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Wide-angle scalar beam propagation methods (BPMs) for effective
modelling of optical propagation in three-dimensional (3D) wave-
guides are usually limited to the low-order-accurate Padé(1,1) approxi-
mant. Presented is a 3D wide-angle scalar BPM based on higher-order
Padé approximant operators which is factored into a series of simpler
first-order Padé(1,1) approximants. This results in a multistep
method where each step can be cast in terms of a 2D Helmholtz
equation with source term, which can be treated accurately and effec-
tively by the new complex Jacobi iterative technique.

Introduction: Algorithms for accurate modelling of optical propagation
in 3D waveguide structures are critical for the design of photonics
devices. One of the most widely used techniques for the study of 3D
optical waveguide devices that vary slowly in the propagation direction
is an alternating-direction implicit (ADI) finite difference (FD) beam
propagation method (BPM) [1]. However, this method is only first-
order-accurate in the propagation step size and higher-order methods
are thus required for acceptable accuracy if wide-angle (WA) or non-
paraxial propagation is needed. Efforts have been made to relax the
limitations for WA simulations. A 3D multistep horizontal WA-BPM
based on the generalised Douglas scheme, together with an ADI
scheme was developed in [2]. However, the WA propagator is only a
Padé(1,1) approximant operator. Recently, Ma and Keuren [3] presented
a new 3D WA-BPM based on Hoekstra’s scheme, which does not
require the splitting of the Fresnel wave equation or use of an ADI
method. By using a technique to shift the simulation window to
reduce the dimension of the numerical equation and a threshold tech-
nique to ensure further its convergence, this approach shows accuracy
and effectiveness and also enables one to develop a higher-order Padé
approximant-based WA-BPM. However, the resultant propagation
scheme can be very slow if either the problem size is large or the struc-
ture or boundary conditions are changing as the propagation proceeds,
requiring frequent reinversions of the matrix. To circumvent this
problem, we previously presented an effective 3D WA-BPM using the
new complex Jacobi iterative (CJI) technique that is very well-suited
for large problems [4]. However, this technique is also only based on
a low-order Padé(1,1) approximant.

Several years ago, a 2D WA-BPM based on a higher-order Padé(3,3)
approximant operator was reported. The beam propagation equation is
expressed as factors of the first-order Padé(1,1) approximant-based
equation, thus leading to the simplified multistep algorithm [5]. Since
each component step could be described in a tridiagonal matrix form,
it is usually solved by the well-known direct matrix inversion (DMI).
However, the method was originally limited to 2D structures owing to
the low effectiveness of DMI. In this Letter, we overcome this
problem by presenting a 3D multistep WA scalar BPM based on a
higher-order Padé(3,3) approximant operator where each 3D component
step is cast in terms of a 2D Helmholtz equation with source term, which
can be effectively solved by the new CJI method. The effectiveness of
this iterative technique for WA-BPM is demonstrated in comparison
with the traditional DMI method.

Formulations: Modified Padé approximant operators for WA-BPM: The
scalar Helmholtz equation obtained using the slowly varying envelope
approximation is given by [4]
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with k ¼ k0nref, n is the refractive index profile, nref the reference refrac-

tive index, and k0 is the vacuum wavevector. Hadley [6] proposed the
rational approximation of WA beam propagation using the following
recurrence relation:
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For initial value of @=@zj0 ¼ 0, this gives us the well-known Padé(m,n)
approximant-based WA beam propagation formula as follows:
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where N(m) and D(n) are polynomials in P. If (3) is compared with a
formal solution of (1) written in the well-known form
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where X ¼ P=k2, we obtain the approximation formula
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However, we recently presented a modified Padé approximant of the WA
propagator by using the same recurrence relation (2) with a different
initial value of @=@zj0 ¼ �kb (b . 0 is a damping parameter). The
resulting approach not only allows a more accurate approximation to
the true Helmholtz equation than the Hadley(m,n) approximant but
also gives evanescent modes the desired damping as shown in Figs. 1
and 2, respectively. It is obvious that the higher the Padé approximant
is, the more accurate is the approximation to the true Helmholtz
equation.
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Fig. 1 Absolute values of (1þ X)1/2 2 1 (solid line), standard and modified
Padé(1,1) and Padé(3,3) approximant of (1þ X)1/2 2 1 with respect to X
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Fig. 2 Absolute values of (1þ X)1/2 2 1 (solid line), standard and modified
Padé(1,1) and Padé(3,3) approximant of (1þ X)1/2 2 1 with respect to X

