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Stimulated Brillouin scattering has attracted renewed interest with the promise of highly tailorable integration into
the silicon photonics platform. However, significant Brillouin amplification in silicon waveguides has yet to be
shown. In an effort to engineer a structure with large photon–phonon coupling, we analyzed both forward and
backward Brillouin scattering in high-index-contrast silicon slot waveguides. The calculations predict that gradient
forces enhance the Brillouin gain in narrow slots. We estimate a currently feasible gain of about 105 W−1 m−1 in
horizontal slot waveguides, which is an order of magnitude larger than in a stand-alone silicon wire. Such efficient
coupling could enable a host of Brillouin technologies on a mass-producible silicon chip. © 2014 Optical Society
of America
OCIS codes: (130.4310) Nonlinear; (190.4390) Nonlinear optics, integrated optics; (290.5830) Scattering, Brillouin.
http://dx.doi.org/10.1364/OL.39.001242

Stimulated Brillouin scattering (SBS) is a nonlinear proc-
ess that couples optical to mechanical waves [1,2]. It is a
powerful means to control light, with applications rang-
ing from lasing [3], comb generation [4–6], and isolation
[7] to RF-waveform synthesis [8], slow/stored light [9,10],
and reconfigurable filtering [11]. With this in mind, SBS
has been explored in a wide variety of systems, such as
conventional and photonic crystal fibers [12–16], silica
microspheres [17,18] and wedge-disks [19], calcium fluo-
ride resonators [20], and chalcogenide rib waveguides
[21,22]. Therefore the prospect of strong SBS in small-
core silicon wires is tantalizing.
Such wires are known for their large Kerr and Raman

nonlinearity [23]. However, Brillouin scattering has so far
lagged behind in silicon. The culprit is the silica substrate
on which the silicon wires are typically made. It severely
decreases both the wires’ mechanical flexibility and the
phonons’ lifetime. Unlike in chalcogenide rib waveguides
[21,24], elastic waves in silicon cannot be guided by
internal reflection because sound is faster in silicon than
in silica.
A theoretical model by Wang et al. [25,26] recently pre-

dicted that the efficiency of SBS would increase dramati-
cally by removing the substrate. Then the elastic waves
are confined to the core because of the large acoustic
mismatch between air and silicon, although there is still
no internal reflection. The model included not just elec-
trostriction but also radiation pressure, which was tradi-
tionally neglected as a driver of Brillouin scattering. Thus
electrostriction and radiation pressure interfere in nano-
scale waveguides, connecting the fields of Brillouin
scattering and optomechanics [27,28]. The validity of
the new SBS model has been confirmed by recent
observations of SBS in a hybrid silicon nitride-silicon
waveguide [29], although the enhancement of SBS in sil-
icon-only photonic wires [25,26] remains unverified.
In this Letter,we take the studyofBrillouin scattering to

silicon slot waveguides to exploit their strong optical
mode confinement [30,31] and large gradient forces [32].
We perform full-vectorial coupled optical andmechanical

simulations of the Brillouin gain coefficient using the
finite-element solver COMSOL.

We consider vertical [Figs. 1(a) and 1(b)] and horizon-
tal [Figs. 1(c) and 1(d)] slot waveguides suspended in
air. Both waveguides strongly confine light, creating
large radiation pressure close to the slot. This gives rise
to the possibility of (1) improving the photon–phonon
coupling, (2) testing SBS theory in a regime dominated by
gradient forces, and (3) exciting new types of phonons.

A particular mechanical mode with displacement u,
wavevector K , stiffness per unit length keff , and quality
factor Q has a peak SBS gain G of ωQjhf; uij2∕�2keff�,
with ω the optical frequency, f � frp � fes the power-
normalized force distribution, and hf; ui � R

f� · udA
the photon–phonon overlap [25,26]. The radiation pres-
sure frp is located on the waveguide boundaries
[Fig. 2(a)], while the electrostrictive force fes has both

Fig. 1. (a) Vertical and (c) horizontal silicon slot waveguides
suspended in air, with the corresponding optical mode
(b) and (d).
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a body [Fig. 2(b)] and a boundary (not shown) compo-
nent. The boundary component of fes is an order of mag-
nitude smaller than frp. Furthermore, we define Grp and
Ges as the SBS gain when only frp or fes is present. The
total gain G is determined by interference between frp
and fes. Additionally, the pump and Stokes wave co-
(counter-) propagate in forward (backward) SBS.
Phase-matching then requires that K ≈ 0 (K ≈ 2β), with
β the pump wavevector. Finally, we work at λ � 1.55 μm,
use a flat Q of 103 as in [25,26] and we launch the
pump and Stokes wave into the same optical mode
[Figs. 1(b)–1(d)].
If the two beams have identical width and height

