BI� bistable, and �SP�
self-pulsing and chaos.
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FIG. 4. Linear transmission T versus � of the two-cavity series
with �=0.5
 �solid� and �=0.2
 �dotted�, respectively.
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continuous-wave �cw� characteristic. Indeed in Fig. 5 for �
=−3 and Pin / P0=2.0, we observe a stable solution and two
unstable solutions, the top one of which has pulsing proper-
ties. In the time series, we indeed see that at the beginning
there are oscillations, meaning that the system approaches
the self-pulsing solution. In the end, however, the system
does settle on the constant stable solution. This is the result
for a step-function input. Other solutions may be reached by
different inputs.

The self-pulsing period can be estimated by the imaginary
part of the unstable eigenvalue from the linear stability
analysis �17�: period=2
 / Im�eigenvalue�. As an example,
the oscillating solution of Fig. 6 provides us with a period of
7.69�; whereas the eigenvalue gives 7.65�. The approxima-
tion is better if the particular oscillating solution is closer to
the onset of instability.

IV. THREE CAVITIES

For three cavities, the behavior becomes more intricate.
We map the situation for �=0.5
 in Fig. 7. In this case, the

linear transmission consists of three peaks that are closest
together at this phase but still distinguishable �see Fig. 8�.
We notice in Fig. 7 a clear detachment of one of the trans-
mission peaks into the linear gap region, which corresponds
to gap solitonlike behavior �34�.

Similar to the two-cavity case at �=0.2
, there is a sub-
stantial region with self-pulsing behavior. A narrow second
region of self-pulsing is visible in the gap. For three cavities,
in this parameter range, there is a significantly larger possi-
bility for chaos compared to two cavities. Before the onset of
chaos, period doubling is observed in the time-domain cal-
culations. We notice in Fig. 7 that the domain with chaos has
a very complex boundary, with regions of regular self-
pulsing inside.

Typical Ptrans versus Pin curves are shown in Fig. 9. For
�=−0.5, a clear self-pulsing region is available, without
bistable transitions. At larger detunings, such as �=−1.0, the
curve becomes more complex and shows a number of differ-
ent regions. The �two� negative slope regions correspond
with the nonoscillating instability; the �two� positive slope
unstable regions correspond with self-pulsations or chaos. In
these cases with multistability, the time-domain behavior is
harder to predict and control.

This is illustrated by the time-domain results of Fig. 10.
For �=−0.5, the self-pulsing solutions are regular, nearly
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FIG. 5. �Color online� Ptrans versus Pin nonlinear characteristics
for two cavities at �=0.2
 with �=−3 �solid�, �=−2 �dotted�, and
�=−1.2 �dash-dotted�. Stable �unstable� solutions are in thicker red
�thin blue�.
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FIG. 6. �Color online� Time-domain solutions for two cavities
with �=0.2
 with �=−2 and Pin / P0=1.0 �blue dash-dotted line�
and �=−3 and Pin / P0=2.0 �red solid line�.
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FIG. 7. �Color online� Transmission and classification of the
three-cavity device for �=0.5
: �S� stable, �BI� bistable, and �SP�
self-pulsing and chaos �bounded by thin yellow line�.
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FIG. 8. Linear transmission T versus detuning � for three cavi-
ties with �=0.5
.
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sinusoidal. For �=−1, the solutions become more complex,
interesting periodic, and chaotic behavior is observed.

The self-pulsing behavior in systems such as Bragg re-
flectors has been linked with the movement of gap solitons
through the structure from input to output facet �20�. Al-
though our structures are too short to fully exhibit this kind
of convective movement, we do observe that during self-
pulsing the maximum cavity strength moves from input to
output cavity. This suggests that similar ideas apply, even for
the very short chains. This is also suggested by a slightly
longer period for the three-cavity case �9.5�, blue solution in
Fig. 10� compared to the two-cavity case �7.69�, Fig. 6�.

