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Simplified description of self-pulsation and excitability by thermal and free-carrier effects
in semiconductor microcavities
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Silicon-on-insulator microrings both self-pulsate and are excitable due to the presence of thermal and free-
carrier-related nonlinearities. We show how a dimensionless mean-field model, in which the fast light dynamics
are neglected and only the temperature and the amount of free carriers remain as variables, can explain this
dynamic behavior. Apart from a scaled detuning of the input wavelength to the resonance wavelength and
a scaled input power, this system contains only a limited number of dimensionless parameters dependent on
both the geometry and material system of the cavity. Moreover, the onset of oscillation is still analytically
tractable, while the excitability onset can be obtained using continuation algorithms. In agreement with previous
experiments, excitability is predicted to appear mainly at the blue side of the resonance. Finally, the proposed
method of analysis paves the way for an easy comparison of the dynamics in different material systems or cavity
types.
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I. INTRODUCTION

A high Q/V ratio enhances light-matter interaction in a
microcavity and accordingly reduces the required input power
for nonlinear behavior. Consequently, in a passive microcavity
with a high Q/V ratio, if the resonance wavelength of light
with sufficiently high input power is detuned close to the
resonance wavelength of the cavity, both self-pulsation and
excitability can be observed [1–6].

In silicon-on-insulator (SOI) cavities, two-photon absorp-
tion (TPA) generates both free carriers and heat. Other
heating mechanisms are surface-state absorption (SSA) and
free-carrier absorption (FCA). The presence of the free carriers
induces a blueshift of the resonance wavelength, known
as free-carrier dispersion (FCD), while the heating of the
cavity induces a redshift due to the thermo-optic effect. The
difference between the time scales of the fast free-carrier
dynamics and the slow heating effects results in self-pulsation
in whispering-gallery-mode cavities such as microdisks and
microrings [1–4]. In InP-based two-dimensional (2D) photonic
crystal (PhC) resonators or PhC nanocavities a similar type of
self-pulsation is visible [5,6], even though the main heating
and free-carrier generation mechanism in this material system
is single-photon absorption (SPA) instead of TPA. Moreover,
close to the self-pulsation region excitability is perceived both
in InP PhC cavities and SOI microrings, mainly at the blue
side of the resonance [4–6].

This dynamic behavior can be described accurately using
mean-field models, such as temporal coupled-mode theory
[2–4]. In a unidirectional microring or microdisk (i.e., if
backscattering is neglected) or a unimodal PhC cavity we
represent the light in the cavity by a complex amplitude a and
incorporate both the temperature difference of the cavity with
the surroundings �T and the amount of free carriers N as two
additional dynamic variables. This model allows us to calculate
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realistic steady-state curves, and from linear stability analysis
the oscillation onset can be identified as an Andronov-Hopf
bifurcation [3,4]. Moreover, phase-plane analysis illustrates
that the self-pulsation is caused by the interplay between tem-
perature and free-carrier effects, indicating that the fast light
dynamics are less relevant [4,6]. Using bifurcation diagrams, it
can be shown that the excitability in a SOI microring appears
near a subcritical Andronov-Hopf bifurcation [4]. However,
a thorough analysis of the influence of the cavity design and
different material parameters on the oscillation and excitability
onset is still missing, as it is not straightforward to analyze this
four-dimensional system (consisting of one complex variable
a and two real variables �T and N ) and the influence of its
many parameters in a systematic manner.

Therefore, several simplified models have been proposed.
For instance, recent publications show how, in nonlinear
cavities in which the (slow) thermal heating effects are
neglected, bistability, self-pulsation, and even chaos can
appear, provided the remaining cavity nonlinearities (e.g., the
free-carrier effects) have a sufficiently fast relaxation time
compared to the photon lifetime [7–9]. Of course, due to the
absence of heating effects, this self-pulsation is caused by
physical mechanisms other than the one discussed in this paper.
Importantly, bifurcation diagrams of the onset of bistability
and self-pulsation can be calculated for the reduced models of
those cavities.

In this paper, we show how a similar calculation method can
be applied on a simplified model that, besides the free-carrier
nonlinearities, does incorporate the thermal heating effects.
For this purpose, we start from the equations of motion
proposed in [4] and adiabatically eliminate the fast light
dynamics (buildup time of the cavity light), so we end up
with a 2D system. The remaining dynamic variables represent
�T and N , respectively. This dimensionality reduction allows
the semianalytic calculation of bifurcation diagrams of the
simplified system. We use this calculation, e.g., to explain why
excitability has until now been observed mainly at the blue
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side of the resonance. For the analysis of the excitability onset
we use PYDSTOOL [10] to continue the limit cycles, while the
time traces are calculated with our in-house nonlinear circuit
simulator CAPHE [11,12].

