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Application of modified Padé approximant
operators to time-domain beam propagation
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We demonstrate the usefulness of the recently introduced modified Padé approximant operators for the solu-
tion of time-domain beam propagation problems. We show this both for a wideband method, which can take
reflections into account, and for a split-step method for the modeling of ultrashort unidirectional pulses. The
resulting approaches achieve high-order accuracy not only in space but also in time. © 2009 Optical Society of
America
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. INTRODUCTION
he beam propagation method (BPM) has become one of
he most widely used techniques for the study of light
ropagation in longitudinally varying optical waveguide
evices. A large number of BPM versions exist [1,2], in-
luding a wide-angle (WA) BPM based on Padé approxi-
ant operators using a new complex Jacobi iterative

CJI) method [3]. This new technique can significantly re-
uce computational efforts even if the WA beam propaga-
ion is treated in three-dimensional (3D) optical
aveguides. However, this approach assumes only for-
ard propagating waves, and thus, it is difficult to take

nto account backward propagating waves, which are in-
ispensable for the analysis of many optical components
nd devices [4].
One method usually employed to study reflected waves

s the finite-difference time-domain (FDTD) technique [5].
his technique is very powerful and versatile and has
een adapted to optical waveguide devices [6,7]. However,
he FDTD method requires a very small time step size to
ulfill the stability criterion that leads to a substantial in-
rease in the computation resources required for the
nalysis of large optical waveguides [8,9].
Recently, simple and efficient BPMs in the time domain

ave been developed for dealing with reflected waves, and
hese have been successfully employed for the analysis of
oth TE and TM modes propagating in photonic crystal
tructures [9–11]. Most of these existing TD-BPMs are
ased on the slow-wave approximation where the second-
rder derivative with respect to time was ignored [12]; if
t is included (thus resulting in wideband time-domain
ropagation), the approximate solution of this term is
ommonly obtained by the rational real Padé approxi-
ant operators [10,11]. However, as we mentioned in our

arlier efforts [3,13] these rational Padé propagators in-
0740-3224/09/122285-5/$15.00 © 2
orrectly propagate evanescent modes in the frequency
omain as their denominators gradually approach zero.
his not only leads to additional errors in the final solu-

ion, but it also causes serious instability problems. To
vercome this problem we proposed the so-called modified
adé approximant operators, which not only give evanes-
ent waves a desired damping, but also allow a more ac-
urate approximation to the wave equation than those
ased on the conventional ones [13]. In this work, the
odified Padé approximant operators are extended to ap-

roximate the wideband solution of time-domain propaga-
ion in reflective waveguides.

Besides using time-domain BPMs for dealing with re-
ected waves, these BPMs have also become widely used
echniques for the analysis of ultrashort pulses propagat-
ng (unidirectionally) in optical waveguide structures
14,15]. In this paper, we also derive a description of
odified Padé approximant operators suitable for that

pplication.

. FORMULATIONS
. Basic Equation
e start with the formation of the modified Padé approx-

mant operators for the solution of time-domain beam
ropagation methods by considering a two-dimensional
2D) scalar wave equation where the computational do-
ain is on the xz-plane [9]:

�2�

�z2 +
�2�

�x2 =
n2

c2

�2�

�t2 , �1�

here n is a refractive index profile and c is the speed of
ight in free space. From this equation, two common ap-
roaches for dealing with reflected waves and for the
odeling of ultrashort pulse propagation in wide-angle
009 Optical Society of America
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tructures can be obtained as follows in Subsection 2.B.

. Method 1: Time-Domain BPMs for Treating Reflected
aves

he formal solution of Eq. (1) with a slowly varying com-
lex amplitude is given by

��x,z,t� = ��x,z,t�exp�i�0t�. �2�

We obviously only consider waves propagating forward in
ime; the method is fully reflective since no approximation
s made in the propagation direction). By substituting Eq.
2) into Eq. (1), we obtained

�2�

�t2 + 2i�0

��

�t
= P�, �3�

here P=c2 /n2��2 /�x2+�2 /�z2�+�0
2 and �0 is the center

ngular frequency. A formal solution of Eq. (3) can be
ritten in the following well-known form [16]:

��

�t
= − i�0�1 − �1 − X��, �4�

ith X=P /�0
2. In addition, to allow numerical methods to

olve Eq. (3) effectively its approximate solution is usu-
lly obtained by the conventional Padé approximant
ethod. The conventional Padé propagators are well

nown and result from the recurrence relation with the
nitial value of �� /�t�0=0 in the following form:

� �

�t�
n+1

= − i�0

X

2

1 −
j

�0
� �

�t�
n

. �5�

For �� /�t�2, this gives us the well-known Padé (1,1)
pproximant-based wideband beam propagation formula:

��

�t
� − i�0

X

2

1 −
X

4

�. �6�

If Eq. (6) is compared to the formal solution of wave
quation given in Eq. (4), we obtain the approximation
ormula

