The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots

Bram De Geyer1,2 and Zeger Hens2,a)

1Department of Information Technology (INTEC), UGent, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
2Department of Inorganic and Physical Chemistry, UGent, Krijgslaan 281 (S3), B-9000 Gent, Belgium

(Received 29 July 2010; accepted 21 September 2010; published online xx xx xxxx)

PbSe/CdSe core/shell colloidal quantum dots (QDs) are used as a model system to study the absorption coefficient of colloidal QD heterostructures, consisting of at least two semiconductor materials. We show that at energies far above the band gap (3.1 and 3.5 eV) the experimental intrinsic absorption coefficient is in excellent agreement with the Maxwell–Garnett effective medium theory for core/shell heterostructures and bulk values for the dielectric function. This allows for a straightforward measurement of the QD concentration from the absorbance spectrum. It also implies that basic optical measurements on core/shell heterostructures, such as measurements of the oscillator strength and photoluminescence lifetime, can be corrected for the local field reduction in QD heterostructures. © 2010 American Institute of Physics. [doi:10.1063/1.3499754]

For PbSe, PbS, and ZnO QDs, it was shown that at high energies (3.1 eV for PbSe and PbS, 3.54 eV for CdSe, 2.76 eV for InAs, and 5.0 eV for ZnO), the intrinsic absorption coefficient is independent of the QD size. Moreover, it generally coincides with the theoretical value calculated using bulk optical constants and the Maxwell–Garnett effective medium theory as follows:

\[\mu_i = \frac{2 \pi}{\lambda n_s} \text{Im}(\epsilon_i) |f_{LF}|^2. \]

Here, \(n_s \) is the solvent refractive index, \(\epsilon_i \) and \(\epsilon_s \) the complex dielectric function of the QD material and solvent, respectively, and \(\lambda \) the wavelength. For spherical particles, the local field factor reads as follows:

\[f_{LF} = \frac{3 \epsilon_s}{\epsilon_s + 2 \epsilon_i}. \]

The fact, that at short wavelengths a bulklike absorption coefficient is found, means that the electronic states at high energies are not quantum confined but form a continuum in these QDs. Hence the QD concentration \([QD]\), an essential quantity to assess synthesis quality and to control deposition, can be determined as follows from the absorbance at high energies, irrespective of size dispersion, using the Beer–Lambert law and \(\mu_i \) as calculated above:

\[[QD] = \frac{A}{eL} = \frac{A \ln 10}{\mu_i n_A V_{QD} L}. \]

Here \(N_A \) is Avogadro’s constant and \(V_{QD} \) the volume of the QD.

For core/shell QDs, the formulas above cannot be applied directly, since the shell will alter the dielectric screening. An expression for the absorption coefficient of core/shell particles was proposed by Neeves et al. If the volume fraction of core/shell particles in solution is small, it reads as follows:

\[\mu_i = \frac{2 \pi}{\lambda n_s} \text{Im}(3 \epsilon_i \beta) . \]

The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots is in excellent agreement with the Maxwell–Garnett effective medium theory for core/shell heterostructures and bulk values for the dielectric function.

Colloidal quantum dot (QD) research is driven by the combination of tunable electronic and optical properties, depending on the size and shape of the QDs, and an easy, solution-based fabrication and processing. While QDs consist of a single semiconductor with an organic ligand capping, show promising properties for applications in lasers, detectors, and solar cells, their drawbacks, such as oxidation and fast Auger recombination, shifted the focus of the research field to QD heterostructures, combining at least two semiconductors in a core/shell nanocrystal.

Since colloidal QDs are made in a wet chemical synthesis, the basic characterization is mostly done on QDs suspended in an organic solvent. Because of their small size, the macroscopic optical properties of suspended QDs are determined both by the intrinsic optical properties and by the surrounding medium. This effect is typically described by the Maxwell–Garnett effective medium theory. The importance of this effect can hardly be underestimated, as it will alter the characteristic decay length of the light intensity in a hypothetical surrounding medium or solvent. For example, Moreels et al. used this theory to calculate the dielectric function of PbSe, PbS, and PbTe colloidal QDs and study the effect of quantum confinement on these elementary material properties. This effect is typically described by the local field factor \(f_{LF} \), which is the ratio of the field inside the QD and the field in the surrounding medium.