II. MATHEMATICAL MODEL

In this section, we derive the equations of motion of the cav-
ity. Throughout this paper, we use the same parameter values
as in [4], representing a typical critically coupled all-pass SOI
microring with self-pulsing behavior, unless otherwise men-
tioned. However, we emphasize that the proposed approach is
also usable for other material systems and cavity types. First,
we rescale both �T and N to a dimensionless variable:

� = 2Q dn
dT

ng

�T , n = 2Q
∣∣ dn
dN

∣∣
ng

N. (1)

Here, dn/dT > 0 is the thermal index change, dn/dN < 0
is the free-carrier index change, and ng is the group index.
As δ = (ω − ωr )τph is the (normalized) detuning of the
input light to the resonance frequency ωr of a cavity with
photon lifetime τph (and thus Q = ωrτph/2), � and n can be
interpreted as the absolute value of the (normalized) induced
detuning shift caused by �T and N , respectively.

In SOI, the influence of TPA is at least one or two orders
of magnitude smaller than the other nonlinear effects. If we
neglect this influence, both on the broadening of the resonance
width and the heating of the cavity, the equations of motion of
the optical field a in the cavity and these nonlinear detunings
� and n become [2–4]

da

dt
= 1

τph
[j (−δ − � + n) − (1 + f n)]a + j

√
2

1 + k

Pin

τph
,

(2)

d�

dt
= 1

τth

[
−� + |a|2

P th
0 τph

(1 + ef n)

]
, (3)

dn
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= 1

τf c

[
−n + |a|4(

P el
0 τph

)2

]
, (4)

where we introduced the thermal and electric characteristic
intrinsic power of the cavity [13]:

P th
0 = ρSicp,Si

4
dn
dT

ng
τthηlin	th

Vth

Qi

(
1 + k

k

)2

, (5)

P el
0 =

√√√√ h̄ω3
r

4
| dn
dN

|
ng

τf c	FCAβSiv2
g

VFCA

Q
3/2
i

(
1 + k

k

)3/2

. (6)

Here, τth and τf c are the relaxation times for the temperature
and the free carriers, respectively. βSi is the constant governing
TPA, cp,Si is the thermal capacity, ρSi is the density of silicon,
and ng is the group index. We also use the effective volumes
Vα and confinements 	α corresponding to a physical effect
α, defined in [3,14]. ηlin is the fraction of the linear loss due
to absorption (≈0.4 in SOI [1,14]). Qi = ωrτl

2 is the intrinsic
Q factor of this cavity. Similar to [14], k = τc

τl
is the ratio of

“good” loading (lifetime τc) to the parasitic and intrinsic loss
channels (lifetime τl) of the resonator. The loaded Q factor of
the cavity is then Q = Qik/(1 + k). For a critically coupled

cavity k = 1, for an undercoupled cavity k > 1, and for an
overcoupled cavity k < 1. In Eqs. (2) and (3),

f =
σSic

ng

2ωr

ng

dn
dN

(7)

is the ratio of the broadening of the resonance width due to
FCA (σSi is the absorption cross section of FCA) to the shift
of the resonance peak due to FCD. Finally, e = 1+k

kηlin
, while

ef represents the additional heating due to FCA. By putting
da
dt

= 0 in Eq. (2), the steady-state value of the optical energy

in the cavity, normalized to
√

P th
0 τph (a′ = a/

√
P th

0 τph), can
be calculated:

|a′
ss |2 = p

(1 + f n)2 + (δ + � − n)2
, (8)

where p = Pin/(P th
0

1+k
2 ) is the normalized version of the input

power. As τph is considerably smaller than τf c and τth, we do
an adiabatic elimination of the optical field; i.e., for a given
�(t) and n(t), we approximate |a′|2(t) with its “steady-state”
value |a′

ss |2. Expressing time τ in units τth (τ = t/τth), the
equations of motion of (�,n) are then

d�

dτ
= −� + p(1 + ef n)

(1 + f n)2 + (δ + � − n)2
, (9)

dn

dτ
= 1

ε

[
−n +

(
pq

(1 + f n)2 + (δ + � − n)2

)2
]

. (10)

In these equations, ε = τf c/τth, while q = P th
0

P el
0

determines the

relative importance of the thermo-optic effect versus FCD. If
FCD is absent, q = 0 (as P el

0 = ∞), while if the thermo-optic
effect is absent q = ∞ (as P th

0 = ∞). Therefore, a relatively
strong FCD corresponds to a large q value. For the convenience
of the reader, we summarize the previous model parameters,
together with their formulas and a short description of their
meaning, in the Appendix.