[Fig. 3(a)], their mechanical resonances can be addressed
simultaneously. Then the gain is 4G, since the total over-
lap hf; ui is twice the overlap over a single beam.However,
these dimensions cannot differ by more than a fraction
1∕Q to align the resonances within one mechanical line-
width. This is technologically challenging with a Q of
about 103. So we assume just one beam of dimensions
�a; b� contributes to SBS [Fig. 3(b)], even though the un-
excited beam may also be suspended. Moreover, in wide
slots the optical mode evolves into the symmetric super-
mode of two weakly coupled silicon wires. So 4G → ~G as
g → ∞, with ~G the peak gain associatedwith a phonon in a
stand-alone wire [Fig. 3(c)]. In other words, the slot wave-
guide [Fig. 3(b)] has to overcome a factor 4 to reach the
G∕ ~G > 1 gain enhancement regime.
Figures 4(a)–4(c) show the forward and backward SBS

spectrum for a vertical slot waveguide with dimensions
�a; b; ā; g� � �315 nm; 0.9a; a; 50 nm�, including only the
three modes with largest gain.
In the forward case [Fig. 4(a)], the mechanical modes

are identical to those of a stand-alone wire. The maxi-
mum gain among all modes is 4.2 × 103 W−1 m−1. This
is smaller than ~G∕4 � 4.3 × 103 W−1 m−1 [26], despite
the increase in radiation pressure close to the slot. The
cause is a decrease in the pressure on the far side from
the slot [Fig. 2(a)]. This decrease cancels out the en-
hanced forces close to the slot, even in slots as narrow
as 50 nm. This also explains why G does not change sig-
nificantly for g > 50 nm [Fig. 4(b)]. Hence, smaller gaps
are necessary to boost G substantially. Indeed, for the
most promising mode we numerically find that G ∝ 1∕g

as g falls below 50 nm [Fig. 4(b)]. Eventually G
approaches a maximum of ≈1.1 × 105 W−1 m−1 as g → 0.

In the backward case, the mechanical modes are differ-
ent from those of a stand-alone wire since the phonon
wavevector K ≈ 2β depends on the effective index np
of the optical mode. From the point of view of a single
beam, horizontal symmetry is broken by the slot wave-
guide. So modes that were previously forbidden by sym-
metry can have nonzero gain in the slot waveguide. Such
a previously forbidden phonon has the largest backward
SBS gain in the slot waveguide [Fig. 4(c)]. For g � 50 nm,
this phonon has a gain of 7.2 × 102 W−1 m−1. The optical
forces are symmetric again in wide slots. Then this mode
is forbidden, which means that G → 0 as g → ∞
[Fig. 4(d)]. Going from wide to narrow slots, G first
increases exponentially; then its growth accelerates like
G ∝ 1∕g1.6 and ultimately converges to a maximum of
≈4.5 × 104 W−1 m−1 as g → 0.

In general, gradient forces dominate the SBS gain in
narrow slots [Fig. 4(b)–4(d)]. The slot enhances these
forces despite the reduced dispersion in such wave-
guides. As g → 0, the group and effective indices ng
and np approach those of a single wire of width a� ā.
Thus the waveguide dispersion decreases [Fig. 5(a)], con-
trary to the prediction that very dispersive waveguides
are optimal for large gradient forces [33]. Writing
the power-normalized gradient force density as
pδ�r − r∂wg�, it was shown that c

R
p · rdl � ng − np from

the scale-invariance of Maxwell’s equations [33]. For a
stand-alone wire the integral becomes

R
p · rdl �

Awg�p̄x � p̄y� with Awg � ab and p̄ the magnitude of
the spatially averaged radiation pressure. However, this
no longer holds for a slot waveguide. Then the integral
yields

R
p · rdl � Ag�p̄x;L − p̄x;R� � 2Awg�p̄x;L � p̄y�, with

p̄x;L∕R the pressure on the left/right boundary, Ag � gb
and a � ā. Since Ag → 0 as g → 0, p̄x;R and thus p̄x �
p̄y can increase drastically in narrow slots [Fig. 5(a)].

Next, we investigate the effect of ā [Fig. 5(b)–5(d)]. As
ā → 0, there is no slot-enhancement. Then G → ~G, re-
gardless of all other parameters. Furthermore, the optical
mode increasingly retreats into the widest beam. This

Fig. 2. Typical optical force profile on left beam of vertical slot
waveguide: (a) radiation pressure and (b) electrostrictive body
force. The radiation pressure is large close to the slot.

Fig. 3. (a) Slot with two mechanically excited beams, (b) slot
with just one excited beam, and (c) a stand-alone wire. We work
in scenario (b).

Fig. 4. (a)–(c) Brillouin spectrum of a vertical slot waveguide
and (b)–(d) the gain of the most promising mode increases rap-
idly in narrow slots. The color of the modes indicates the sign of
ux (red: +, blue: −).
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implies G → 0 when ā → ∞, although this effect is more
pronounced in wider slots.
In the forward case [Fig. 5(b)], ā affects only the force

distribution. The gain G�ā� has a maximum in narrow
slots but decreases monotonically otherwise. This con-
firms that small gaps are required for substantial gain
enhancement in vertical slot waveguides.
In the backward case [Fig. 5(d)], G�ā� always has a

maximum because this phonon is forbidden in a stand-
alone wire. However, the maximum increases by a factor
26 when the slot is narrowed from 50 to 5 nm. The gain is
dominated by gradient forces regardless of �ā; g�.
Last, we scan �a; b� with ā � a and g fixed at 5 nm.

These parameters influence both the optical and
mechanical mode. The �a; b�-optimum depends heavily
on the slot size and on the mechanical mode. Nonethe-
less, Fig. 5(c) shows that there actually exists such
an optimum. We find a maximum gain of 7.0 ×
104 W−1 m−1 for �a; b� � �260; 150� nm.
The horizontal slot [Fig. 1(c) and 1(d)] has the poten-

tial advantage of (1) the extra degree of freedom b̄ and
(2) smaller gaps. In such a slot, g is not limited by the
resolution of lithography techniques. As a result, SBS en-
hancement may be within reach of current technology.
As long as b̄ � b, the horizontal slot waveguide is but
a rotated version of the vertical one. Therefore we
immediately explore the case b̄ ≠ b. We calculate the
forward and backward Brillouin spectrum for a horizon-
tal slot waveguide with dimensions �a; b; ā; b̄; g� �
�160; 620; a; 240; 5� nm.
In the forward case [Fig. 6(a)], the fundamental flexu-

ral mode couples most efficiently. This mode has
negligible SBS gain in a stand-alone wire because of can-
cellations in the photon–phonon overlap. Indeed, the uy
component has two nodes, while the y component of the
gradient force does not change sign. Owing to b > b̄, the
cancellations can be avoided by confining the optical
mode between the nodes of uy.
In the backward case [Fig. 6(c)], there are two modes

with enhanced coupling. The first mode has a nearly

uniform uy component. It is a rotated version of the mode
we previously studied in Figs. 4(d) and 5(d). The second
mode is the fundamental flexural mode, but at the oper-
ating point K ≈ 2β in its dispersion diagram.

The gain increases by four orders of magnitude when g
drops from 250 to 5 nm [Fig. 6(b)]. This radical enhance-
ment is superexponential in g for gaps below 50 nm. The
forward (backward) gain approaches ≈1.3 × 106 W−1 m−1

(1.5 × 105 W−1 m−1) as g → 0. At g � 70 nm, an optical
mode anti-crossing causes a dip in the SBS gain. How-
ever, G�g� quickly recovers its original path as g leaves
the anti-cross region. We only show the total gain G
because Ges is at least a factor 105 (102) smaller than
Grp across the entire sweep range in the forward (back-
ward) case. Thus SBS by these modes is driven by
gradient forces only, with a vanishing electrostrictive
contribution.

Finally, we sweep b̄ [Fig. 6(d)]. In the forward case, keff
and u do not depend on b̄. Then we explore purely
the effect of the gradient force density frp�b̄� on the
photon–phonon overlap hfrp�b̄�; ui. The coupling is opti-
mal for b̄ � 240 nm. For smaller b̄, G decreases because
the slot-enhancement occurs only in a small region. For
larger b̄, G decreases because the optical mode is no
longer confined between the nodes of uy. In the back-
ward case, the operating point K ≈ 2β changes as np de-
pends on b̄. This propagating phonon is less sensitive to b̄
because of its nearly uniform uy component.

To conclude, we found that strong gradient forces im-
prove the efficiency of Brillouin scattering in narrow
silicon slot waveguides. However, appreciable enhance-
ment compared to a stand-alone wire is currently only
accessible in horizontal slots. In such slots, we expect
very efficient SBS because (1) small gaps should be tech-
nologically feasible and (2) the fundamental mechanical
flexural mode can be excited. The suspension of long sil-
icon beams remains the most important hurdle toward
testing these predictions. A practical device may consist
of a disconnected series of such waveguides as in [29].
With a coupling of 105 W−1 m−1, the simulations predict

Fig. 5. (a) Gradient forces can be large despite low dispersion;
(b)–(d) narrow slots perform better than a stand-alone wire for
a range of ā-values; and (c) G has a clear optimum in the �a; b�-
plane for the same mode as in (b) with g � 5 nm.

Fig. 6. (a)–(c) Both forward and backward SBS is very effi-
cient in narrow horizontal slots and (d) the flexural mode is
sensitive to b̄. The color of the modes indicates the sign of
uy (red: +, blue: −).
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that 20 dB gain is feasible with 50 mW on-chip pump
power over 1 mm propagation length.
Supplementary information: We use isotropic elasticity

coefficients �c11; c12; c44� � �217; 85; 66� GPa for easy
comparison with [25,26]. Silicon is mechanically aniso-
tropic, so in a more accurate calculation the coefficients
�c11; c12; c44� � �166; 64; 80� GPa should be used for a
guide along a h100i crystal axis [34]. Further, we use
the photoelastic coefficients �p11; p12; p44� � �−0.094;
0.017;−0.051� [35], which is also valid in case the guide
is aligned along a h100i axis. We perform our calculations
using the weak-form [36] COMSOL module with the
MATLAB Livelink.
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