the intensity ratios, the resonance shifts at these vapor concentrations are recorded from the MRR through-port. Fig. 4(a) depicts the average channel intensities as a function of vapor concentration, and figure 4(b) shows the intensity ratios calculated at the corresponding measured resonance shifts. The solid curve in figure 4(b) is an exponential fit to the ratios between channels 2 and 3. As observed in fig. 4, a fairly smooth transition from a pair of adjacent channels to the next pair is readily achieved signifying a good overlap between neighboring channels. More interestingly, the third channel emerges to take part in the play as the intensity ratio between the first two channels begins to fall below 0.2, which is comparable with the simplified theoretical estimate for a 2nm FWHM AWG as shown in fig. 1. The FWHM of the resonance measured at the MRR through port is less than 50pm. While our on-chip sensor-interrogator system is very suitable for highly sensitive gas sensors as demonstrated in this work, it can also be used to detect small resonance shifts. From the trend shown in fig. 4(b), resonance shifts ranging from 50pm to 800pm should be readily interrogated with the ratio between just two channels.

![Graph](image)

Fig. 4. (a) average intensities measured from three channels at different ethanol vapor concentrations. (b) calculated intensity ratio as a function of resonance shifts corresponding to vapor concentrations shown in fig (a) with an exponential fit to ch2:ch3 (solid line)

Conclusions

We demonstrate that a compact on-chip AWG spectrometer can be used to interrogate resonance shifts from MRR sensors. An SOI MRR ethanol vapor sensor is interrogated by a 200GHz AWG designed to have strongly overlapping output channels. Such an on-chip interrogation system presents itself as an attractive solution to the current interrogation challenges, and opens opportunities for low cost and compact implementation of MRR based sensors.

References

Modelling of All-Optical Signal Processing Using SOI PICs with Amorphous Silicon

P. K. Pal and G. Morthier

Ghent University, Department of Information Technology, Sint-Pietersnieuwstraat 41, Ghent, Belgium

A simulation model is presented which is used for the simulation of the 2R regeneration of non-return to zero (NRZ) signals and the format conversion from NRZ to binary phase shifting keying (BPSK) signal. The model is based on recent experimental investigations of the non-linear Kerr effect and self-phase modulation (SPM) in an amorphous silicon waveguide. The model also includes non-linear processes such as two-photon absorption (TPA) and free carrier absorption (FCA) of the silicon waveguide.

Introduction: During the last few years, all optical signal processing has been drawing more attention in higher bandwidth optical communication (40Gb/s and above), because signal regeneration, multiplexing/demultiplexing, format conversion using high speed electro-optical conversions are extremely costly, bulky and also limited in data rate. All optical signal processing includes optical signal regeneration, wavelength conversion [1, 2], optical time division multiplexing, all optical flip-flops and optical logic. Silicon on insulator (SOI) photonic integrated circuits (PICs) have many advantages such as low loss, high power confinement and power density in the communication wavelength range, high non-linear effects and compatibility with CMOS fabrication technology. Amorphous silicon (a-Si) and hydrogenated amorphous silicon on a SOI, have many advantages over crystalline silicon (c-Si) such as high Kerr-effect, low non-linear absorption and small linear loss. Non-linear effects based on the Kerr effect such as Self-phase modulation (SPM) and Cross-phase modulation (XPM) are useful for all optical signal regeneration, multiplexing, conversion and signal processing.

NRZ 2R signal regeneration: The all optical 2R regeneration in an amorphous silicon (a-Si) interferometric Mach-Zehnder structure has been simulated for an intensity modulated non-return to zero (NRZ) signal. The performance of the output signal from the 2R regenerator, such as extinction ratio (ER), Optical Signal to Noise Ratio (OSNR) was studied for different input powers, bit rates and wavelengths. The scheme has been simulated with different 10 Gb/s NRZ pseudo-random binary data sequences (PRBS).

![Diagram](image)

Fig. 1. Block diagram of 2R regeneration of NRZ signal.
NRZ to BPSK generation: BPSK (or QPSK, DPSK, DPQPSK etc.) signals have many advantages over RZ or NRZ coded signals for transmission. In a BPSK signal the amplitude value remains constant during the transmission and only the phase value changes between the two phases 0 to 180°. NRZ signal to Binary Phase Shifted Keying (BPSK) conversion could be done by a 2R regeneration of the NRZ signal and followed by Self-Phase Modulation (SPM) through an a-Si waveguide since the intensity dependence of the refractive index of an a-Si leads to SPM-induced non-linear phase shift.

![Block diagram of NRZ to BPSK signal generation](image)

Fig.2. Block diagram of NRZ to BPSK signal generation.

In an approximation where the dispersion value is considered to be very small, the SPM induced maximum phase-shift [5] can be calculated as:

$$\Phi_{\text{NL, max}} = YP_0 L_{\text{eff}}$$

where $$\Phi_{\text{NL, max}}$$ is the maximum phase shift,

Y is the non-linear parameter of the a-Si waveguide,

$$P_0$$ is the peak power of the input signal,

$$L_{\text{eff}}$$ is the effective length of the a-Si waveguide and is given as $$L_{\text{eff}} = \left[1 - \exp(-\alpha L)\right]/\alpha$$

where $$L$$ is the physical length of the waveguide and $$\alpha$$ is the linear absorption loss.

The EDFA gain is been adjusted in such a way to have a maximum phase shift of 180° or π as the maximum phase shift depends on the non-linear parameter, the input-peak power and the physical length and the linear absorption coefficient of a-Si.