These simplified equations still incorporate both self-
pulsation (Fig. 1, top) and excitability (Fig. 1, bottom).
In the rest of this paper, unless otherwise mentioned, we
use q = 0.397, ε = 0.0815, f = 0.0714, and e = 5 as ring
parameters. Pout is calculated based on Eq. (8), and power is
normalized to (P th

0
1+k

2 ).
Similar to [4], a phase-plane analysis of the time traces is

useful to explain the dynamics of the system (Fig. 2). The
time traces from Fig. 1 follow the direction changes indicated
by the nullclines (d�/dτ = 0,dn/dτ = 0). Moreover, the
rectangular-like pulse shape of both the self-pulsation and
excitation pulses is caused by fast relaxations (∼τf c) of the tra-
jectory towards the dn/dτ = 0 nullcline, alternating with a pe-
riod in which the trajectory slowly (∼τth) follows this nullcline.

III. INFLUENCE OF CAVITY DESIGN ON
NONLINEARITY ENHANCEMENT

The cavity design enhances the input power for the different
physical effects with different scaling laws of the design
parameters of the cavity (Qi , V , k, . . . ). In other words, for
a given Pin, a good choice of (Qi , V , k, . . . ) can optimize p

(SSA-induced heating), ep (FCA-induced heating), and/or qp

(free-carrier generation). Therefore, in this section, we study
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FIG. 1. (Color online) At δ = −3 and p = 18.676 the microring
self-pulsates, while at δ = 0.5 and p = 23.345 the ring is excitable:
a sufficiently strong perturbation can trigger a pulse. Ring parameters
are q = 0.397, ε = 0.0815, f = 0.0714, and e = 5. Simulations are
done with CAPHE.

how the cavity design can affect the values of model parameters
p, q, and e (Table I summarizes some relevant definitions).

A. Influence of Qi and k on p, ep and q p

From Eq. (5) we obtain P th
0 ∝ 1

ηlin

V
Qi

( 1+k
k

)2, and con-

sequently, p ∝ (2ηlin
k2

(1+k)3 )Qi

V
Pin. This proportionality ex-

FIG. 2. (Color online) In the phase plane, the signal makes, both
(top) for the self-pulsation time trace (δ = −3 and p = 18.676) and
(bottom) for the excitability time trace (δ = 0.5 and p = 23.345)
from Fig 1, a fast transition between the upper and lower branches of
the dn/dτ = 0 nullcline, while in between these transitions it slowly
follows those branches.

presses how the cavity enhances the thermal nonlinearity for a
given input power Pin. Given the cavity losses, the optimization
of the light coupling into the cavity (i.e., k) can enhance the
nonlinearities. Indeed, if the cavity is drastically overcoupled
(k � 1) or undercoupled (k 	 1), the cavity enhancement of
the light is rather small, and high input powers will be needed
to reach thermal nonlinearity. However, near critical coupling
the cavity enhancement is optimal. Similarly, as FCA-induced
heating depends on ep ∝ (2 k

(1+k)2 )Qi

V
Pin and FCD depends on

qp ∝ (2 k3/2

(1+k)5/2 )Q
3/2
i

V
Pin, the cavity enhancement is also optimal

for the free-carrier effects near critical coupling.

B. Influence of V on p, ep, and q p

Additionally, we study the influence of the volume V of
the cavity. The necessary scaling laws as a function of V were
already derived in Sec. III A. However, the cavity in our paper
is a microring, such that V is proportional to the round-trip
length L of this microring. Therefore, we rephrase the previous
scaling laws as a function of L.