1 − �1 − X �

X

2

1 −
X

4

. �7�

Since the operator X has a real spectrum, it is useful to
onsider the approximation of 1−�1−X by the conven-
ional Padé approximant propagation operator. Figure 1
hows the absolute value of 1−�1−X and its first-order
adé (1,1) approximant as a function of X.
However, as the denominator of the Padé (1,1) approx-

mant gradually approaches zero its absolute value ap-
roaches �, as can clearly be seen in Fig. 2. Physically
his means that the conventional Padé approximant in-
orrectly propagates the evanescent modes. To circum-
ent this problem we proposed the so-called modified
adé approximant operators [3] by using a different ini-

ial value. To apply the modified operators for the time-
omain wave equation in this work, the initial value is set
t �� /�t�0=−�0� where � is a damping parameter. For

� /�t�2 the first-order modified Padé (1,1) approximant op-
rator is given as follows:

��

�t
� − i�0

X

2

1 −
X

4�1 + i
�

2�
�. �8�

The absolute value of the modified Padé (1,1) approxi-
ant of 1−�1−X is also depicted in Fig. 1. It is seen that

ur modified Padé approximant operator (with �=2) al-
ows more accurate approximations to the true equation
han the conventional Padé approximant operator. Fur-
hermore, the conventional rational Padé approximant in-
orrectly propagates the evanescent modes as their de-
ominator gradually approaches zero while the modified

ig. 1. (Color online) The absolute values of 1− �1−X�1/2, its
rst-order standard Padé approximant �X/2� / �1−X/4� and modi-
ed Padé approximant �X/2� / �1−X/ 	4�1+ibeta/2�
� with respect
o X.

ig. 2. (Color online) The absolute values of 1− �1−X�1/2 (black
ine), its first-order standard Padé approximant �X/2� / �1−X/4�
nd modified Padé approximant �X/2� / �1−X/ 	4�1+ibeta/2�
�
ith respect to X.
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adé approximant gives the waves propagating in the
vanescent region the desired damping as clearly seen in
ig. 2.

. Method 2: Time-Domain BPMs for Modeling
ltrashort Pulses in Wide-Angle Structures
part from being successful in treating reflected waves,

hese time-domain BPMs have also found a wide-range
pplication in the analysis of ultrashort pulses propagat-
ng in wide-angle waveguides. To do so, the formal solu-
ion of the time-domain wave equation is rewritten under
he slowly varying envelope approximation as follows
14]:

��x,z,t� = ��x,z,t�exp�ikz�exp�i�0t�, �9�

ith k=k0nref, nref the reference refractive index, k0 the
acuum wavevector. Here, only waves that are propagat-
ng forward in space are retained.

By substituting Eq. (9) into Eq. (1), we obtain

�2�

�z2 + 2ik
��

�z
+

�2�

�x2 −
n2

c2 � �2�

�t2 + 2i�0

��

�t � + k0
2�n2 − nref

2 �� = 0.

�10�

n order to calculate this efficiently, a moving time win-
ow is needed. Since a pulse will eventually disappear
rom the window after a certain number of propagation
teps, the computational window should move along with
he pulse at the group velocity of the pulse envelope.
herefore, a moving time coordinate �= t-�g

−1z with arbi-
rary �g should be used and Eq. (10) can be expressed in
he following form [15]:

�2�

�z2 + 2ik
��

�z
= Q�, �11�

ith Q=n2 /c2�2 /��2+2ik0n2�1/c−1/�g��� /��−�2 /�x2

k0
2�n2−nref

2 � and k0=�0 /c. It is easy to see that Eq. (11) is
n the same form as Eq. (3). Therefore, by following the
ame steps as described in the above section one can eas-
ly obtain the modified Padé approximation to the time-
omain wave equation.

. EXAMPLES
n this section, we employ the modified Padé (1,1) approx-
mant operator for the two methods developed in the pre-
ious section, and numerically compare the results to
hose obtained by the conventional Padé (1,1) operator.
or verification, we employ two different solvers to solve
he time-domain Padé (1,1) approximant-based propaga-
ion equation effectively including the biconjugate gradi-
nts stabilized method (Bi-CGSTAB) [17], and the CJI
ethod [3].