The non-linear loss of the a-Si waveguide are two photon absorption (TPA) and free carrier absorption (FCA) [3,4]. The intensity I of light propagating in a waveguide with linear loss $$\alpha$$ and TPA coefficient $$\beta_2$$ will vary non-linearly with the distance z traveled along the waveguide according to

$$\frac{dI}{dz} = -\alpha I - \beta_2 I^2$$

From the above equation, the reciprocal transmission 1/I (input intensity/output intensity) can be obtained as

$$1/I = \exp(\alpha L) (I_{\text{eff}} / A_{\text{eff}}) \beta_2 P_0 + \exp(\alpha L),$$

where $$I_{\text{eff}}$$ is the effective length and $$\alpha$$ is the linear loss.

Including the free carrier contribution, the free carrier density $$N_c$$ is determined by the rate equation:

$$\frac{dN_c}{dt} = \frac{\beta_2}{h\nu} \left| I(z,t) \right|^2 - \frac{N_c(z,t)}{\tau_c}$$

where $$\tau_c$$ is the carrier lifetime, $$A_{\text{eff}}$$ is the effective cross sectional area and $$\nu$$ is the angular frequency of the carrier wave.

A propagation equation describing the temporal evolution of the intensity profile can be represented as:

$$\frac{\partial I(z,t)}{\partial z} = -\alpha I(z,t) - \beta_2 \left| I(z,t) \right|^2 - \sigma N_c(z,t) I(z,t)$$

where $$\alpha$$ is the linear loss and $$\sigma$$ is the FCA coefficient.

Table of the parameter values used in the modeling:

<table>
<thead>
<tr>
<th>Parameter of a-Si:</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>L</td>
</tr>
<tr>
<td>Active region area</td>
<td>$$\sigma_a$$</td>
</tr>
<tr>
<td>Group refractive index</td>
<td>$$n_g$$</td>
</tr>
<tr>
<td>Attenuation</td>
<td>$$\alpha$$</td>
</tr>
<tr>
<td>Reference frequency</td>
<td>v</td>
</tr>
<tr>
<td>Nonlinear Index</td>
<td>$$n_2$$</td>
</tr>
</tbody>
</table>

Result and discussion: The scheme has been simulated with different 10 Gb/s NRZ pseudo-random binary data sequences (PRBS). The carrier wavelength of the binary data used for the simulation is 1550 μm which is a widely used fiber communication laser wavelength.

![Input and output of NRZ bit sequence](image)

(a)

![Input and output eye diagram of NRZ bit sequence](image)

(b)
Radiation-induced transmission degradation in metal-coated silica fibres

A. Faustoy, A. Gusarov, Member IEEE, G. Cheymol, M. Wülpert, Member IEEE, P. Mégret, Member IEEE, A. Morana, S. Girard, Member IEEE

1 SCK-CEN, Boeretang 200, 2400 Mol, Belgium
2 University of Mons, Place du Parc 20, 7000 Mons, Belgium
3 CEA-Saclay, 91191 Gif-sur-Yvette, France
4 Université Jean Monnet, 18 rue du Prof Benoît Lauras, 42000 Saint-Etienne, France
5 CEA-DAM, 9297 Bruyères le Chatel, France

The increasing demand for the improved safety operation of nuclear installations stimulates a growing interest for the use of optical fiber technologies. Our intention is to use optical fiber to address the dimensional stability of fuel elements based on low coherence interferometry with an Extrinsic Fabry Perot fiber cavity. In such experiments optical fibres will be exposed to high temperatures up to 400°C, which call for the use of metal-coated fibres. We have irradiated such fibres up to 2.65 Mgy dose. Transmission degradation was measured in-situ. The results show that the use of metal coating may slightly increase the transmission degradation.

Introduction

Real-time in-situ measurement of various parameters is a key requirement for the safe operation of advanced nuclear installations. Optical Fibre Sensors (OFS) have many attractive features, like the possibility of multiplexing many sensors on one fiber or performing distributed measurements, small dimensions, passive operation, a low sensitivity to electromagnetic interference. All those features give OFS a leading edge over electro-mechanical sensors, but it is also know OFS are sensitive to ionizing radiation. Radiation affects transmission of optical fibres by creating point defects of different nature which absorb light at specific wavelengths (see, for example, [1] for a review). This Radiation Induced Attenuation (RIA) is particularly strong in the UV region and can significantly decrease the performance of even result in a failure of an OFS.

Besides radiation level and temperature in situ monitoring of dimension changes of nuclear fuel rods as well as those of structural material samples is an important issue for future irradiation programs in Material Testing Reactors. Different techniques already exist to carry out such measurements but they all come with a number of drawbacks. Development of an optical sensor capable accurately measuring radiation-induced elongation of material placed in the core of a nuclear reactor is intended to overcome those problems. Specifically, the compact size and the passive operation should allow a low intrusiveness, which is important not only because of limited space available but also because small sensors will not disturb the temperature and radiation profile on the material samples. This sensor will have to withstand an extremely harsh environment: high temperature, possibly high pressure, vibrations, in addition to a very high level of reactor gamma-neutron radiation.

Irradiation testing demonstrated that modern radiation hard optical fibres can withstand extremely high level of radiation without critical transmission degradation. The RIA can
ISBN 9789076546001
IEEE Photonics Benelux Chapter
http://www.photonics-benelux.org/
Ghent University
Department of Information Technology (INTEC)
Photonics Research Group