Here, we analyze the effect of the effective medium on the absorbance \(A \) of core/shell PbSe/CdSe QDs, where not only the solvent but also the inorganic core/shell structure determines the local field factor. To quantify the spectrum of the absorbance \(A \), it is converted to the spectrum of the intrinsic absorption coefficient \(\mu_i \). For this, the QD volume fraction \(f \) and the cuvette length \(L \) are needed as follows:

\[\mu_i = \frac{\ln 10 \times A}{fL}. \]

The intrinsic absorption coefficient \(\mu_i \) provides the characteristic decay length of the light intensity in a hypothetical medium with a QD volume fraction of one.

a) Electronic mail: zeger.hens@ugent.be.
FIG. 1. (Color online) (a) HR-TEM image of a PbSe/CdSe core/shell QD, clearly showing the PbSe core and the CdSe shell. (b) Diameter determined from EDX vs diameter determined from the position of the first absorption peak, using the PbSe sizing curve. The black line indicates a 1-to-1 relationship (Ref. 4).

FIG. 2. (Color online) (a) Spectra of μ_i for PbSe/CdSe QDs with constant V_{QD} and increasing V_{cd} and PbSe QDs with varying diameters. (b) Local field factor calculated for PbSe/CdSe core/shell QDs at 355 nm and 400 nm. In the limiting case it becomes the local field factor for PbSe QDs ($V_{qd}=0$) or CdSe QDs ($V_{qd}=V_{total}$). (c) Intrinsic absorption coefficient $\mu_{3.5 eV}$ at 355 nm and $\mu_{3.5 eV}$ at 400 nm for PbSe/CdSe core/shell QDs as predicted by theory (line) and as measured (with total diameter of circles=5.2 nm, squares=5.8 nm, triangles=7.8 nm, left arrows=4.5 nm, and diamonds=7.5 nm).

With $\beta = \left(\frac{\epsilon_a - \epsilon_b}{\epsilon_a + 2 \epsilon_b} \right)$,

$\epsilon_a = \epsilon_b \left(3 - 2 \frac{V_{qd}}{V_{QD}} \right) + 2 \epsilon_b \frac{V_{sh}}{V_{QD}}$,

$\epsilon_b = \epsilon_b \frac{V_{sh}}{V_{QD}} + \epsilon_b \left(3 - \frac{V_{sh}}{V_{QD}} \right)$.

Here, ϵ_{sh} denotes the complex dielectric function of the shell.

Importantly, μ_i becomes dependent on the ratio between the shell and the total QD volume for core/shell heterostructures.

This is purely an effect of the change in the effective medium and not an effect of quantum confinement. Hence, to compare theory with experiment, a precise knowledge of the core diameter and shell thickness is essential for QD heterostructures.

We take the example of PbSe/CdSe QDs, made by cation exchange on PbSe QDs, to study the absorption coefficient of QD heterostructures. They offer an ideal test case, since the total QD diameter and the concentration remains constant throughout the exchange procedure. Indeed, as Pb atoms in the PbSe lattice are gradually replaced by Cd atoms, a CdSe shell with increasing thickness is formed for prolonged exchange times. This is confirmed by high-resolution transmission electron microscope (HR-TEM) images [see Fig. 1(a)], which clearly show the CdSe shell around the PbSe core. HR-TEM however is not suitable for high-throughput measurements of the core diameter and shell thickness. Hence we use TEM-based energy dispersive x-ray spectroscopy (EDX) to determine the Pb/Se ratio of the original PbSe QDs and of the derived PbSe/CdSe QDs. Since the Se-content remains constant throughout the exchange process, we can calculate the PbSe core diameter from the reduction in the Pb/Se ratio and the parent PbSe QD diameter. These values are in good agreement with the core diameters obtained using the location of the first absorption peak and the PbSe QD sizing curve [see Fig. 1(b)]. Recent work by Zhang et al.,17 using a similar approach for the CdSe growth confirm this result. They observe a shift of only 32 nm in the absorption spectra upon growth of three CdSe monolayers (~1 nm shell thickness), which corresponds to a shift in the diameter of just 0.17 nm, less than a Cd or Se monolayer. This illustrates that we can use the PbSe QD sizing curve to determine the core diameter and shell thickness of PbSe/CdSe QDs, provided that the parent PbSe QD diameter is known.