In a microring with average waveguide loss αdB/m (with
bend loss included) and L not too large (�1/αdB/m), Qi =

2πng

αdB/mλr

10
ln 10 is independent of L. However, a coupling section

with power coupling K has Qc = ωrτc

2 = 2πngL

Kλr
, such that

k ∝ L [15]. Furthermore, V ∝ L. Hence, for a given αdB/m

and power coupling K , the cavity enhancement for both the
thermal and free-carrier effects (to which, e.g., p, qp, and ep

correspond) reaches an optimum at a value of L close to the one
needed for critical coupling (i.e., Lcrit = K

αdB/m

10
ln 10 ). However,

if we optimize K for a given αdB/m and L (such that k has
a fixed value), the 1/V ∝ 1/L dependence in the previous
scaling laws for p, qp, and ep results in an improvement of
the nonlinearity enhancement towards smaller L (provided the
bend losses stay negligible). The critical coupling condition
for rings with small L results in small K , which physically
corresponds to larger gaps. This is an advantage, as this
might circumvent the usage of racetrack resonators (with
corresponding losses on the interface between rounded and
straight waveguides) or the fabrication of rings with small gap
features (which are difficult to process).

C. Influence of Qi and k on q and e

Finally, given the scaling laws calculated in Sec. III A, we
can also analyze how a changing cavity enhancement changes
the relative importance of the corresponding different physical
effects. This is reflected in the scaling laws of q and e. Indeed,
as discussed in Sec. II, q expresses the relative importance of
free-carrier generation versus heat generation by SSA.

Given q ∝ 1
ηlin

Q
1/2
i ( 1+k

k
)1/2, free-carrier effects will domi-

nate in low-loss (high Qi) cavities. Also, if k � 1, the light
only stays in the cavity for a very short time, and in this
limit the free-carrier effects dominate the heating due to
linear absorption. Moreover, q decreases monotonically for
increasing k and reaches a global minimum for k → ∞. As
e ∝ (1+k)

k
, similar conclusions are valid for the k dependence of

e, representing the relative importance of the heating induced
by FCA versus the heating induced by SSA.
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IV. LINEAR STABILITY ANALYSIS

We now explain how the bistability, self-pulsation, and
excitability regions can be calculated. In the next section we
will then analyze how the different model parameters change
the size of these regions.

The steady-state curves of � and N can be analytically
calculated. Indeed, from Eqs. (9) and (10) it can be seen that

�ss =
√

nss

q
(1 + ef nss). Hence, at steady state

p =
√

nss

q

[
(1 + ef nss)

2

+
(

δ +
√

nss

q
(1 + ef nss) − nss

)2
]

, (11)

where p(nss) is a seventh-order polynomial in
√

nss , while
�ss(nss) is a third-order polynomial. As ef > 0, �ss is
a monotonically increasing function of nss . Moreover, this
steady state is independent of ε, i.e., the ratio between the free
carrier and the thermal time scales.

We now substitute �(t) = �ss + δ�(t) and n(t) = nss +
δn(t) in Eqs. (9) and (10) and only retain the terms linear
in (δ�(t),δn(t)). This results in a 2 × 2 Jacobian Jss , with a
quadratic characteristic equation:

λ2 + tr(Jss)λ + det(Jss) = 0. (12)

This equation has two roots, λ1 and λ2. If det(Jss) = 0 and
tr(Jss) �= 0, one of the roots will be 0 (a sign of a saddle-node
bifurcation, resulting in bistability); if additionally tr(Jss) = 0,

FIG. 3. (Color online) The steady-state response at δ = −3 is, in
between two saddle-node (SN) bifurcations, bistable and also has a
supercritical Hopf bifurcation. At δ = 0.5 no bistability is present,
but an unstable limit-cycle branch (LC) originates from a subcritical
Hopf-bifurcation and annihilates with a stable limit cycle branch in
a limit-cycle fold (LC fold). To visualize the limit cycles, both the
minimum and maximum values of the cycles are plotted. Stable and
unstable fixed points (FP) or limit cycles are indicated with solid or
dashed lines, respectively.

both roots are 0. If det(Jss) > 0 and tr(Jss) = 0, both roots are
purely imaginary, with λ2 = λ∗

1 (a sign of a Hopf bifurcation).
By substituting both p(nss) and �(nss) into det(Jss) and
tr(Jss), det(Jss) = 0 and tr(Jss) = 0 result in two sixth-order
polynomial equations as a function of

√
nss . Hence, the

corresponding six roots can be numerically tracked. Of course,
only the real, positive roots have a physical meaning.

From Eqs. (9) and (10) it can be inferred that the only ε

dependence of det(Jss) is a global 1
ε

scaling factor. Hence, as
can be expected from Eq. (11), the solutions of det(Jss) = 0 are
ε independent. This implies that the saddle-node bifurcation,
i.e., the bistability onset, is also ε independent. However, the
roots of tr(Jss) = 0 are ε dependent. This implies that the Hopf
bifurcation does depend on ε, and a good ε setting is therefore
crucial in obtaining self-pulsation.

Using PYDSTOOL as numerical continuation software [10],
starting from the Hopf bifurcations, we perform a limit-cycle
continuation. That is, we track the change in limit-cycle
shape caused by sweeping a certain parameter. Figure 3
illustrates for both δ = 0.5 and δ = −3 how the previously
mentioned mathematical and numerical tools not only allow
the calculation of the steady-state response of nss for fixed δ

and changing p but also help to indicate the stability regions
and to calculate the extreme values of nss corresponding to the
branch of limit cycles originating from the Hopf bifurcation.
While for δ = −3 the curve is bistable, in the δ = 0.5 case it is
not. Moreover, for δ = 0.5 the Hopf bifurcation is subcritical
(i.e., nearby, a stable fixed point coexists with a surrounding
unstable limit cycle), while for δ = −3 the Hopf bifurcation
is supercritical (i.e., nearby, an unstable fixed point coexists
with a surrounding stable limit cycle).

FIG. 4. (Color online) By tracking both the saddle-node bifurca-
tions (BI onset) and Hopf bifurcation (SP onset) in the (δ,p) plane
we can determine the bistability (BI) and self-pulsation (SP) region,
respectively, which partly overlap (BI&SP). An LC fold branch orig-
inates from a generalized Hopf bifurcation on the self-pulsation onset
curve such that for higher δ values excitability is present if p is below,
but sufficiently close, to this LC fold branch. In between the self-
pulsation onset and limit-cycle fold a stable fixed point coexists with
an unstable limit cycle, surrounded by a stable one (stable FP&LC).
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The subcritical Hopf bifurcation at δ = 0.5 implies that, for
lower input powers, the ring is excitable (Fig. 1, right). For a
given cavity, the only free variables are the detuning δ and
the input power p. In the (δ,p) plane (Fig. 4), the bistability
(BI) onset disappears in a cusp bifurcation, while the Hopf
bifurcation transits at a generalized Hopf (GH) bifurcation
from supercritical (δ < δGH) to subcritical (δ > δGH). Hence, a
fold bifurcation of a limit-cycle curve starts from a generalized
Hopf bifurcation (δGH = −1.077,pGH = 4.317), towards δ >

δGH. Subsequently, for δ > δGH and sufficiently large p, but
still smaller than the limit-cycle fold curve, the microring is
excitable. The subcritical region of the Hopf bifurcation is
mainly centered at the blue side (δ > 0) of the resonance. This
explains why excitability has until now only been measured in
this wavelength region [4–6], instead of at the red side (δ < 0)
of the resonance.

V. INFLUENCE OF MODEL PARAMETERS ON
BISTABILITY, SELF-PULSATION, AND EXCITABILITY

In Sec. III, we analyzed how optimizing the volume, the
loss, and coupling of a cavity can reduce the required input
power needed for nonlinear behavior and additionally changes
the relative importance of the different physical effects (e.g., by
changing q). In this section, we will investigate the influence
of a change in q, ε, τf c, and f on the cavity dynamics in the
(δ,p) plane or the (δ,n) plane.

A. Influence of q: FCD versus SSA

Whereas the bistability region only shifts slightly for

changing q = P th
0

P el
0

(as the bistability is mainly caused by the

FIG. 5. (Color online) While the bistability region is only slightly
dependent on the exact q value, the self-pulsation region and the corre-
sponding excitability region shift clearly to higher δ for increasing q.
The calculation was done for q = 0.5q0 (dotted line), q = q0 (solid
line), and q = 1.5q0 (dashed line), with q0 = 0.397, i.e., the value
from Fig. 1. For reference we also included the bistability curve for
q = 0 (dash-dotted line), i.e., without any free-carrier effects.

thermal nonlinearity and, consequently, is rather insensitive for
moderate changes in P el

0 ), it should not be surprising that the
self-pulsation region (and corresponding excitability onset) is
heavily dependent on q (as they are caused by the interplay
between thermal and free-carrier nonlinearities). We verify
this in Fig. 5, for different q values, all with a predominant
thermal nonlinearity (i.e., q < 1). A higher q value implies a
shift of the self-pulsation region towards higher δ, such that the
excitability region stops coinciding with the bistability region.
As discussed in Sec. III, q can be changed by changing the
cavity design. In principle, for q = 0.5q0 (with q0 = 0.397) we
expect excitability at the red side of the resonance. However,
the region is rather small and coincides with the bistability
region. Hence, it will not be trivial to detect this experimentally.
For q = 0, both the self-pulsation and excitability regions dis-
appear, as in this case only the thermal nonlinearity is present.

B. Influence of time scale ratio ε

Slightly adapting the analysis method proposed in [7,8]
to Eqs. (9) and (10), the influence of ε on the self-pulsation
(SP) and bistability (BI) regions can be analyzed. We illustrate
the calculation method together with some relevant definitions
for δ = −3 (where a generalized Hopf bifurcation appears)
and δ = 0.5 (in which case the Hopf bifurcation is always
subcritical) in Fig. 6 and summarize the most interesting results
in the (ε,δ) plane in Fig. 7.

We start by calculating the “on” and the “off” free-carrier
detunings for self-pulsation (nH,− and nH,+, respectively) and
bistability (nb,− and nb,+, respectively). Note that nH,−/+ can
be found by solving tr[Jss(p = p(n))] = 0, while nb,−/+ can
be found by solving det[Jss(p = p(n))] = 0 (Sec. IV).

Furthermore, for a given δ, self-pulsation is only possible
below a critical value εsp. The curve (εsp,δsp) can be calculated

FIG. 6. (Color online) While the bistability region is independent
of ε (with q = 0.397 fixed), the self-pulsation region becomes larger
for smaller ε. For δ = −3 a generalized Hopf bifurcation is present,
while this is not the case for δ = 0.5, as the Hopf bifurcation is
then always subcritical. Self-pulsation appears in between nH,−/+
[SP onset, blue (dark gray) lines], while bistability appears in
between nb,−/+ [BI onset, red (medium gray) lines]. For a given
δ, self-pulsation is only possible below a critical value εsp . As before,
LC fold (black line) reveals the excitability regions.
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FIG. 7. (Color online) Summary of the regions with SP and BI
in the (ε,δ) plane. The color levels represent the ‘on’ free-carrier
detuning nH,− and the ‘off’ free-carrier detuning nH,+ (with q =
0.397 fixed; definitions illustrated in Fig. 6). Here (εsp,δsp) encloses
the region where some input powers result in self-pulsation (solid
line); similarly, (εb,δb) encloses the region with bistability (dotted
line). Furthermore, the curve p(nH,−) = p(nb,−) (dashed line) divides
the region with bistability into a domain where BI ∩ SP = ∅, where
self-pulsation sets in only for powers above the bistable knee for
up-switching, and a domain where BI ∩ SP �= ∅, where self-pulsation
is present at the upper branch of the bistability curve. Finally,
the generalized Hopf bifurcation location (εGH,δGH) on the nH,−/+
surfaces is tracked [orange (light gray) line], indicating excitability
is mainly present at the blue side of the resonance.

by tracking the fold bifurcation of tr[Jss(p = p(n))] = 0
(using PYDSTOOL). Similarly (εb,δb) encloses the region with
bistability (BI �= ∅). In this case, δb is ε independent and thus
needs to be calculated only once (using PYDSTOOL). Finally,
the curve p(nH,−) = p(nb,−) divides the region where BI �= ∅
into a domain where BI ∩ SP = ∅, where self-pulsation sets in
only for powers above the bistable knee for up-switching, and
a domain where BI ∩ SP �= ∅, where self-pulsation is present
at the upper branch of the bistability curve. p(nH,−) = p(nb,−)
can be parameterized by, for a given δ, first solving det[Jss(p =
p(n))] = 0 for nb,−, subsequently solving p(nH,−) = p(nb,−)
for nH,− (both calculations are ε independent; see Sec. IV), and
finally solving tr[Jss(n = nH,−)] = 0 for ε (a linear equation
in ε).

The time scale ratio ε has no influence on the bistability
region but severely influences the self-pulsation region (Figs. 6
and 7). If ε → 0, this region becomes larger. This illustrates
how the difference in time scale between thermal and free-
carrier relaxation is necessary for self-pulsation to occur.
However, the presence of self-pulsation at ε = 0 might seem
unusual as self-pulsation can only occur in a system which is
at least two-dimensional [16]. Indeed, if ε = 0, one expects
the system to be one-dimensional, as n changes its value
instantaneously for a given �(t), such that dn

dτ
= 0 is satisfied.

Nevertheless, the nullclines ( dn
dτ

= 0, d�
dτ

= 0) are independent
of ε, and dn

dτ
= 0 results in a bistable relationship of n as

a function of �(t) (Fig. 2); consequently, even at ε = 0 the
system still needs to be considered as two-dimensional. For

FIG. 8. (Color online) If ε = τf c

τth
is changed by tweaking τf c,

q ∝ √
ε due to q ∝ √

τf c. Consequently, the decreasing q for ε → 0
causes the self-pulsation region to disappear (e.g., δ = −3 and δ =
0.5).

ε → 0, the transitions between the upper and lower branches of
dn
dτ

= 0 will go infinitely fast, and � will stay fixed during these
transitions. The dynamics at this limit thus deviate from the
corresponding limit in nanocavities with a noninstantaneous
Kerr effect [7].

In this paper, besides the self-pulsation onset, we are also
interested in the excitability threshold (as opposed to [7,8],
where the analysis only focused on the onsets of self-pulsation
and bistability of a cavity without thermal heating effects).
Therefore, we track the generalized Hopf bifurcation on the
nH,−/+ surfaces as this encloses the region where excitability
will appear [Fig. 7, orange (light gray) lines]. Above δ ≈
−10.44 the (εGH,δGH) curve makes a transition from the nH,+
surface to the nH,− surface, and the presence of this curve on
the nH,− surface encloses the excitability region. If, for a given
ε, δ is bigger than δGH(ε), the (lower) onset of the self-pulsation
region is a subcritical Hopf bifurcation, which implies that for
input powers slightly lower than the self-pulsation onset the
cavity will be excitable. From Fig. 7 it can be inferred that
the subcritical Hopf bifurcation region on the nH,− surface is
mainly centered at the blue side (i.e., δ > 0) of the resonance,
which confirms that excitability will mainly appear at the blue
side of the resonance.

C. Influence of free-carrier lifetime τ f c

The most straightforward manner to change ε = τf c

τth
is

by tweaking τf c. In a microring, this can, e.g., be done by
reverse biasing a p-i-n diode over the waveguides [17] or
by ion implantation [18]. However, as q ∝ √

τf c, reducing
τf c also reduces the strength of the free-carrier nonlinearities.
We analyze this for two typical detuning cases (δ = −3 and
δ = 0.5) in Fig. 8 and summarize the results in the (ε,δ) plane
in Fig. 9. In contrast to Figs. 6 and 7, due to q ∝ √

τf c

and ε ∝ τf c, q is not fixed any longer but is proportional
to

√
ε. Moreover, we do not explicitly include (εsp,δsp) and

p(nH,−) = p(nb,−) in Fig. 9 as the calculation is severely
complicated by the q(ε ∝ τf c) dependence.
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FIG. 9. (Color online) If q = q0

√
ε

ε0
(q0, ε0 are the values used

in Fig. 1), the color levels of the on free-carrier detuning nH,− and
the off free-carrier detuning nH,+ change with respect to Fig. 7, such
that the self-pulsation region now disappears for ε → 0. For lower
δ the self-pulsation region comes closer to ε = 0; e.g., at δ = −15
the self-pulsation region disappears at ε ≈ 1.5 × 10−3. Moreover,
δb is now slightly ε dependent (dotted line). Additionally, a second
bistability region appears for ε > 1.4 near δ ≈ 2.4, which results in
BT bifurcations [red (medium gray) line] when nb,+ intersects with
nH,−.

As can be expected from Fig. 5, if τf c → 0, the self-
pulsation region disappears. We remark that in this τf c → 0
limit, as soon as τf c � τph, the fast light dynamics cannot be
neglected any longer, and the model without approximation
should be used. Additionally, not only is the bistability region
corresponding to the one shown in Fig. 7 now dependent
on τf c (and thus on ε), but also, due to stronger FCD, an
additional bistability region appears for ε > 1.4 near δ ≈ 2.4.
The bistability onset nb,+ of the latter region intersects with the
self-pulsation onset nH,− in a Bogdanov-Takens bifurcation
[BT, red (medium gray) line in Fig. 9]. Such a Bogdanov-
Takens bifurcation will change the nearby cavity dynamics,
as it often indicates a transition from “resonator” (class II)
excitability to “integrator” (class I) excitability [16]. Finally,
similar to Fig. 7, above the (εGH,δGH) curve on the nH,− surface
[orange (light gray) line in Fig. 9] the self-pulsation onset is
a subcritical Hopf bifurcation, which implies the presence of
excitability for well-chosen input powers.

Another manner of changing ε, one we will not discuss in
this paper, is to drastically change the ambient temperature of
the chip, which will change both τf c and τth. Indeed, cryogenic
experiments of SOI ring resonators show that the time scales
of the thermal and free-carrier effects change in an opposite
direction with decreasing temperature [19].

