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Dynamics of coupled cavities
for optical reservoir computing
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' University of Ghent, Photonics Research Group, Sint-Pietersnieuwstraat 41, 9000 Ghent,
Belgium

A reservoir network is a recurrent neural network with random connections. It maps some
input signals or stimuli 1o a high-dimensional state. A weighted sum is made of all states,
and those weights are then adjusted until they minimize a set of input-output signals
(called the training set). Reservoir networks can solve tasks such as signal classification,
signal prediction, ... One of the major challenges in the domain of optical reservoir
computing is designing a network of optical nodes and designing appropriate readout
methods. Theoretical study had revealed several candidate-optical components Sfor these
purposes.

Introduction

Reservoir computing is used to solve complex tasks such as speech recognition and deci-
phering hand-writing. They can also learn how to drive actuators to accomplish complex
motions like moving a robot hand in a desired direction. Instead of programming com-
plex algorithms, reservoir computing works in a way much more related to how the brain
works. At this point, this has been successfully demonstrated in software, and our goal is
to make a platform for reservoir computing using photonics technology [1]. This allows
us to make very fast reservoirs with low power consumption.
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Input Reservoir Output
Figure 1: Layout of a reservoir network. Different time signals are shown: u(t) (input),
x(t) (the reservoir states), and y(¢) (outputs).
Figure 1 shows a typical reservoir. All arrows indicate a connection with a certain weight,

all of them are random and fixed unless noted otherwise. For this reservoir, there are three
types of connections:
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Dynamics of coupled cavities for optical reservoir computing

1. From the input u(r) to the reservoir (blue). Examples of input data are: optical
signals to be routed or regenerated, speech data, sensors from a moving robot, . ..

2. Inside the reservoir (states x(¢)) between neurons (black). The reservoir is a higly
nonlinear dynamical system. The topology can be sparse (low amount of connec-
tions) or dense (a lot of connections). Changing the weights of the connections can

make the system stable or unstable. The reservoir performs best if it is on the edge
of chaos.

3. From the reservoir to the output, y(¢) (red). The weight of these arrows can be
adjusted, which is called the training process. It is also possible to feed back

information from the output into the reservoir, which is used for example in gener-
ation tasks.

In the modeling section, we briefly write down the equations describing the reservoir.

Basic Building Blocks

Using Silicon on Insulator (SOI) technology, we can create a multitude of components.
Some of them, which can be used in reservoir computing, are listed in figure 2. Note that
this list is far from complete.

Active

Figure 2: Basic building blocks for an optical reservoir network. OA = Optical amplifier.
Blue (full) arrows indicate input, red (dashed) arrows indicate output, and dotted lines
show the direction (a) or reflections (b) and (d) of the light inside the component.

They can be categorized in different classes:
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e Passive or active. Although active components are easier to tune close to the chaotic
regime, they are in general more difficult to fabricate because they need more pro-
cessing steps. Here, we limit ourselves to passive components because they are
easier to model and fabricate.

e Resonator type: standing wave or traveling wave. Standing wave-type resonators
(mirror cavity, photonic crystal cavity, lasers) usually output power to both sides’,
the traveling wave outputs light along couplers in the direction in which the wave
is propagating.

It has been shown in theory (see [1]) that semiconductor optical amplifiers in some cases
perform better than software-based reservoirs. This is mostly because the equations that
describe the SOAs are much more dynamic than the usual software reservoirs and they
increase the state space dimensionality by adding a new parameter, namely the phase of
the light.

The potential advantages of passive components lead us to investigating photonic crystal
cavities and optical ring resonators. To enhance the nonlinearity, we can use a coating
layer with a high nonlinearity, such as chalcogenides and polymers [3].

Modeling
To describe the reservoir we use the following equations in continuous time:
dx(t
0 pwio.x0.0 m
Y(t) = Wres,nulx(t) (2)

x(t) are the states of the reservoir, u(t) is the input, and y(¢) is the output. The function
g (u(t),x(t),t) can be quite complex and depends on the used models. It describes the
dynamics of the optical reservoir, in which the states can be different variables, such as
optical power, temperature, charge carrier density, ... To analyze the performance of the
optical reservoir, we use a known dataset (the training set) of inputs and desired out-
puts. The inputs u(t) are fed into the network, and the reservoir states x(t) are calculated
using equation (1). We then use the reservoir toolbox {4] to find the optimal weights
W es.0u> 80 that the output y(¢) is close to the desired output. The reservoir is then tested
using a new dataset (the test set). The reservoir performs well if the output is again
close to the desired output.

Photonic crystal cavities are modeled using coupled mode theory. This theory has been
validated through rigorous FDTD-simulations [2]. The phenomenological model includes
parameters such as: resonance frequency of the cavities, phase difference between 2 cav-
ities, characteristic power of a cavity, and detuning from the resonant frequency.

Simulation Results

Before we investigate big topologies, we make a rigorous analysis of some small topolo-
gies. This helps us in understanding and controlling the dynamics of the reservoir.

"Lasers can be designed to output to both sides.
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The used topology is a concatenation of three photonic crystal cavities. It seems that
most of the parameters have a great influence on the dynamics. As an illustration, we
change the input power P, and observe the output power, see figure 3. Depending on the
input power, one can distinguish regions of stability, self-pulsing and chaos. It becomes

increasingly difficult to predict the regions of stability and instability if the number of
cavities increases.

e nan
PP P =400
' 00
354 ; |Stable
: -
g - '
a H p =
g . PP =207 } ;
5 {Chaos _ ;
Tiag] e e s e }
g 2 P /P =137
3
o
s 15
O
osF .

0 0.02 0.04 0.06 0.08 0.1 a1z 0.14 0.16 ¢.18 02
Time (ns}

Figure 3: Optical power in some of the cavities. Different input powers show different
regimes

Conclusion

Optical reservoir computing gives several huge advantages over software-simulated reser-
voir networks. They are very power efficient with respect to software reservoirs (measur-
ing instead of simulating), and they are much faster. Using simplified models we can
simulate the behaviour of passive optical networks and analyze them using a reservoir
toolbox. This is the first step prior to creating the components.
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