V. FDTD SIMULATIONS

To validate the results found with CMT, we compare them
with rigorous FDTD simulations of a 2D photonic crystal, by
extending the geometry in �28� �see Fig. 11�. The lattice is
rectangular �lattice constant a� and consists of circular rods
with refractive index nhigh=3.5 placed in a lower refractive
index medium nlow=1.5. The rods have a radius r=0.25a. We
can make a line defect by reducing the radius of the rods to

r /3, which creates a waveguide. We can also make a point
defect inside the waveguide, by increasing the radius to
5r /3, surrounded by three normal rods. This creates a reso-
nant cavity. The center point defect has a pure Kerr nonlin-
earity with coefficient n2. The simulation domain is termi-
nated by a perfectly matched layer �PML� of thickness 2a on
the left and right. The unit cell is discretized by 36
	36 pixels, which is enough for convergence. The normal-
ized frequency �norm is defined as �=�norm�2
c /a�. In the
following discussion, we will always use �norm. The struc-
ture is excited with TM-polarized light �one transversal elec-
tric field component�. For this polarization, there is a photo-
nic band gap from �=0.2424 to 0.2897.

To find the resonance of the cavity, we launch a low-
power broad pulse ��=0.2615, ��=0.008� into the wave-
guide. The cavity is designed to have a transmission with a
Lorentzian shape T���=�2 / ��2+ ��−�res�2�. In this way, we
find �res=0.262087, and a Q factor of roughly �res / �2��
�400.

We model the bistable behavior by using cw signals at a
frequency �=0.261 298. To reach the bistable section of the
upper branch of the curve, we inject an extra initial pulse
together with the cw signal �28�. From Fig. 12, we see a
good agreement with the theoretical curve �28�,

Ptrans

Pin
=

1

1 + �Ptrans/P0 − ��2 �7�

for �=−3.4411. The specific value of P0 depends on the
used n2. For a realistic value n2=1.5	10−5 
m2 /W in this
geometry, it has been shown that P0 can be brought below 77
mW �28�.
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FIG. 9. �Color online� Ptrans versus Pin nonlinear characteristics
for three cavities at �=0.5
 with �=−1 �solid� and �=−0.5
�dashed�. Stable �unstable� solutions are in thicker red �thin blue�.
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FIG. 10. �Color online� Time-domain solutions for three cavities
with �=0.5
 with �=−0.5 and Pin / P0=0.3 �thick blue� and �=
−1 for Pin / P0=0.4 �thin red� and Pin / P0=0.55 �medium black�.

FIG. 11. �Color online� Geometry of a two-cavity device and
example of an electric field plot with FDTD.
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FIG. 12. �Color online� Simulations of one cavity. The crosses
represent FDTD simulations; the full line shows CMT results.
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When we couple two cavities, we get an extra degree of
freedom: the number of rods between the two cavities. This
determines the phase � and greatly influences the dynamics
of the chain. For 14 rods between the centers of the two
cavities �see Fig. 11�, we obtain self-pulsing. We obtain the
value of � by comparing the linear transmission with FDTD
and CMT and get ��0.231.

For these parameter values, CMT predicts the component
to start self-pulsing at around Pin / P0=5.52. The exact power
at which self-pulsing starts is difficult to determine with
FDTD as there can be a slow damping of the oscillations.
Therefore, we use a slightly larger Pin / P0=5.6254. In addi-
tion, the exact time signal is quite sensitive to small param-
eter variations. However, as can be seen in Fig. 13, we ob-
serve self-pulsing both in CMT and FDTD, and there is a
good quantitative agreement for �=0.2333.

VI. CONCLUSIONS

We have studied small numbers of resonators, which cor-
responds with experimentally reachable situations. To our
knowledge, these self-pulsing effects with pure Kerr nonlin-
earity have not been observed yet in integrated coupled cav-
ity devices. Our results show that the system with two or
more coupled cavities could readily provide self-pulsing be-
havior. In contrast with Bragg gratings, there are ranges of
frequencies where self-pulsing is reachable without undergo-
ing a bistable jump.

In addition, we have mapped that chaos is quite common
at low powers with three cavities. This could prove useful for
integrated random bit generators �25� or chaos communica-
tions �26�. Furthermore, the region between a few and a
larger number of resonators �31� still needs to be explored.
These optical systems inherently have a lot of control oppor-
tunities, which can help in the general study of turbulent
systems. Finally, networks like the ones presented here could
be viable for an optical realization of reservoir computing
�37�.
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