. Optical Grating
e consider an optical grating as shown in Fig. 3, where

he number of grating periods is eight and the guiding
ore thickness is 0.3 �m. Obviously, reflections are impor-
ant in such a structure, so we use the method described
n Subsection 2.B. The input pulse has a transverse pro-
le � �x� corresponding to the fundamental mode of the
0
lanar waveguide and a Gaussian profile in the longitu-
inal direction. At time t=0, it is given as

��x,z,t = 0� = �0�x�exp�− � z − z0

w0
�2�exp
− ikeff�z − z0��,

�12�

here keff is the effective propagation constant, z0 is the
enter position of the input pulse, and w0 is the spot size.
ere, we choose z0=1 �m, w0=0.5 �m, and carrier center
avelength 	=1.5 �m, respectively. The spatial distribu-

ion of the pulse at time t=0 is superimposed on Fig. 3.
The reflected pulse is monitored inside the waveguide

t a certain reference point, which is indicated in Fig. 3.
igure 4 shows the evolution of the field profile at that
eference point. In order to show the benefits of the modi-
ed Padé (1,1) approximant operator, we calculate as a
unction of time the relative error (RE) of the field profile
t the reference point defined as

RE = � ��p

t − �p

0.1 fs�2

��p
0.1 fs�2 �1/2

, �13�

here �p

t is the field profile at the reference point ob-

ained with various time step resolutions and �p
0.1 fs is the

eference solution obtained with the smallest time step
esolution used of 0.1 fs. Figure 5 shows this error both
or the conventional Padé (cPade) and the modified one

ig. 3. (Color online) Optical grating with modulated refractive
ndex with input pulse at time t=0 superimposed.

ig. 4. Time evolution of the field monitored at the reference
oint.
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mPade) with various time step resolutions (0.5 fs, 1 fs,
fs). The relative errors obtained by TD-BPM based on

he modified Padé (1,1) operator are much smaller than
hose obtained by the conventional one. This is attributed
o more accurate approximations to the wave equation of
he modified operator. It leads to the conclusion that us-
ng the modified Padé operator allows for propagation
ith larger time steps for a given accuracy, which is ben-
ficial for runtime.

. Y-Branch Waveguide
s a second example, we look into the simulation of ul-

rashort pulse propagation in a Y-branch waveguide
tructure. Here, reflections are negligible, but the prob-
em is wide-angle, so we use the method described in Sub-
ection 2.C. In this waveguide the initial waveguide is
plit into two 10-degree tilted waveguides. The guiding
ore has an index of 3.6 and has a thickness 0.25 �m
hile the refractive index of the cladding is 3.24, as

hown in Fig. 6, and the wavelength is 	=1.55 �m.
The input source is given by

��x,�� = �0�x�exp�− � c� − c�0

cT �2� �14�

ith �0�x� being the fundamental mode of the planar
aveguide and �0=60 fs, T=20 fs as shown in Fig. 7(a).

ig. 5. (Color online) Relative error of the field monitored at the
eference point calculated by the modified gray curves (red on-
ine) and conventional black curves (blue online) Padé-based TD-
PM with various time steps using the field at 0.1 fs as a
eference.

Fig. 6. (Color online) 2D Y-branch waveguide.
he same figure shows the ultrashort pulse after propa-
ating 20 �m calculated by the TD-BPM based on the
onventional (b) and the modified (c) Padé (1,1) operator.
e can see that the results of the conventional method

re much more noisy compared to those of the modified
ethod. To quantify the relative error this time we use

he following formula:

RE = �� � ��
z − �0.02 �m�2dxd�c��

� � ��0.02 �m�2dxd�c�� �
1/2

, �15�

here �
z are the output pulses obtained for various
ropagation steps and �0.02 �m is the reference pulse ob-
ained at a propagation step of 0.02 �m. In Table 1 we
how these relative errors for pulses calculated by the
onventional and the modified Padé-based TD-BPM with
arious propagation step resolutions (0.2 �m, 0.1 �m,
.05 �m). It is clearly seen that the relative errors ob-

ig. 7. (Color online) Time evolution of transverse input field (a)
nd output fields after propagating 20 �m calculated by TD-BPM
ased on the conventional (b) and the modified (c) Padé(1,1) ap-
roximant operator in the Y-branch waveguide. Each part of the
gure shows the moving time window of width 120 fs used to
onitor the pulse. The local waveguide geometry has been super-

mposed as a guide to the reader.

Table 1. Relative Error (%) of Ultrashort Pulses
Calculated by the Modified and Conventional

Padé-Based TD-BPM with Various Propagation
Steps Using a Pulse Modeled with 0.02 �m Step as

a Reference

Operators

Grid Size ��m�

0.2 0.1 0.05

Modified Padé 47.9 4.78 3.22
Conventional Padé 69.1 22.81 8.61
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ained by the modified Padé-based TD-BPM are much
maller than those obtained by the conventional one for
he same propagation step. Thus, TD-BPMs based on the
odified Padé operators can offer the advantage of using

arger propagation steps than the conventional method
or the same accuracy, with an associated reduction in
omputational effort.

. CONCLUSIONS
he modified Padé approximant operators have been ex-
ended to the solution of wideband time-domain wide-
ngle beam propagation methods. These modified propa-
ators are promising for more accurate approximation to
he time-domain wave equation than conventional ap-
roximant operators. Via certain examples chosen here,
e showed this both for the propagation of an optical
eam in a grating, as well as for the propagation of ul-
rashort pulses in wide-angle waveguides. In both cases,
imilar accuracy as compared to the traditional method
as obtained, but with much larger step size.
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