3D multistep method for WA-BPM: By using the standard Padé(N,N)
approximant operator, the scalar Helmholtz equation may be decom-
posed into an N-step algorithm for which the kth partial step takes the
form [5]

fnþk=N ¼
1þ a�k P
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a�k is the complex conjugate of ak . This form also holds for those based
on our modified Padé(N,N) approximant operator, but with different
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coefficients ak and a�k . For example, with N ¼ 2, we obtain
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It is obvious that the modified Padé approximant reduces to the standard
Padé approximant when we set b ¼ 0. From (6), it is clearly seen that
each partial step is a simple Padé(1,1) approximant-based 3D WA
beam propagation equation. For beam propagation of wave profiles of
a 2D cross-section, each 3D propagation equation can be recast in
terms of a 2D Helmholtz equation with source term and the effective
absorption coefficients appearing in these equations are relatively
high. This can lead to rapid convergence of the new complex Jacobi
method. For more details on this approach, we refer to [4].

Benchmark results: That higher-order Padé(3,3) approximants yield
more accurate results was already shown in [6]. There, however, 3D
methods were not practical in view of the slowness of DMI. To show
the effectiveness of the higher-order Padé(3,3) approximant-based
WA-BPM using the new CJI method compared with those of traditional
DMI, we performed several benchmarks on 3D optical waveguide struc-
tures. The beam propagation equation based on the Padé(3,3) approxi-
mant is expressed as factors using Padé(1,1) approximants. Then each
is recast in terms of a 2D inhomogenous Helmholtz equation. The simu-
lated examples are Gaussian beam propagation in a 3D straight rib wave-
guide and guided-mode propagation in a Y-branch rib waveguide [4]
and are all run on a notebook PC using Matlab.

The width and height of the straight rib waveguide are w ¼ 2 mm and
h ¼ 1.1 mm, as in Fig. 4 of [7]. The guiding core has an index nf ¼ 3.44
and a thickness t ¼ 0.2 mm while the refractive index of the substrate
and of the cover is ns ¼ 3.4 and nc ¼ 1, respectively. The Gaussian
beam with a waist radius w0 ¼ 0.3 mm has been injected into the rib
waveguide at wavelength l ¼ 1.55 mm. Owing to the large memory
required for DMI, the small computational window of 2 � 2 mm is dis-
cretised with a grid size of Dx ¼ Dy ¼ 0.1 mm, and the short path length
of 2 mm is discretised with a propagation step size Dz ¼ 0.1 mm.

For a Y-branch, the initial rib waveguide is split into two 58 tilted
waveguides. The longitudinal dimension is h1 ¼ 1 mm. The other struc-
ture parameters are the same as the above straight rib waveguide. The
fundamental TE mode of the ridge waveguide of width w ¼ 2 mm at
1.55 mm wavelength is used as the excited field at z ¼ 0. The propa-
gation step size is Dz ¼ 0.1 mm.

The resulting runtimes of the 3D WA-BPM using the DMI and the
CJI method are listed in Table 1. It is clearly shown that the runtime
of the iterative method is substantially lower than that of the DMI
method. For large problems requiring very large storage space and
ELECTRON
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also for structures with a long path length with a small propagation
step size that require frequent matrix inversions, the DMI technique is
numerically very intensive. In contrast, for typical choices of kDz the
CJI technique offers rapid convergence and shorter runtimes.

Table 1: Quantitative comparision of runtimes of direct matrix
inversion and complex Jacobi iteration for WA-beam
propagation in waveguide (WG) structures

Structure 3D

Method Straight rib WG Y-branch rib WG

DMI 550.2 s 769.7 s

CJI 35.1 s 100.8 s

Conclusion: A 3D WA-BPM based on higher-order modified Padé
approximant operators using the new complex Jacobi iteration has
been developed. The solution technique results in higher accuracy
than our previous approach. The excellent effectiveness of this new
iterative method in terms of shorter runtime has been demonstrated
compared with those of the traditional direct matrix inversion.
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