D. Influence of f : FCA versus FCD

Although we already incorporated FCA in the previous
calculations (f �= 0 and e �= 0), we have not yet discussed in
detail its influence as we used a fixed f value. As can be seen
from Eq. (7), this value is mainly determined by the choice
of material system. In SOI, the high q value, in combination
with a high ef value, makes it impossible to neglect FCA in

our microring. If we were to neglect FCA (f = 0), or more
precisely neglect the extra heating induced by FCA (e = 0),
this would drastically change the steady-state solutions and
the corresponding stability regions. Indeed, it can be calculated
that both the self-pulsation region and the bistability region are
then mainly centered at the blue side of the resonance (which
can be partly understood from an analog situation in Fig. 9,
where a high ε value, and thus, by the

√
ε proportionality, a

higher q value, enhances FCD and results indeed in an extra
bistability region at the blue side of the resonance). The ring is
still excitable but in different (δ,p) regions. Moreover, as the
self-pulsation region now overlaps with the bistability region,
similar to the high ε region in Fig. 9, new bifurcations appear,
such as a saddle-node homoclinic bifurcation, which change
the nearby dynamics. Consequently, if f �= 0 and e �= 0, it
is mainly the FCA-induced heating that causes the bistability
region to be less dependent on the presence of free carriers
(Fig. 5). Indeed, due to this additional heating the blueshift
by FCD is partly compensated by a thermal redshift by the
FCA-induced heating. Other theoretical studies confirm the
importance of FCA in SOI cavities [8,9]. Given this significant
influence of FCA in SOI, it might be interesting to analyze the
nonlinear dynamics in material systems with a different FCA
strength.

VI. CONCLUSION

A microcavity with both thermal and free-carrier nonlin-
earities self-pulsates or is excitable for certain power and
wavelength settings of the input light. The required input
power of the cavity decreases if the cavity is near critical
coupling. If the fast light dynamics (buildup time of the
cavity light) are neglected, the approximate boundaries of
the regions in which this dynamic behavior is present can
be calculated analytically. Free-carrier effects become more
important if the linear loss of the cavity decreases, which
increases the intrinsic Q factor Qi . A higher Qi increases the

ratio of the characteristic nonlinear powers q = P th
0

P el
0

, which

results in a shift of both the self-pulsation region and the
excitability region towards higher detunings (i.e., towards the
blue side of the resonance). High Qi cavities are therefore
needed to obtain this kind of dynamic behavior for low input
powers. Additionally, in the case of microrings, we predict an
optimal cavity enhancement of the nonlinearities for low-loss
rings with a small round-trip length (but still not suffering
from additional bend loss). Moreover, the self-pulsation region
heavily depends on the time scale ratio ε = τf c

τth
, as the size of

this region increases if ε → 0. However, in a realistic cavity
a decrease in ε, e.g., by a decrease in the free-carrier lifetime
τf c, implies a corresponding decrease in q. Indeed, q ∝ √

τf c.
Consequently, if τf c → 0, the self-pulsation region disappears.
Given this trade-off, to enhance excitability and self-pulsation,
τf c needs to be small, but nonzero, compared to the thermal
lifetime τth.
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TABLE I. Description and formula of the model parameters and, if appropriate, their (default) value.

Name Description Formula Value

p normalized input power Pin/(P th
0

1+k

2 )
δ normalized detuning of the input light (ω − ωr )τph

q ratio thermo-optic shift (due to SSA-induced heating) to FCD
P th

0
P el

0
0.397

ε time-scale ratio of the thermal effects to the free-carrier effects
τf c

τth
0.0815

e related to FCA-induced heating 1+k

kηlin
5

f ratio of FCA to FCD Eq. (7) 0.0714

k fraction of good loading to losses τc

τl
1

P th
0 thermal characteristic intrinsic power (related to SSA) Eq. (5) 320 μW

P el
0 free-carrier characteristic intrinsic power (related to FCD) Eq. (6) 804 μW

Q loaded quality factor
ωr τph

2 = Qik/(1 + k) 6.25 × 104

τph photon lifetime (τ−1
l + τ−1

c )−1 103 ps
τth thermal relaxation time 65 ns
τf c free-carrier relaxation time 5.3 ns
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APPENDIX: OVERVIEW OF THE MODEL PARAMETERS

In Table I, we summarize the definitions of the model
parameters used in this paper. The default values are based
on the SOI all-pass ring described in [4].
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