
Comparative Assessment of Time-Domain Models of Nonlinear 
Optical Propagation 

Khai Q. Le1,2*, Harshana G. Dantanarayana2, Elena A. Romanova3, Trevor Benson2, and Peter 
Bienstman1 

1Photonics Research Group, Department of Information Technology, Ghent University, B-9000 Ghent, Belgium 
2 George Green Institute for Electromagnetics Research, University of Nottingham, NG7 2RD Nottingham, UK 

3 Saratov State University, Astrakhanskaya 83, 410012 Saratov, Russia 
E-mail: khai.le@intec.ugent.be 

ABSTRACT 
We present a comparative assessment of time-domain approaches for modelling nonlinear optical propagation, 
focussing on a finite-difference time-domain beam propagation method (TD-BPM) and the rigorous 
transmission line modelling (TLM) method. The assessment is carried out on the basis of reflection and 
transmission of non-stationary light beams propagating through the junction of linear and nonlinear waveguides. 

1. INTRODUCTION 
The availability of laser sources generating high-intensity femtosecond optical pulses has recently inspired 
tremendous research interest in the study and elaboration of novel guiding structures and materials for nonlinear 
optics applications. In order to study the spatiotemporal dynamics of femtosecond laser pulses propagating in a 
Kerr-type nonlinear medium, various treatments have been proposed including those based on the generalized 
nonlinear Schrodinger equation (GNLSE), the finite-difference time-domain (FDTD) method and the 
transmission line modelling (TLM) method [1]. 
 A GNLSE-based method is usually feasible when modelling the propagation of optical pulses whose duration 
is more than several periods of oscillations of the carrier frequency. However, the main limitation of the method 
lies in the paraxial approximation to the wave equation under the slowly varying envelope approximation 
(SVEA) where the second-order derivatives in the wave equation are ignored.  

The FDTD and TLM methods are well-known rigorous time-domain techniques providing reliable conduits for 
comparisons. The main difference between these two widely used time-domain techniques is the layout of the 
time-stepping and the unit cell process. In the TLM method, the fields are solved at the same time instant at the 
centre of the TLM cell resulting in a straightforward solution of nonlinear equations, whereas in the FDTD 
method there is a separation of half a space step and half a time step between the electric and magnetic fields. 
However, these methods require a very small time step size to fulfil the stability criterion; this leads to a 
substantial increase in the computation resources required, especially for the analysis of long lengths of optical 
waveguides.  
Recently, simple and efficient BPMs in the time domain have been developed [2,3]. These deal with reflected 
waves, and have been successfully employed for the analysis of both TE and TM-modes propagating in photonic 
crystal structures. The time-domain BPMs allow higher time step size than TLM and FDTD (thus resulting in 
reduced computational efforts) and achieve high-order accuracy not only in space but also in time. In this paper, 
we present a comparative assessment between time-domain BPMs and the other existing time-domain methods 
by investigating the reflection and transmission of the non-stationary light beams propagating through the 
junction of linear and nonlinear waveguides. 

2. WB-FDTD-BPM 
A detailed description of GNLSE-based and TLM methods was already presented in [1]. For time-domain BPM, 
we start with its formulation by considering a two-dimensional (2D) scalar wave equation where the 
computational domain lies in the xz-plane: 
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Here n is a refractive index profile and c is the speed of light in free space. The formal solution of Eq. (1) with a 
slowly varying complex amplitude is given by 
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We obviously only consider waves propagating forward in time; the method is fully reflective since no 
approximation is made in the propagation direction. By substituting Eq. (2) into Eq. (1), we obtain  
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cP  and 0ω  is the centre angular frequency. From this equation, its wide-

band solution can be obtained by various approximate approaches. Among those, Padé approximant operators 
have become one of the most commonly used techniques. Recently, we have demonstrated that the use of the 
modified Padé approximant operators can offer the advantage of using larger propagation steps than the 
conventional Padé operators for the same accuracy, with an associated reduction in computational efforts. For 
more details on this approach, we refer to [4]. Here the TD-BPM employed is based on a Padé(1,1) approximant 
operator. 

For propagation in a material having instantaneous Kerr nonlinearity, the refractive index can be expressed as 

);,,( 2ψtzxnn = . (4) 

Since it depends on the intensity of the field, an iterative algorithm is included for efficiently evaluating the 
nonlinear refractive index. The solution at the forward step is recalculated with the modified nonlinear refractive 
index, and the scheme is continued until the solution at the forward step converges. 

3. Results and discussion 
In this section, we perform a comparative assessment of the time-domain methods mentioned above by the 
simulation of the excitation of a nonlinear planar waveguide by its linear mode. The structure examined is 
shown in Fig. 1 where the linear and nonlinear waveguides of the junction have the same core thickness d and 
linear refractive index profile. The problem is reduced to the consideration of a TE-polarized non-stationary 
light beam and instantaneous Kerr nonlinearity. The initial spatiotemporal distribution in the linear waveguide is 
taken as a Gaussian pulse in time and a linear fundamental mode in the transverse plane at wavelength 

53.10 =λ µm. 

 

Figure 1. Junction of linear and nonlinear planar waveguides. 
 

As a reference parameter for the nonlinear propagation, we use nKI0 , where I0 is the peak intensity of the input 
pulse and nK is Kerr nonlinear coefficient. This parameter is dimensionless and combines both nonlinear material 
properties and the highest beam intensity. It determines the maximum value of the nonlinear part of the real 
refractive index induced by the high-intensity light beam in the nonlinear material with Kerr nonlinearity. 

In the comparative assessment, we only consider short propagation distances in the nonlinear waveguide and 
material dispersion effects are ignored. The non-stationary light beam propagating is simulated by employing a 
uniform transverse computational grid over the space (-X2:X2) so that the spatial distribution of the electric field 



at a given moment is calculated. As an output parameter the normalized energy of the pulse propagating in the 
nonlinear waveguide is evaluated as: 
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where for reflection (Rn) Z1=0 and Z2=Z0 and for transmission (Tn) Z1=Z0 and Z2=∞. The transverse integration 
is taken over the waveguide core (x<|X1|), or the full range (x<|X2|) within the moving computational frame. 

In this work, results are calculated for two pulse durations (18 and 36 fs) and are shown in Figs. 2 and 3. The 
pulse is launched in the linear waveguide at time t=0, and centred 10 µm away from the linear and nonlinear 
boundary. The reflected and transmitted energies are evaluated when the transmitted pulse just resides fully in 
the nonlinear waveguide. 

From the numerical simulations (results not presented here), we observed that low intensity pulses propagate in 
the cladding at different angles to the waveguide axis in the backward and forward directions. Some part of the 
reflected radiation is confined in the linear waveguide and propagates in the backward direction in the core, the 
pulse duration being less than that of the initial pulse. The reflection coefficient calculated (the total normalized 
energy reflected by the junction R2) increases with nKI0 and does not depend on pulse duration within each 
method as seen in Fig. 2a. The set of results calculated by WB-FDTD-BPM and TLM show a slight difference 
because of the low order Padé(1,1) approximant operator of the TD-BPM. The agreement between results could 
be improved by using higher order Padé approximant operators [2]. The distribution of the reflected radiation in 
the core depends on both nKI0 and the pulse duration, as shown in Fig. 2b. The slight dependency in this 
reflection coefficient on pulse duration is due to the fact that with an increase in pulse duration a greater part of 
the initial pulse energy is scattered into the cladding. 

 

 
Figure 2. (a) Total reflected energy R2(t) and (b)  reflected energy in the core R1(t). Pulse durations 18 fs 

(solid lines) and 36 fs (dashed lines). 

 



 

 

Figure 3. (a) Total transmitted energy and (b) transmitted energy in the core. Pulse durations 18 fs (solid 
lines) and 36 fs (dashed lines) 

The energy T1 of the forward propagating pulse in the core of the nonlinear waveguide increases with an 
increase in nKI0 due to the self-focusing effect (Fig. 3a). This is accompanied by a decrease of the total 
transmitted energy T2 due to radiative losses, as seen in Fig. 3b. For a given value of nKI0 the normalized 
transmitted energy in the core decreases with an increase in initial pulse duration. This may be explained by the 
fact that there is a difference in the initial pulses’ energy. In Fig. 3 the dashed lines correspond to a pulse 
duration twice that of the solid lines; this means a two-fold increase of the initial energy. In general, the TLM 
results show greater spatial variations of the light beam in the process of self-focusing in comparison with the 
TD-BPM results. There exists a small difference between the transmitted energies calculated by the FDTD-BPM 
and TLM methods. This, we believe, is due to the low order approximation in bandwidth of the Padé(1,1) 
FDTD-BPM method used. The GNLSE scheme used is not a reflective one and total forward propagating 
energy remains constant. 

4. CONCLUSIONS 
In this paper, numerical time-domain techniques have been employed to study the excitation of a nonlinear 
planar waveguide by a non-stationary light beam. TLM is already established as a rigorous technique to model 
transmitted and reflected beams.. However, it requires a very small time step (Courant condition) and thus 
significant computational effort is needed. The FDTD-BPM provides an attractive alternative numerical 
technique for nonlinear optical analysis and even with a Padé(1,1) approximation in time gives a good 
improvement over the GNLSE-based approach. 
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