Under the assumption that the initial, known QD volume fraction does not change during the cation exchange process, the spectrum of μ_i [see Fig. 2(a)] is readily obtained from the absorption spectrum of a PbSe/CdSe suspension [see Eq. (1)]. In Fig. 2(a), spectra for several differently sized PbSe QDs clearly coincide at energies far above the band gap, whereas the spectra for PbSe/CdSe QDs show a broad band of values due to the influence of the CdSe shell. Figure 2(c) shows a set of experimentally determined intrinsic absorption coefficients at 3.1 eV ($\mu_{3.1 eV}$) and 3.5 eV ($\mu_{3.5 eV}$) for PbSe/CdSe QDs with different total diameter, core diameter and shell thickness as a function of the shell/QD volume ratio V_{sh}/V_{QD}. For small shells, μ_i slightly increases, reaching a maximum value. For larger shells, μ_i decreases rapidly. The full lines represent $\mu_{i,sh}$ values calculated with bulk PbSe and CdSe optical constants at 3.1 eV (400 nm) and 3.5 eV (355 nm). Clearly, we find an excellent agreement between these theoretical values and the experimental results for $\mu_{3.1 eV}$ and $\mu_{3.5 eV}$ [see Fig. 2(c)]. Following Neeves et al.,13 the local field factor in the core of a core/shell QD reads as follows:

$$f_{LF} = \frac{9 \epsilon_{sh} \epsilon_s}{\epsilon_{sh} \epsilon_s + 2 \epsilon_s \epsilon_b}.$$
more important. The great correspondence between the ex-
perimental and theoretical values for μ_i proves that the
Maxwell–Garnett effective medium theory can adequately
describe the absorption of QD heterostructures at high ener-
gies. At these energies, the energy levels of both the PbSe
core and the CdSe shell form a continuum, allowing us to
treat the absorption of these QD heterostructures using bulk
values.

Calculating μ_i using the Maxwell–Garnett effective me-
dium theory and bulk values for the dielectric function offers
an elegant and reliable way to determine the QD concentra-
tion of suspensions of QD heterostructures [see Eq. (4)],
based on a straightforward absorbance measurement and
knowledge of the core and shell size. This is essential for the
successful integration of these QDs in applications such as
light-emitting diodes and lasers. In typical synthesis schemes
for core/shell growth, where the concentration remains con-
stant, it also allows for direct monitoring of the dynamics of
shell growth. For studies on the intrinsic carrier dynamics in
QD heterostructures, the contribution of the change in the
local field can be taken into account, using this effective
medium theory.

In summary, we used PbSe/CdSe QDs as a model system
to test the validity of the Maxwell–Garnett model for colloi-
dal core/shell QDs. These QDs have a well-defined concen-
tric core/shell structure and both size and concentration can
be determined easily. We have shown that their intrinsic ab-
sorption coefficient at energies well above the band edge can
be predicted using the Maxwell–Garnett effective medium
theory and bulk values for the dielectric function. The valid-
ity of this model has important implications for colloidal QD
heterostructure research, since the local field influences all
optical characterization methods. It changes, for example,
the magnitude of the absorption spectrum and the PL decay
rate. Hence this model not only offers an easy way to deter-
mine concentrations of QD suspensions but has to be taken
into account when extracting the intrinsic physics of colloi-
dal QD heterostructures from standard optical measurements.

This project is funded by the Bijzonder Onderzoeks-
fonds (BOF-UGent), the Belgian Science Policy Office
(Grant No. IAP P6/10), and the EU Seventh Framework Pro-
gram (EU-FP7 ITN Herodot under Grant No. 214954).

2. A. Kigel, M. Brumer, G. I. Maikov, A. Sashchiuk, and E. Lifshitz, Small
5, 1675 (2009).
3. I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens,
5. I. Moreels, K. Lambert, D. Smeets, D. De Muyck, T. Nollet, J. C.
Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens,
106, 7619 (2002).
113, 19468 (2009).
8. R. K. Čapek, I. Moreels, K. Lambert, D. De Muyck, Q. Zhao, A.
Vantomme, F. Vanhaecke, and Z. Hens, J. Phys. Chem. C 114, 6371
(2010).
9. P. Yu, M. Beard, R. Ellingson, S. Ferrere, C. Curtis, J. Drexler, F. Lüszer,
10. P. Lommens, K. Lambert, F. Loncke, D. De Muyck, T. Balkan, F.
Vanhaecke, H. Vrielinck, F. Callens, and Z. Hens, ChemPhysChem 9, 484
(2008).
(1994).
13. A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEE,
14. J. Pietyga, D. Werder, D. Williams, J. Casson, R. Schaller, V. Klimov,
15. Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu,